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Identifying spatially shared dynamics is a key component of community ecology studies
as they provide evidence of common responses to environmental factors. We apply
co-prediction, an empirical dynamic modeling method (EDM), where values in one
time series are predicted from another to quantify shared dynamics in the California
Cooperative Fishery Oceanographic Investigation (CalCOFI) dataset composed of
spatially explicit physical and biological measurements. Co-prediction can arise in the
absence of correlation between two time series. The survey dates to 1951 and consists
of a semi-regular, fixed-station design off the west coast of the USA. While the California
Current is a dynamic system with multiple identified regimes, we found evidence of
coherence measured in terms of spatially shared dynamics in salinity, temperature,
Shannon index of ichthyoplankton abundance, and single-species ichthyoplankton
abundance throughout the CalCOFI survey area. Leave-one-out hindcast skill, without
including any knowledge of shared dynamics was significant in 27 stations for salinity
data, 36 for temperature data, and 33 for Shannon index (out of 81 total stations).
We then evaluated hindcast skill when including shared dynamics via composite
libraries, in which correlated or co-predicted time series are concatenated to produce
denser attractors. The number of correlated stations was generally higher than the
number of co-predicted stations, but hindcast skill from composite libraries of correlated
stations did not increase hindcast skill. Composite libraries of co-predicted stations had
significant leave-one-out hindcast skill in 60 stations for salinity data, 60 for temperature,
and 72 for Shannon index. Additionally, we found evidence of nonlinear relationships, as
nonlinear hindcasts accounted for nearly all of these significant stations. While there
were high levels of correlation among stations, co-prediction proved a more robust
method of identifying shared dynamics. Shared dynamics were largely concentrated
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south of Point Conception, considered an oceanographic and biological breakpoint,
although in some cases shared dynamics spanned this boundary. Taken together, we
apply EDM to present the first, to our knowledge, evaluation of station-specific hindcast
skill and provide a view of the realized spatial structure occurring in the physical and
biological dynamics of the California Current system.

Keywords: California Current, empirical dynamic modeling, ocean observing, synchrony, community diversity

INTRODUCTION

One main objective of ecology is to understand how the
environment influences biological organisms from individual
to ecosphere scales, and identification of shared dynamics
or synchrony across space and time is a valuable tool for
achieving this goal (Hsieh et al., 2005). For example, marine
fish populations shift distributions in response to ocean warming
(Pinsky et al., 2013), and this kind of knowledge is necessary
to inform resilient fisheries management (Wilson et al., 2018)
or ecosystem-based fisheries management (Pikitch et al., 2004).
Application of modern statistical analyses have the capacity
to further understanding of synchronous dynamics and holds
the potential to improve forecasting (Sugihara et al., 2012).
Augmenting forecasting skill is paramount to effective marine
management and is particularly important in times of rapid
environmental change (Jacox et al., 2020).

The abundance of species can fluctuate in response to
combinations of abiotic and biotic factors, and these dynamics
can be shared across species-specific populations in space and
time. Ecological studies have focused on identifying patterns
of synchrony, defined to be shared fluctuations between time
series of population abundance. Synchrony exists for species
across a spectrum of sizes ranging from protists (Holyoak and
Lawler, 1996), insects (Williams and Liebhold, 2000; Tobin and
Bjørnstad, 2003), fish (Myers et al., 1995, 1997; Fromentin et al.,
2000), and birds (Bellamy et al., 2003). In terrestrial and marine
systems, synchrony between two populations decreases as a
function of distance (Ranta et al., 1995; Sutcliffe et al., 1996;
Bjørnstad et al., 1999), and estimation of this decay is a key
component of spatiotemporal models (Cressie and Wikle, 2015;
Thorson et al., 2015).

Synchrony can be quantified with parametric statistical
methods (Gouhier and Guichard, 2014), and the specific
definition of synchrony can depend on methodology (Liebhold
et al., 2004). For the most part, parametric methods involve
computing some metric (e.g., correlation, variance, or
semivariance) between two time series (Bjørnstad et al.,
1999; Koenig, 1999). Spatial synchrony is measured by relating
the calculated metric to the geographic distances between survey
sites. Analysis of residual correlation is one approach of relating
synchrony to environmental changes (Buonaccorsi et al., 2001).
Analysts will fit a model to the data, e.g., autoregressive models
or linear models, then quantify correlations between residuals.
Correlated residuals suggest that both time series experienced
a common response to an external (e.g., environmental)
factor (Buonaccorsi et al., 2001). The challenge with this

approach is that correlated residuals may be the result of model
misspecification, which is difficult to identify.

Empirical dynamic modeling (EDM) is a non-parametric
analytic method that may be an alternative method to
quantify shared dynamics without requiring assumptions of
independence or statistical distributions. Broadly, the EDM
approach focuses on identifying the factors that govern
dynamics in natural systems. Takens’ theorem of time-delay
embedding, a key component of EDM, demonstrates that lags
of a single time series can reconstruct the dynamics of the
unobservable system (Takens, 1981). This approach primarily
distinguishes between observational noise and chaotic dynamics,
but has proven applicable to ecological systems. Prediction with
EDM outperforms parametric predictions in simulated chaotic
ecological systems (Perretti et al., 2013a,b; Munch et al., 2017),
and improves forecast skill in salmon runs (Ye et al., 2015) and
fish recruitment (Munch et al., 2018). The methods also identify
causal relationships between sardine landings and sea surface
temperature (Deyle et al., 2013).

Time series can be synchronous even when not fluctuating in
unison, and EDM can identify shared dynamics in the absence
of traditional correlation (Sugihara et al., 2012). Co-prediction
is a method of identifying time series driven by the same forces
in ways that are not readily apparent. Technically, co-prediction
involves predicting values of one time series from another time
series. If predictions are significant (see methods for significance
criteria), the time series are assumed to have dynamic similarity.
Applications of co-prediction can identify interspecific dynamics
(Liu et al., 2012) and relationships between fish populations and
environmental covariates (Liu et al., 2014).

In addition to identifying synchrony, correlation and co-
prediction can inform forecasting through composite libraries.
Composite libraries are a means of using spatial replicates of
comparatively short time series to understand system dynamics
(Hsieh et al., 2008), but potentially have the same benefits for
longer time series. Composite libraries are composed of multiple
time series concatenated together. Individual time series that
contain as few as five observations can form composite libraries
that detect causal relationships in simulated data with both
observation and process error (Clark et al., 2015). In an in vivo
ecological setting, composite libraries can identify the shared
dynamics of albacore (Thunnus alalunga) across the North
Pacific Ocean (Glaser et al., 2014). Composite libraries may be a
powerful approach to improve both hindcasting and forecasting
in the California Current ecosystem.

The California Cooperative Oceanographic Fisheries
Investigation (CalCOFI) program is among the longest-running
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oceanographic surveys in the world (Gallo et al., 2019). The
survey has a fixed station design that has at times collected
physical oceanographic (e.g., temperature, salinity) and plankton
(e.g., zooplankton, ichthyoplankton) samples from southern
Baja California, Mexico to Vancouver Island, Canada. However,
the most comprehensive temporal coverage ranges from the
US-Mexico border to the San Francisco Bay area extending from
the nearshore to roughly 500 km offshore (Gallo et al., 2019).
Although the original intent of CalCOFI was to better elucidate
the factors causing the collapse of the Pacific sardine population
in the 1940s (Hewitt, 1988), data from the survey now extend
beyond fisheries applications and serve as an indicator of overall
ecosystem status (Sugihara et al., 2011; Thompson et al., 2018;
Harvey et al., 2019). As climate change continues to impact ocean
dynamics, CalCOFI is poised to contextualize changes in the
California Current Ecosystem (CCE) and help predict changes in
fish and zooplankton communities.

The CCE is highly dynamic and characterized by interannual
and interdecadal variability (Rykaczewski and Checkley, 2008;
Thompson et al., 2018). Distinct water masses mix in the CCE
(Bograd et al., 2015), and each body of water is associated with
a particular biological community (McClatchie et al., 2018). As a
result, fish assemblages fluctuate interannually (McClatchie et al.,
2018). The CCE is also subject to larger scale climatic forcing
(Thompson et al., 2019). For example, there was a rather abrupt
shift from relatively cold to warm conditions in 1976 that induced
long-lasting increases in warm water associated fishes in southern
California (Peabody et al., 2018). Given the complicated and
dynamic nature of physical and biological properties of the CCE,
EDM may be a tool to better understand shared dynamics and
augment forecasting across the system.

Here, we leverage the rich spatial and temporal resolution of
CalCOFI to identify shared dynamics and measure the ability of
these similarities to improve hindcast (as a proxy for forecast)
prediction skill. We focus on physical (salinity and temperature)
and biological time series (species-specific ichthyoplantkon and
Shannon index of ichthyoplankton diversity). The goals of this
study are both methodological and empirical.

The first methodological goal is to quantify the degree of
correlation and co-prediction to identify shared dynamics of
physical and biological data among sample stations. The second
methodological goal is test whether composite libraries made
up of co-predicted time series (significantly predict one time
series from another) improve hindcast skill in comparison with
composite libraries of correlated sites. Our attempts to improve
hindcast skill can serve as a template to conduct forecasts in the
future. We hypothesize that there is synchrony in the CalCOFI
data and that co-prediction will be a more robust method of
identifying shared dynamics than correlation. That is, composite
libraries of co-predicted stations will have higher hindcast skill
than composite libraries of correlated stations. Notably, we
explore synchrony and hindcasting within each variable (e.g., can
temperature at station X be predicted by temperature at station
Y) but do not search for patterns between variables (e.g., we do
not test if temperature can predict fish abundance or diversity).

The ecological goal is to evaluate the extent of shared dynamics
within physical and biological time series. We hypothesize that

shared dynamics in the physical and biological time series will
be mostly localized either north or south of Point Conception,
a known biogeographic and oceanographic breakpoint (Hubbs,
1948). Knowledge of both shared dynamics and the spatial scale
of dynamics may have important implications for survey design.
Depending on the strength of shared dynamics, it may be possible
to identify relatively redundant sampling locations to optimize
sampling effort.

MATERIALS AND METHODS

Data Preparation
CalCOFI currently collects physical and biological data from
each of 104 stations in winter and spring between the
United States/Mexico border and San Francisco and 75 stations
from the United States/Mexico border to approximately San Luis
Obispo in summer and fall (Figure 1). Because some stations
are sampled more regularly than others, we culled the analysis
to include 81 stations (Figure 1), with observations spanning
from 1951 to 2017. We used observations from winter and
spring surveys as the temporal and spatial coverage was highest.
CalCOFI shifted from annual to mostly triennial sampling from
1971 to 1983, resulting in no seasonal surveys in some years.
Although CalCOFI strives to collect from exactly the same
location for a given station, in reality the precise location can vary
somewhat from cruise to cruise. Hence, for a particular station,
we average observations (see below) within 5 km of a cardinal
station location.

CalCOFI samples a myriad of physical factors throughout the
water column with a conductivity temperature depth instrument
(McClatchie, 2014; Gallo et al., 2019). We focus here on
temperature and salinity because these variables are known to
impact the distribution and abundance of many marine species
(Thompson et al., 2014, 2017). For each station, we calculate
mean temperature and salinity between the surface and 100
m and average these means across winter and spring cruises
for each station.

The main, long-running CalCOFI biological observations are
collected with plankton nets. We focus on ichthyoplankton
collected with bongo nets lowered to 210 m (or within 10 m
of the bottom at shallow stations) and towed to the surface
at a constant speed and at a 45◦ angle (McClatchie, 2014).
Quantifying the abundance of larval fishes is a comprehensive
method for assessing the dynamics of most fishes in an ecosystem
because although adults occupy different habitats, larval fishes
from most species reside in the upper 200 m of the water
column and can thus be sampled simultaneously. Several studies
demonstrate that ichthyoplankton abundance correlates with the
spawning stock biomass of fishes (Moser and Watson, 1990;
Moser et al., 2001; Ralston et al., 2003; Ralston and MacFarlane,
2010). CalCOFI plankton samples are preserved at sea in a tris-
buffered 5% formalin solution. Ichthyoplankton are identified
in a laboratory based on morphology (Moser, 1996). CalCOFI
provides time series for hundreds of fishes. Raw larval counts
are multiplied by a standard haul factor that accounts for
differences in water filtered and divided by the percent of the
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FIGURE 1 | Map of stations within the CalCOFI survey grid and the data availabilities for each individual station (referenced by line-station) for 1951–2017. The map
(left column) shows stations used for this analysis (black points) and those that were not (white points). The arrow indicates the location of Point Conception. The
data availability plot (right column) shows survey records for years with winter-spring values (black tiles), summer-autumn values (gray tiles; not used in analysis), and
no coverage (white tiles). CalCOFI shifted from annual to mostly triennial sampling from 1971–1983 resulting in no surveys in some years. In the early years of
CalCOFI, the survey area extended north to British Columbia, Canada and south to Baja California, Mexico (not shown).

samples with high zooplankton volumes are often subsampled
(Smith, 1977). Final abundances are expressed as larvae per 10
m2 surface area. CalCOFI surveys typically sample each of the
stations we use in this study 1–4 times per year (Figure 1),

and we calculate annual averages from winters and springs.
Note that CalCOFI shifted from annual to mostly triennial
sampling from 1971 to 1983 resulting in no surveys in some
years (e.g., 1979).

Frontiers in Marine Science | www.frontiersin.org 4 October 2020 | Volume 7 | Article 557940

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-557940 October 25, 2020 Time: 16:22 # 5

Kuriyama et al. Shared Spatial Dynamics in CalCOFI

Many of the fishes in this study share similar adult habitat
affinities and are subject to comparable fishing pressure. Both
factors are known to comparably and predictably affect fish
population dynamics (Hsieh et al., 2005). To evaluate whether
fishes in particular groups exhibit similar patterns of synchrony,
we assign each taxa to five groups delineated by Hsieh et al.
(2005): oceanic-unfished, coastal-fished, coastal-oceanic-fished,
coastal-bycatch, and coastal-unfished. For each species, we select
time series with at least 25% non-zero values as some species are
only rarely observed at particular stations. For example, some
mesopelagic fishes are never or very rarely found at shallow,
coastal stations.

Finally, we generate time series of single value Shannon
diversity index values (Hs,t ) using the equation:

Hs,t = −

R∑
i = 1

pi,s,t log
(
pi,s,t

)
(1)

at each station (s) in year (t) for species (i). The proportional
abundance (p) is multiplied by the natural logarithm of p and
summed from species i to the total number of species (R).
A single H value was calculated across winter and spring for
each year and station. Additionally, the Shannon diversity values
were calculated based on all the species reported, which in
most cases included additional species to the 36 fish taxa in the
single-species analysis. Although we can now identify almost all
taxa to species, taxonomic knowledge was less developed at the
beginning of CalCOFI. To keep time series used to calculated
diversity consistent, we group some species to the 1950s level
taxonomic resolution. We use 60 taxa in calculations of Shannon
diversity and focus on the 36 most common species for single-
species analyses.

Synchrony
We conduct and compare correlational and co-prediction
analyses to evaluate synchrony among stations for two physical
parameters (temperature and salinity), abundances of 36 fish
taxa, and fish diversity. In addition, we evaluate the spatial
extent of shared dynamics north and south of Point Conception.
Specifically, we quantify the proportion of stations that are
significantly synchronous with paired stations within and
between northern and southern regions. We follow this analysis
by calculating the mean Euclidian distance (km) separating
significantly synchronous stations in the north and south. Finally,
we assess if synchrony patterns vary among the five fish groups
(e.g., ocean-nonfished, coastal-fished). We determine if north-
south synchrony patterns differ depending on whether synchrony
was assessed with correlation vs. co-prediction analyses.

Correlation
We calculate correlation coefficients (i.e., correlational
synchrony) between time series from combinations of station
pairs with time lag-0. Our criteria for significance is a statistically
significant Spearman’s rho coefficient (p < 0.05). We do not
apply sequential Bonferroni corrections that alleviate type-1
error that can arise with multiple testing because our objective

is to compare results from correlation and co-prediction
analyses rather than evaluate the significance of any one
particular time-series.

Co-prediction
A key step in EDM co-prediction analysis is to identify the
dimensionality of the data. In nature, a number of physical and
environmental factors drive a population; a time series is a one-
dimensional observation of the factors’ effects on the population.
Fortunately, ecological models do not require analysts to identify
all of the factors, rather a comparatively few number of variables
can be representative of the dynamics (Schaffer and Kot, 1985).
Similarly, Takens’ theorem, a tenet of EDM, formalizes this idea
that a single time series and some number of lags (dimension;
E) are representative of system dynamics (Takens, 1981; Sugihara
and May, 1990). Per Takens’ theorem, an M-dimensional system
converges to a d-dimensional attractor, and a single time series
of observations yt, t = 1, 2, . . . , T and lagged coordinates of y
(at time step τ) Yt =

{
yt, yt−τ, . . . , yt−Eτ

}
can reconstruct the

d-dimensional attractor (Takens, 1981). This requires that a time
series is sufficiently long to capture attractor dynamics.

Simplex projection (hereafter referred to as simplex) along
with sequentially locally weighted global linear maps (s-map)
are two key EDM forecasting methods. The distinction is
that simplex identifies the dimensionality of the system, and
s-map characterizes the data as linear or non-linear (Sugihara,
1994). S-map will generally outperform simplex if system
dynamics are non-linear.

We first identify the dimensionality of time series in the
CalCOFI dataset with simplex. Simplex projection takes a
weighted average of the nearest neighbors’ trajectories depending
on the specified dimension (E). Given an E, a time series and its
E-lagged coordinates, we seek to predict a value ŷt+1. In order to
predict this value, we use the Euclidean distance d(yt, ys) between
yt and ys and calculate the weights wi(t) as:

wi (t) = exp

(
−d

(
yt, yn(t,i)

)
d
(
yt, yn(t,1)

) ), (2)

where n(t, i) specifies the index of the i-th closest neighbor to
yn(t,1). The prediction ŷt+1 is:

ŷt+1 =

(∑E+1
i = 1 wi(t)yn(t,i)+1

)
∑E+1

i = 1 wi (t)
(3)

We use leave-one-out cross-validation and select the E with
the highest correlation between predicted and observed values.
We evaluate E values ranging from 1 to 10 and identify the best-
fitting E for each time series.

Next, we evaluate co-prediction in which we take the best-
fitting E for one time series (library) and predict values in another
time series (predictee) with simplex. Co-prediction quantifies
the dynamic similarity between time series, and has been
used to identify interspecific and species-environment dynamics
(Liu et al., 2014) and nonlinearities (Liu et al., 2012) in the
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FIGURE 2 | The numbers of significantly correlated vs. numbers of significantly co-predicted stations for salinity, temperature, and Shannon indices of diversity. Each
point represents the numbers of each correlated or co-predicted with a particular station (e.g., station A is correlated with 70 stations and co-predicted with 10
stations). Points are slightly transparent to allow overplotting. For nearly all stations, the numbers of correlated stations were higher than the number of co-predicted
stations. Dashed lines indicate the one to one line. Composite libraries were composed of correlated or co-predicted stations based on these results.

Northwest Atlantic. We conclude significant co-prediction if
there are positive and statistically significant correlations between
predicted and observed values (ρ > 0; p < 0.05) and mean
absolute scaled error (MASE) values less than 1. Consider a
dataset from timesteps t = 1, . . . , n. We generated a hindcast
prediction, Ft , at each timestep. Forecast error was:

et = Yt − Ft (4)

where Yt is the observation at time t. Scaled error qt was:

qt =
et

1
n−1

∑n
i = 2 |Yi − Yi−1|

(5)

and MASE was:

MASE = mean
(∣∣qt

∣∣) (6)

A MASE value less than 1 indicates that the prediction had lower
error than that from a naïve predictor, which uses the prior
year value as a prediction (Hyndman and Koehler, 2006). Again,
we evaluate co-predictability between stations for each set time
series (i.e., salinity, temperature, Shannon index of abundance,
and single-species ichthyoplankton) for each station, but do not
attempt to conduct co-prediction across sets of time series (e.g.,
we do not predict salinity from temperature).

Further details on EDM are available in the documentation for
the R package “rEDM”1 and Chang et al. (2017).

Hindcasting
We construct composite libraries (i.e., concatenated time series)
of the significantly correlated and significantly co-predicted
stations identified here.

We generate hindcast predictions from three data scenarios
for each time series. Consider time series A from a specific

1https://github.com/ha0ye/rEDM

station for a particular data set (e.g., salinity). We s-map
hindcast (leave-one-out) values of time series A from: (1) time
series A; (2) the composite library of time series A and time
series correlated with A; and (3) the composite library of time
series A and time series co-predicted by A. Once again, we
replicate these three scenarios for each of the time series but
do not attempt comparisons between data sets (e.g., predicting
Shannon index from salinity). Our goal here is to quantify
the ability of correlated and co-predicted stations to improve
hindcast skill.

We use s-map with leave-one-out cross validation to evaluate
hindcast skill. S-map is an extension of simplex that has an
additional parameter (θ) that controls the strength of nearest-
neighbor weighting. S-map can make both linear (θ = 0) and
non-linear (θ > 0) predictions (Sugihara, 1994). We select E

TABLE 1 | Percentages of correlated and co-predicted (number of unique station
pairs in parantheses) for salinity, temperature, and Shannon index.

Point Conception Correlated Co-predicted

Salinity Across 35% (n = 2262) 38% (n = 328)

N-N 7% (n = 2262) 11% (n = 328)

S-S 58% (n = 2262) 51% (n = 328)

Temperature Across 38% (n = 2507) 36% (n = 341)

N-N 8% (n = 2507) 18% (n = 341)

S-S 54% (n = 2507) 46% (n = 341)

Shannon Across 18% (n = 613) 26% (n = 430)

N-N 17% (n = 613) 6% (n = 430)

S-S 65% (n = 613) 68% (n = 430)

The Point Conception column indicates whether the library and predicted stations
crossed (Across), both north (N-N), or both south (S-S) of Point Conception.
Generally the highest percentage of relationships were both south of Point
Conception. Often correlated stations were commutative (e.g., station A correlated
with station B; Station B correlated station A), and pairs like this were only tallied
once.
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FIGURE 3 | Map of correlated (left column) and co-predicted (right column) stations shown with shades of red. The number of correlated stations was highest for
salinity (first row) and temperature (second row). Median number of significant stations are shown in the top right of each panel.

and θ from time series A based on the values that maximize
the correlation between the leave-one-out predictions and
observations. We then use the E and θ values with s-map to
hindcast values for time series A from time series A, correlated
composite libraries, and co-predicted composite libraries. The
criteria for statistical significance is positive correlations between
predicted and observed values (ρ > 0, p < 0.05) and lower error
than that of a naïve prior year predictor (MASE < 1).

RESULTS

Synchrony
We found evidence of synchrony between stations within
all time series (salinity, temperature, Shannon index,
and 36 single-species ichthyoplankton abundances) with
both correlational and co-prediction analyses. Generally,
there were many more correlational relationships than
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FIGURE 4 | Proportions of south stations correlated (left column) and co-predicted (right column) with stations south (x-axis) and north (y-axis) of Point
Conception.There were 59 stations south and 22 stations of Point Conception. Panels show results for the three data types: salinity (top row), temperature (middle
row), and Shannon indices (bottom row). The median proportions for predicted stations south (bottom right of each panel) and north (top left of each panel) of Point
Conception. The dashed line shows the one-to-one line.

co-predicted relationships (Figure 2). Each of the 81 stations
was correlated and co-predicted with at least one other
station for each of the temperature, salinity, and Shannon
index data.

Correlated and co-predicted stations were most concentrated
south of Point Conception. A minority of the correlated pairs are
north of Point Conception: 7% for salinity, 8% for temperature,
and 17% for Shannon index (Table 1). We found a similar
pattern for co-predicted pairs north of Point Conception:
11% for salinity, 18% for temperature, and 6% for Shannon
index (Table 1). Note, that 22 of the 81 stations (27%) were
located north and 59 of 81 stations (73%) were located south
of Point Conception. Generally, stations closer to shore and

south had the highest correlation and co-prediction with other
stations (Figure 3).

Adjusting for the distribution of stations north (22 stations)
and south (59) of Point Conception by representing values in
terms of proportions (e.g., 10 out of a possible 22 and 12
of a possible 59) for each library station resulted in slightly
more balanced relationships across Point Conception. Stations
south of Point Conception co-predicted with roughly the same
proportions of stations north and south for salinity, temperature,
and Shannon index (Figure 4). Library stations north of Point
Conception were more co-predicted with stations north for
salinity and temperature, whereas the proportions for Shannon
index were roughly equal (Figure 5).
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FIGURE 5 | Proportions of north stations correlated (left column) and co-predicted (right column) with stations south (x-axis) and north (y-axis) of Point
Conception.There were 59 stations south and 22 stations of Point Conception. Panels show results for the three data types: salinity (top row), temperature (middle
row), and Shannon indices (bottom row). The median proportions for predicted stations south (bottom right of each panel) and north (top left of each panel) of Point
Conception. The dashed line shows the one-to-one line.

A majority of the predictee stations for single-species
ichthyoplankton library stations were concentrated south of
Point Conception (Table 2). For library stations north of
Point Conception, at least half of the predicted stations
were south of Point Conception for coastal-oceanic-fished and
oceanic species (Table 2). For library stations south of Point
Conception, at least half of the predicted stations were also south
for coastal-fished, coastal-oceanic-fished, and oceanic species
categories (Table 2).

Composite Libraries
Individual stations showed evidence of hindcast skill. Leave-one-
out predictions for a particular time series were significant in 27

stations for salinity, 36 for temperature, and 33 for Shannon index
of 81 total stations (Table 3).

Composite libraries generally resulted in a greater number
of significantly predicted stations. The number of significantly
predicted stations from composite libraries of correlated stations
was 28 for salinity, 36 for temperature, and 42 for Shannon index
(Table 3). Predictions from composite libraries of co-predicted
stations were significant in 60 stations for salinity, 60 for
temperature, and 72 stations for Shannon index (Table 3). For
salinity and Shannon index, co-prediction was a more robust
method of identifying shared dynamics than correlation.

Generally, significant hindcast skill was highest with nonlinear
predictions, indicated by θ values greater than 0. Nonlinear
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TABLE 2 | Percentages of correlated and co-predicted (number of unique station pairs in parantheses) for individual species grouped by category.

Common name Scientific name Pt. Conception Correlated Co-predicted

Oceanic

California flashlightfish Protomyctophum crockeri Across 36% (n = 727) 39% (n = 364)

N-N 9% (n = 727) 6% (n = 364)

S-S 55% (n = 727) 55% (n = 364)

Blue lanternfish Tarletonbeania crenularis Across 42% (n = 615) 54% (n = 162)

N-N 17% (n = 615) 20% (n = 162)

S-S 41% (n = 615) 26% (n = 162)

Northern lampfish Stenobrachius leucopsarus Across 23% (n = 455) 36% (n = 236)

N-N 8% (n = 455) 9% (n = 236)

S-S 69% (n = 455) 55% (n = 236)

Broadfin lampfish Nannobrachium spp. Across 34% (n = 443) 35% (n = 200)

N-N 15% (n = 443) 7% (n = 200)

S-S 51% (n = 443) 58% (n = 200)

Longfin lanternfish Diogenichthys atlanticus Across 9% (n = 56)

S-S 100% (n = 153) 91% (n = 56)

Highsnout bigscale Melamphaes spp. Across 35% (n = 136) 41% (n = 109)

N-N 12% (n = 136) 9% (n = 109)

S-S 53% (n = 136) 50% (n = 109)

Mexican lampfish Triphoturus mexicanus S-S 100% (n = 104) 100% (n = 40)

California lanternfish Symbolophorus californiensis Across 7% (n = 95)

S-S 93% (n = 95) 100% (n = 37)

Pacific viperfish Chauliodus macouni Across 52% (n = 84) 51% (n = 43)

N-N 18% (n = 84) 19% (n = 43)

S-S 30% (n = 84) 30% (n = 43)

Panama lightfish Vinciguerria lucetia S-S 100% (n = 77) 100% (n = 13)

Pacific blacksmelt Bathylagus pacificus Across 10% (n = 39) 12% (n = 17)

N-N 90% (n = 39) 82% (n = 17)

S-S 6% (n = 17)

Lanternfishes Myctophidae spp. S-S 100% (n = 18) 100% (n = 9)

Dogtooth lampfish Ceratoscopelus townsendi S-S 100% (n = 16) 100% (n = 7)

Blackbelly dragonfish Stomias atriventer S-S 100% (n = 1) 100% (n = 6)

Bluethroat argentine Nansenia candida Across 100% (n = 1)

Pearly lanternfish Myctophum nitidulum S-S 100% (n = 1)

Slender lanternfish Hygophum reinhardtii S-S 100% (n = 1)

Coastal-fished

Chilipepper Sebastes goodei Across 42% (n = 302) 50% (n = 147)

N-N 23% (n = 302) 12% (n = 147)

YS-S 35% (n = 302) 38% (n = 147)

Cow rockfish (cowcod) Sebastes levis Across 42% (n = 302) 50% (n = 147)

N-N 23% (n = 302) 12% (n = 147)

S-S 35% (n = 302) 38% (n = 147)

Mexican rockfish Sebastes macdonaldi Across 42% (n = 302) 50% (n = 147)

N-N 23% (n = 302) 12% (n = 147)

S-S 35% (n = 302) 38% (n = 147)

Rockfishes Sebastes spp. Across 42% (n = 302) 50% (n = 147)

N-N 23% (n = 302) 12% (n = 147)

S-S 35% (n = 302) 38% (n = 147)

Splitnose rockfish Sebastes diploproa Across 42% (n=302) 50% (n = 147)

N-N 23% (n = 302) 12% (n = 147)

S-S 35% (n = 302) 38% (n = 147)

Stripetail rockfish Sebastes saxicola Across 42% (n = 302) 50% (n = 147)

N-N 23% (n = 302) 12% (n = 147)

S-S 35% (n = 302) 38% (n = 147)

(Continued)
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TABLE 2 | Continued

Common name Scientific name Pt. Conception Correlated Co-predicted

Bocaccio Sebastes paucispinis Across 41% (n = 115) 45% (n = 42)

N-N 13% (n = 115) 14% (n = 42)

S-S 46% (n = 115) 41% (n = 42)

English sole Parophrys vetulus Across 33% (n = 6)

N-N 17% (n = 6)

S-S 100% (n = 2) 50% (n = 6)

Aurora rockfish Sebastes aurora Across 33% (n = 3) 20% (n = 5)

N-N 20% (n = 5)

S-S 67% (n = 3) 60% (n = 5)

Coastal-oceanic-fished

Northern anchovy Engraulis mordax Across 22% (n = 692) 23% (n = 527)

N-N 3% (n = 692) 2% (n = 527)

S-S 75% (n = 692) 75% (n = 527)

California smoothtongue Leuroglossus stilbius Across 31% (n = 667) 43% (n = 166)

N-N 9% (n = 667) 9% (n = 166)

S-S 60% (n = 667) 48% (n = 166)

Pacific hake or whiting Merluccius productus Across 29% (n = 363) 36% (n = 307)

N-N 11% (n = 363) 6% (n = 307)

S-S 60% (n = 363) 58% (n = 307)

Jack mackerel Trachurus symmetricus Across 13% (n = 239) 13% (n = 98)

N-N 1% (n = 239)

S-S 86% (n = 239) 87% (n = 98)

Pacific sardine (pilchard) Sardinops sagax S-S 100% (n = 122) 100% (n = 179)

Medusafish Icichthys lockingtoni Across 37% (n = 93) 44% (n = 73)

N-N 25% (n = 93) 28% (n = 73)

S-S 38% (n = 93) 28% (n = 73)

Coastal-bycatch

Shortbelly rockfish Sebastes jordani Across 28% (n = 101) 43% (n = 54)

N-N 3% (n = 101) 6% (n = 54)

S-S 69% (n = 101) 51% (n = 54)

Hornyhead turbot Pleuronichthys verticalis S-S 100% (n = 1)

Coastal-unfished

Pacific argentine Argentina sialis Across 33% (n = 12) 56% (n = 9)

S-S 67% (n = 12) 44% (n = 9)

The Point Conception column indicates whether the library and predicted stations crossed (Across), both north (N-N), or both south (S-S) of Point Conception. Generally
the highest percentage of relationships were both south of Point Conception.

predictions resulted in significance for roughly 80% of the
stations in the single station and composite library scenarios
(Table 3). For the co-predicted composite library scenario,
nonlinear s-map predictions accounted for nearly all the
significant results (Table 3).

The CalCOFI survey has variable temporal and spatial
sampling frequencies due to logistical and financial challenges
common to any long-term ecological survey. Stations off
northern California in the CalCOFI grid had stretches
with no winter and spring surveys. Because we compare
s-map predictions to lagged observations, assuming a lagged
observation from say 10 years prior may bias MASE calculations.
In other words, a poor predictor compared to a lagged
observation from many years prior may result in lower MASE
values. To control for this, we filtered time series such that the
maximum gap was 3 years or less and recalculated MASE. The
number of significant stations was relatively unchanged, and the

TABLE 3 | Numbers of significantly predicted stations for salinity, temperature,
and Shannon indices of diversity.

Single station Correlated
composite

Co-predicted
composite

Salinity 27 (85% nonlinear) 28 (86%) 60 (97%)

Temperature 36 (83%) 36 (78%) 60 (100%)

Shannon Index 33 (82%) 42 (79%) 72 (99%)

Predictions were made with s-map using either a single station, composite library
of correlated stations, or composite library of co-predicted stations. Values in
parentheses show the percentage of significant stations with θ values greater than
0 (indicating nonlinearity).

number of significantly co-predicted composite library stations
decreased by 1–3 stations (Supplementary Table 1).

Inclusion of co-predicted stations improved hindcast skill
of Shannon index for mostly offshore stations (Figure 6).
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FIGURE 6 | Locations of stations with significant hindcast s-map predictive skill for salinity (left column), temperature (middle column) and Shannon index (right
column). Predictions used single station (top row), correlated composite libraries (middle row) and co-predicted composite libraries (bottom row). Shading indicates
MASE values. A MASE of 0.6, for example, indicates that the error from s-map predictions is on average 60% of the error from a naïve predictor (i.e., lagged
observation). The number of significant stations is shown in the bottom right of each panel.

Additionally, composite libraries resulted in significant
predictability for all three of salinity, temperature, and Shannon
index in 38 of 81 stations. Although there were some cases,
particularly for salinity and Shannon index, where predictions
from composite libraries of co-predicted stations had MASE
values of 0.6 (indicating that error from predictions was 60% the
error from a lagged observation; Figure 6).

Prediction for individual species was highest with co-
predicted composite libraries. For many species, hindcast skill
was highest with composite libraries of co-predicted stations,
and this trend was strongest in oceanic and coastal-fished
species (Table 4).

DISCUSSION

We find evidence of spatially shared dynamics in salinity,
temperature, Shannon index, and individual ichthyoplankton
species as measured by correlation and co-prediction. Leveraging
knowledge of shared dynamics via composite libraries of
correlated or co-predicted stations generally improved hindcast
skill across all data types. However, although synchrony is
more evident from correlation than co-prediction, co-prediction
is a more robust method to significantly hindcast salinity,
temperature, Shannon index, and nearly all single-species
ichthyoplankton. Taken together, we demonstrate the utility of
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TABLE 4 | Numbers of significantly predicted stations with s-map prediction for
each species, arranged by category.

Category Common name Station Correlation Co-
prediction

Oceanic California flashlightfish 17 25 42

Broadfin lampfish 10 11 28

Pinpoint lampfish 10 11 28

Blue lanternfish 9 11 20

Highsnout bigscale 8 3 17

Little bigscale 8 3 17

Northern lampfish 4 9 14

Longfin lanternfish 3 6 10

Pacific viperfish 5 4 9

California lanternfish 7 1 6

Mexican lampfish 4 7 6

Pacific blacksmelt 2 3 6

Blackbelly dragonfish 1 0 3

Panama lightfish 2 4 2

Dogtooth lampfish 1 1 1

Pearly lanternfish 1 1 0

Blackgill rockfish 5 10 11

Coastal-fished Chilipepper 5 10 11

Cowcod 5 10 11

Mexican rockfish 5 10 11

Splitnose rockfish 5 10 11

Stripetail rockfish 5 10 11

Bocaccio 3 4 5

Northern anchovy 21 28 26

California smoothtongue 7 13 17

Coastal-
oceanic-fished

Pacific hake or whiting 7 7 14

Pacific sardine 5 10 12

Medusafish 5 6 9

Jack mackerel 8 6 7

Shortbelly rockfish 2 3 1

Pacific argentine 0 4 2

Columns show predictions from the same predictor station and composite libraries
of correlated and co-predicted stations. Composite libraries included correlated or
co-predicted stations.

co-prediction in identifying shared dynamics and find evidence
of widespread nonlinear spatial structure in physical and
biological observations across the CalCOFI survey area. To our
knowledge, this study serves as the first evaluation of station-
specific hindcast skill of the CalCOFI data set.

Identifying shared dynamics with co-prediction is an
important step in constructing composite libraries. Previous
studies that implemented composite libraries used all available
time series from individual species (Hsieh et al., 2008) or
locations (Glaser et al., 2014; Clark et al., 2015). Our results
show that identifying shared dynamics with co-prediction is
an important step to improve hindcast skill. Longer composite
libraries composed of more stations (identified through
correlation) did not result in higher hindcast skill than co-
predicted stations, with the exception of Shannon index. While
we did not explicitly have a scenario of composite libraries with
all 81 stations, composite libraries for salinity and temperature

mostly included between 70 and 80 correlated stations. Co-
prediction quantifies the degree to which two time series are
generated from the same underlying process and has the potential
to identify relationships in the absence of positive correlation
(Engle and Granger, 1987).

We found evidence of nonlinear relationships in the CalCOFI
survey data. A majority of the significant results came from
nonlinear predictions, with s-map θ values greater than 0, across
data types and composite library scenarios. These findings are
consistent with previous analyses of CalCOFI data which found
nonlinearities in biological time series (Hsieh et al., 2005). These
studies utilized out-of-sample forecasting, in contrast to the
methods used here, but found that physical time series had high
dimensionality and linear dynamics. Thus, it is likely that fish
populations have nonlinear responses to environmental forces
and have nonlinear relationships across space.

While this study focuses on hindcasting, the methods used
here may be extended to out-of-sample forecasting to better
identify and predict regime shifts. The transition to out-of-
sample forecasting may yield insight to the characteristics of
a system undergoing a regime shift. For example, a system
undergoing a regime shift may be characterized by a composite
library of co-predicted stations undergoing a decrease in forecast
skill. Additional indicators may be a shift in the number and
orientation of co-predicted stations or a transition between
linear and nonlinear dynamics. If analyses extend to include
multivariate analyses, there may be time-varying changes in
interactions, similar to those identified in Deyle et al. (2016).

The California Current is characterized by physical and
biological regimes, and here we show that stations across space
demonstrate shared dynamics through multiple regimes over
the roughly 70 year span of CalCOFI observations. Studies of
principal components in over 100 time series, both physical and
biological, found regime shifts in 1976 and 1989 (Ebbesmeyer
et al., 1991; Hare and Mantua, 2000). Shifts in the Pacific Decadal
Oscillation from a negative to positive phase were hypothesized
to precede shifts in biological regimes (McFarlane and Beamish,
2001; Moser et al., 2001). Indeed, a previous study has identified
five ichthyoplankton assemblage regimes in analysis of the
southern portion of the CalCOFI survey area (Peabody et al.,
2018). The combination of co-prediction, composite libraries,
and s-map can potentially improve the capability to track system
dynamics of a regime change. This work remains to be done but
is a logical next step.

We found shared dynamics to be largely concentrated south
of Point Conception, although this result may be influenced
by skewed station distributions north and south of Point
Conception. Point Conception is a well-known biogeographic
break within the CCE (Allen et al., 2006) with sharply contrasting
water masses north and south of Point Conception (Lynn et al.,
2003). Ocean conditions north of Point Conception tend to be
dominated by the equatorward-flowing California Current which
is cold and relatively fresh as well as cold, salty upwelled water
closer to shore that is induced by strong equatorward winds
(Checkley and Barth, 2009). As a result, water temperature often
increases abruptly south of Point Conception within the Southern
California Bight (Checkley and Barth, 2009; Thompson et al.,
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2016). Co-prediction identifies shared dynamics between two
time series but does not measure causal relationships. Convergent
cross mapping (Sugihara et al., 2012) can identify causality
between time series, and analyses that apply this method may
identify mechanistic relationships between stations. Inclusion
of additional oceanographic measurements such as oxygen,
phosphate, and silicate may further enhance analyses of the
movement and forcing of distinct water masses.

Shannon index have significant hindcast skill in 89% of
stations (n = 81). While our focus is on the 60 most-caught
taxa (used to calculate Shannon index), our results indicate
that there are likely common factors driving shared dynamics
across space. Physical conditions cascade to affect zooplankton
abundances, which fluctuated in synchrony from 1949 to 1969
(Bernal and McGowan, 1981). Additionally, taxa with similar life
histories and adult habitats track each other even when they are
uncorrelated with environmental conditions (Hsieh et al., 2005).
This is another area of future research, and convergent cross
mapping, another EDM method, is one extension to identify
causal relationships between populations and environmental
conditions or interspecific interactions.

There are multiple possible ecological explanations for the
predictability in species like Northern anchovy and bigscales.
Recruitment may be an important factor influencing shared
ichthyoplankton dynamics in the CalCOFI data. Recruitment
generally stabilizes metacommunities (Gouhier et al., 2010,
2011) although the relative levels of recruitment can influence
synchrony and stability differently (Townsend and Gouhier,
2019). Additionally, local recruitment synchronizes mussel
populations across 1,800 km of coast (Gouhier et al., 2010). The
rich time series of available data in the Southern California Bight
would allow for analyses relating egg time series (collected on
CalCOFI cruises) to ichthyoplankton time series to young-of-
year surveys and adult catches to evaluate interactions across all
life history stages. EDM works best at predicting recruitment
for short-lived, fast-growing species (Munch et al., 2018), and
the inclusion of multiple variables may further improve forecast
skill. Oceanographic currents in the Southern California Bight
have been characterized to identify metapopulation networks
(Watson et al., 2011).

While the EDM approach is generally robust to some
missing values, additional modeling approaches may not be.
The composite library approach has higher predictive skill than
using the previous year’s value as the forecast. In an analysis of
multiple time series forecast methods, this naïve predictor had
the highest short-term predictive skill for 2,379 time series of
vertebrate population indices (Ward et al., 2014). Shannon index
results were likely more predictable as they integrate the year-to-
year variability in individual species. Species like bigscales, blue
lanternfish, rockfish, Northern anchovy, and Pacific hake all had
the most predictable dynamics suggesting that there may be a
small number of species driving Shannon index in each year.

Evaluation of out-of-sample predictability was beyond the
scope of this study but is a logical next step. Out-of-sample
forecasting skill will likely increase if causal relationships exist
in the CalCOFI data. Convergent cross mapping (Sugihara
et al., 2012) and its spatial applications (Clark et al., 2015) are

natural extensions of this analysis and may identify relationships
between physical variables like temperature and salinity and
biological variables like Shannon index of diversity. The CalCOFI
dataset is an ideal dataset for such analysis due to the high
spatiotemporal resolution and multiple types of observations.
Comparing temperature and salinity directly to ichthyoplankton
time series misses key components of the community structure.
Likely, there are multiple levels of interactions relating physical
conditions to phytoplankton to zooplankton to ichthyoplankton
(Thompson et al., 2018). Additionally, analysis may need to adopt
a finer temporal scale to identify seasonal drivers. Here, we used
averages of physical and biological measurements across winter
and spring, which may have smoothed signal in the data. S-map
coefficients may elucidate time-varying interactions between
biological and physical data sets (Deyle et al., 2016; Ushio et al.,
2018). Finally, additional methodologies such as EDM Gaussian
processes (Munch et al., 2017; Rogers and Munch, 2020) and
regularized s-map (Cenci et al., 2019) may offer improvements
in both in-sample and out-of-sample prediction skill.

The analysis we have presented here, and the analytic next
steps outlined above, are motivated by both the desire to
understand the ecological dynamics of the CCE and the need
to identify analytic methods that can support future survey
design/reorganization efforts. There are numerous financial
and logistical challenges associated with conducting large-scale
surveys, and it is difficult to maintain constant sampling
efforts year to year. Co-prediction and composite libraries can
provide a means of prioritizing survey sites by identifying
partial redundancies in the CalCOFI survey grid. In the case
that sampling efforts reduce, locations with strongly shared
dynamics may be redundant, in that sampling in these areas may
not provide additional information. Locations without shared
dynamics may be high priorities because they contribute to a
more comprehensive survey of an area.
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