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Marine ecosystems regulate atmospheric carbon dioxide levels by transporting and
storing photosynthetically fixed carbon in the ocean’s interior. In particular, the
subantarctic and polar frontal zone of the Southern Ocean is a significant region
for physically driven carbon uptake due to mode water formation, although it is
under-studied concerning biologically mediated uptake. Regional differences in iron
concentrations lead to variable carbon export from the base of the euphotic zone.
Contrary to our understanding of export globally, where high productivity results in
high export, naturally iron-fertilized regions exhibit low carbon export relative to their
surface productivity, while HNLC (High Nutrient, Low Chlorophyll) waters emerge as
a significant area for carbon export. Zooplankton, an integral part of the oceanic
food web, play an important role in establishing these main carbon export regimes.
In this mini review, we explore this role further by focusing on the impact of grazing
and the production of fecal pellets on the carbon flux. The data coverage in the
subantarctic region will be assessed by comparing two case studies - the iron-
replete Kerguelen Plateau and the HNLC region south of Australia. We then discuss
challenges in evaluating the contributions of zooplankton to carbon flux, namely
gaps in seasonal coverage of sampling campaigns, the use of non-standardized and
biased methods and under-sampling of the mesopelagic zone, an important area of
carbon remineralization. More integrated approaches are necessary to improve present
estimates of zooplankton-mediated carbon export in the Southern Ocean.

Keywords: biological carbon pump, zooplankton, southern ocean, subpolar, carbon cycle

INTRODUCTION

The fixation of inorganic carbon through photosynthesis by phytoplankton, and subsequent export
and sequestration to deeper waters, is termed the Biological Carbon Pump (BCP). Without this
process, atmospheric CO2 levels would be 200 ppm higher than they are today (Parekh et al., 2006;
Henson et al., 2019), thus the BCP is a critical component of climate regulation. Zooplankton
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are part of the BCP, via ingestion of lower trophic levels, fecal
pellet and carcass production and respiration of CO2 (Schnack-
Schiel and Isla, 2005; Turner, 2015; Steinberg and Landry,
2017). Furthermore, they actively transport carbon below the
thermocline during daily migration and seasonal descent to
overwinter at depth (Jónasdóttir et al., 2015; Klevjer et al., 2016;
Steinberg and Landry, 2017; Record et al., 2018; Boyd et al.,
2019). The role of zooplankton in the BCP is well-studied in some
parts of the global ocean, e.g., the North Atlantic and the oxygen
minimum zones in the Pacific (Jónasdóttir et al., 2015; Cavan
et al., 2017), however, is less understood in the Southern Ocean.

The Southern Ocean plays a significant role in the functioning
of the Earth system (Lumpkin and Speer, 2007; Mayewski
et al., 2009), and provides important ecosystem services, such as
climate regulation and nutrient recycling (Millennium Ecosystem
Assessment, 2005). The region between the Subtropical Front
and the Polar Front encompasses a large area of the Southern
Ocean (hereafter called the “subantarctic region”) and represents
an important carbon sink, as the formation of intermediate
and mode waters in this region contributes notably to the
sequestration of atmospheric CO2 (Orsi et al., 1995; Sabine et al.,
2004; Eriksen et al., 2018). Large parts of the subantarctic region
are characterized by HNLC (High Nutrient, Low Chlorophyll)
conditions: low iron concentrations in surface waters limit the
uptake of macronutrients, such as phosphate and nitrate, and
hence, restrict phytoplankton growth (Bucciarelli et al., 2001;
Trull et al., 2001). In contrast, naturally iron-fertilized regions
such as downstream of the Kerguelen Plateau, in the Indian
sector of the Southern Ocean, are characterized by high primary
production (Mosseri et al., 2008; Cavagna et al., 2015). However,
high production does not always equal high carbon export as
estimated from global models (e.g., Dunne et al., 2005; Laws et al.,
2011) or sediment trap data (e.g., Marsay et al., 2015). Many
reported an inverse relationship between primary production
and export efficiency for the Southern Ocean (e.g., Maiti et al.,
2013; Cavan et al., 2015; Laurenceau-Cornec et al., 2015; Le
Moigne et al., 2016), which can be found at our study sites as
well. While the Kerguelen Plateau is characterized as a HBLE
(High Biomass, Low Export) region, the HNLC waters exhibit a
relatively high carbon export below the mixed layer (Trull et al.,
2001; Lam and Bishop, 2007; Ebersbach et al., 2011; Rembauville
et al., 2015b). This mini review aims to understand the role that
zooplankton play in establishing the characteristic carbon export
regimes in the Southern Ocean by grazing on lower trophic
levels and forming and repackaging sinking particles (Lam and
Bishop, 2007). After a summary of the current state of knowledge,
we also list contemporary knowledge gaps and propose future
research priorities.

TWO CONTRASTING EXPORT REGIONS

The Kerguelen Plateau, located on the 70◦E meridian, forms a
naturally iron-fertilized region in the Polar Frontal Zone (PFZ)
at the border of the Antarctic zone, with iron concentrations
ranging from 0.45 to 0.7 nM in spring, decreasing to 0.09 nM
in late summer due to phytoplankton growth (Table 1;

TABLE 1 | Comparison of environmental parameters and plankton groups
between the HBLE Kerguelen Plateau and the HNLC waters south of Australia.

Parameter Kerguelen Plateau
(HBLE)

HNLC waters

Iron levels 0.45–0.7 nM (spring),
0.09 nM (summer) (1)(2)

0.05–0.11 nM (summer/autumn) (3)

Phytoplankton
biomass

High
(>2.5 mg Chl a m−3) (4)

Low (<0.6 mg Chl a m−3) (5)

Dominant
phytoplankton

Diatoms and
dinoflagellates (6)(7)(8)(9)

Coccolithophorids and other
prymnesiophytes, cyanobacteria,
autotrophic flagellates and pennate
diatoms (10)(11)(12)(13)(14)

Dominant
zooplankton

Large and medium-sized
calanoid copepods,
Oithonidae, pteropods (15)

Oithona similis, foraminiferans,
appendicularians, calanoid
copepods, pteropods and salps (16)

POC fluxes 66 mg C m−2 d−1 (17)(a) 127.2 mg C m−2 d−1 (18)

e-ratio 0.03 (17)(a) 0.16 (18)(b)

(1) Blain et al., 2001, (2) Blain et al., 2008, (3) Cassar et al., 2011, (4) Blain et al.,
2007, (5) Trull et al., 2019, (6) Armand et al., 2008, (7) Christaki et al., 2008, (8)
Christaki et al., 2015 (9) Lasbleiz et al., 2016, (10) Trull et al., 2001, (11) Kopczynska
et al., 2001, (12) Odate and Fukuchi, 1995, (13) Eriksen et al., 2018, (14) de Salas
et al., 2011 (15) Carlotti et al., 2015, (16) Hunt and Hosie, 2006, (17) Laurenceau-
Cornec et al., 2015, (18) Ebersbach et al., 2011. (a) High phytoplankton biomass
site (A3-2). (b) SOTS site. Examples of carbon flux and e-ratios in the two regions
are also given. The POC fluxes are estimated from polyacrylamide gel traps at
200 ± 10 m and 240 m depth on the Kerguelen Plateau and in the HNLC region,
respectively. The e-ratio is an indicator for export efficiency and is calculated as
the ratio between POC flux and primary productivity. Note that Laurenceau-Cornec
et al. (2015) use net primary productivity (NPP) in the euphotic zone to calculate
the e-ratio, while Ebersbach et al. (2011) use gross primary productivity (GPP).

Blain et al., 2001, 2008). This review focuses on the northern
Kerguelen Plateau, which is separated from the southern part
by the Fawn Trough at around 56◦S (Park et al., 2014; Koubbi
et al., 2016). The topography forces the Antarctic Polar Front
to pass above the plateau south of the Kerguelen Islands, which
introduces iron from the sediments (Blain et al., 2001), and leads
to intensive seasonal phytoplankton blooms downstream of the
plateau, with peaks of more than 2.5 mg Chl a m−3 (Blain
et al., 2007, 2013; Rembauville et al., 2015b; Schallenberg et al.,
2018). Blooms over the shallow plateau last the whole summer,
while the bloom period over deep waters is only observed in
spring for ∼1 month (Schallenberg et al., 2018). The dominating
phytoplankton are diatoms and dinoflagellates (Armand et al.,
2008; Christaki et al., 2008, 2015; Lasbleiz et al., 2016). The
zooplankton community consists of large and medium-sized
calanoid copepods and small copepods in the family Oithonidae
(Figure 1; Carlotti et al., 2015). Non-copepod taxa account for 4–
8% of the total zooplankton community, though pteropods can
be abundant over the shelf (7–12% of total abundance, Carlotti
et al., 2008). Although the biomass in the pelagic ecosystem is
high, the export flux is generally low (<0.5 mmol POC m−2

d−1, 289 m depth), except for short-lived (<14 days) export
pulses in summer (up to 1.6 mmol m−2 d−1) (Rembauville et al.,
2014). Hence, the Kerguelen Plateau is considered to be an HBLE
environment (Lam and Bishop, 2007; Rembauville et al., 2014).

In comparison to the Kerguelen Plateau, the HNLC waters
south of Australia exhibit lower iron concentrations and
phytoplankton biomass, but relatively higher POC export flux
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FIGURE 1 | The zooplankton-mediated carbon cycle in summer on the naturally iron-fertilized Kerguelen Plateau (a) compared to the HNLC waters around SOTS
(b). On the Kerguelen Plateau, high iron levels lead to high chlorophyll a as a proxy for algae biomass at the surface. The diverse zooplankton community feeds on
the sinking particle flux and acts as a “gate-keeper” to the deeper ocean by ingesting and fragmenting sinking particles and, consequently, significantly reducing the
export flux out of the epipelagic. The main export particles are diatom resting spores, which bypass the intense grazing pressure, followed by fecal pellets. At SOTS,
iron levels are lower and support a more diverse phytoplankton community, but with lower biomass, which, in turn, affects zooplankton community composition and
biomass. The grazing pressure during summer is focused mostly on picoplankton, which leaves large particles for export. Grazing and fragmentation of particles at
both sites increases nutrient recycling in the upper water column. Challenges and gaps in knowledge in aspects of the zooplankton-mediated carbon pump are
highlighted.

(Table 1). We focus on the region around the Southern
Ocean Time Series (SOTS) site at 142◦E and 47◦S, which is
representative of a broad HNLC region of the SAZ between
90◦E and 140◦E (Sedwick et al., 1999; Shadwick et al., 2015).
Phytoplankton growth is limited by low iron (0.05–0.11 nM
in summer/autumn and insufficient light conditions due to
high cloud cover (Sedwick et al., 1999; Cassar et al., 2011).
The phytoplankton community is dominated by nanoplankton
and picoplankton, coccolithophorids and other prymnesiophytes
(such as Phaeocystis antarctica), cyanobacteria and autotrophic
flagellates (Odate and Fukuchi, 1995; Kopczynska et al., 2001;
Trull et al., 2001; Eriksen et al., 2018). Diatoms are mostly
lightly silicified pennate diatoms rather than centric forms (de
Salas et al., 2011). Phytoplankton biomass is low throughout
the year, with chlorophyll a values generally below 0.6 mg m−3

(Trull et al., 2019). This has implications for zooplankton, which
is dominated by the copepod Oithona similis, foraminiferans,
and appendicularians (Hunt and Hosie, 2006), rather than a
community of calanoid copepods that are not able to accumulate
enough resources to complete their life cycles. During summer,
a small number of species of calanoid copepods, along with
the pteropods Limacina spp. and regionally large blooms
of the salp Salpa thompsoni, are also observed (Figure 1;
Hunt and Hosie, 2006). Though primary production is low in

surface waters, the total flux of POC is relatively high, e.g.,
3.3 ± 1.8 mmol POC m−2 d−1 at 150 m water depth, measured
with free-drifting PPS 3/3 sediment traps (Ebersbach et al., 2011).

CONTRIBUTIONS OF ZOOPLANKTON
TO CARBON FLUX IN THE
SUBANTARCTIC REGION

The Northern Kerguelen Plateau
On the Kerguelen Plateau, zooplankton biomass increases
four-fold from winter (July-August) to mid-summer (February)
(Semelkina, 1993; Razouls et al., 1996; Carlotti et al., 2015).
This is caused by (1) seasonal ontogenetic migrations by large
calanoid copepods, such as Rhincalanus gigas and Calanoides
acutus, which spend winter in diapause in deeper waters and
ascend to surface in spring and (2) an increase in other species,
e.g., Calanus simillimus and the smaller Oithona spp., that resume
their population development from survivors of previous years to
start reproduction in spring following the phytoplankton bloom
(Atkinson, 1998; Schnack-Schiel, 2001; Carlotti et al., 2015).
Remarkably, mesozooplankton (200 µm–20 mm) consume only
a small fraction of the phytoplankton biomass directly; e.g.,
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Sarthou et al. (2008) measured a low ingestion of 1–10% of
total Chl a d−1 by copepods in summer. In contrast, they are
known to control protist growth by grazing (Carlotti et al., 2008).
Heterotrophic protists, such as ciliates and some dinoflagellates in
turn reduce the standing stock of pico- and nanophytoplankton
and diatoms through grazing (Calbet and Landry, 2004; Calbet,
2008; Peloquin et al., 2011; Quéguiner, 2013). The grazing
pressure by mesozooplankton on protozooplankton releases
the top-down control on diatoms and favors phytoplankton
blooms dominated by large diatoms (Henjes et al., 2007;
Carlotti et al., 2015).

Additionally, zooplankton ingest and fragment particles,
which enhances subsequent microbial respiration and increases
the recycling of nutrients, e.g., iron (Sarthou et al., 2008)
and ammonium (Mosseri et al., 2008). Grazing not only
affects nutrient levels in surface waters but also the efficiency
of carbon transfer (Dagg et al., 2014). The omnivorous
and detritivorous zooplankton community acts as a “gate-
keeper” in the mesopelagic zone (Figure 1): They ingest
and fragment phytoplankton aggregates and fecal pellets that
are quickly remineralized and retained in the surface layer
(Iversen and Poulsen, 2007; Quéguiner, 2013; Dagg et al., 2014).
Predominantly omnivorous and detritivorous copepod species
in the genera Oithona and Oncaea/Triconia link the classical
food web to the microbial loop (Atkinson, 1998; Pasternak et al.,
2009). This efficient transfer of carbon to higher trophic levels
or the microbial loop in surface waters leads to low export flux
during most of the year and establishes the HBLE characteristics
on the Kerguelen Plateau (Rembauville et al., 2014, 2015b).
Despite the dominance of the carbon flux by fecal pellets in
early spring (56 ± 19% of total carbon flux, 200 m, Laurenceau-
Cornec et al., 2015), the fecal pellet flux decreases rapidly with
depth, while diatom resting spores (resistant to grazing; Davis
et al., 1980; Smetacek, 1985; Salter et al., 2012) and detrital
aggregates dominate the deeper flux at 289 m (Cavan et al., 2019).
This indicates preferential reprocessing and remineralization of
fecal material over other particles in the mixed layer and upper
mesopelagic, which leads to a lower fecal pellet flux similar to
other iron-fertilized regions, e.g., South Georgia (Cavan et al.,
2015; Rembauville et al., 2015a).

HNLC Waters South of Australia
The dominance of protozooplankton, small copepods and patchy
salp blooms in HNLC waters, rather than a diverse and abundant
mesozooplankton community as on the northern Kerguelen
Plateau, results in control of the low phytoplankton biomass
by protist grazing, and efficient remineralization of carbon and
nutrients in the upper water column (Figure 1; Landry et al.,
2002; Mayzaud et al., 2002; Pakhomov et al., 2002; Atkinson
et al., 2004). Considering the omnivorous and detritivorous diet
of Oithona similis (Takahashi et al., 2010), it would be expected
that the POC export out of the epipelagic zone would be low,
as ingestion and fragmentation of sinking particles increase the
particle flux attenuation. However, studies such as SAZ-Sense in
January/February 2007 have shown a relatively high POC transfer
efficiency out of the mixed layer in the HNLC waters around
SOTS, in comparison to other sites in the SAZ with higher iron

levels or in the PFZ with a diatom-dominated phytoplankton
community (Ebersbach et al., 2011). Even though the POC
concentration was low at the surface (5.2 ± 0.9 mmol m−2

d−1), the carbon export flux at SOTS was highest in both gel
traps (8.1 mmol m−2 d−1 at 290 m water depth) and PPS 3/3
sediment traps (3.3 ± 1.8 mmol m−2 d−1 at 150 m water depth)
(Ebersbach et al., 2011).

The two main differences from the Kerguelen Plateau
that cause the higher relative and total export flux in
HNLC waters are a different zooplankton community
composition and size fraction distribution (Figure 1). The
dominant microzooplankton (20–200 µm) and heterotrophic
nanoflagellates at SOTS can consume 82% of the primary
production per day in summer (Pearce et al., 2011). This is in
line with Trull et al. (2019), who estimated a 10-fold higher
grazing pressure in December compared to September as
a function of zooplankton biomass. This grazing pressure
focuses mostly on the picoplankton size fraction (0.2–
2 µm), which leaves phytoplankton aggregates and other
large particles for export below the mixed layer (Pearce et al.,
2011). Omnivorous and detritivorous copepods are not as
abundant as on the Kerguelen Plateau, which limits their
abilities to efficiently reduce the sinking flux. Consequently,
more particles (11–53% of the primary production; Jacquet
et al., 2011) are exported from HNLC surface waters (Figure 1),
predominantly as fecal aggregates (pellets and fecal material
reaggregated with phytodetritus; Ebersbach and Trull, 2008;
Laurenceau-Cornec et al., 2015).

Our findings indicate that species composition and size
fraction distribution are important factors in modifying the
downward carbon flux and establishing a regime of low biomass
at the surface but with relatively high carbon transfer efficiency.
Hence, zooplankton play a more important role in the export
regimes in the subantarctic region than previously thought.
However, common algorithms to estimate the carbon export
efficiency in the Southern Ocean, such as by Arteaga et al.
(2018) or Britten et al. (2017), only include temperature,
net primary production or silicate concentration and do not
contain a zooplankton term. In contrast, our findings show
that zooplankton, while being influenced by their physical
environment and food availability, also control lower trophic
levels and carbon export efficiency. Future research efforts should
therefore focus on including zooplankton in the algorithms, for
example as size fractions or a proportion of trophic mode (e.g.,
ratio between herbivore to detritivore zooplankton), and improve
our estimation of carbon uptake by the Southern Ocean.

CHALLENGES AND KNOWLEDGE GAPS

Comparability of Methods,
Under-Sampling of Small-Sized
Zooplankton and Insufficient Seasonal
Coverage
Different methodologies make it difficult to compare the
zooplankton species composition and biomass between the
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subantarctic regions. Ship-based net deployments are temporally
and spatially limited, but provide higher vertical resolution in the
water column, while the Continuous Plankton Recorder (CPR)
covers a large geographical area but only provides surface data
and under-samples the vertical migrating community during
the day (Carlotti et al., 2008, 2015; Dippner and Krause, 2013).
Acoustic data provides information on distribution and biomass
of certain size fractions over the whole annual cycle, but cannot
provide species composition data (Trull et al., 2019). It is also
important to note that both the CPR (silk mesh size 270 µm)
and standard zooplankton nets with a mesh size of >200 µm
are known to under-sample smaller-sized zooplankton, e.g.,
Oithonidae and copepodite stages (Gallienne and Robins, 2001)
that dominate the community in HNLC waters. Finally, limited
access to the subantarctic region due to logistical constraints
results in a results in few winter datasets, as the sampling
campaigns by research and supply vessels are mostly focused on
the summer season.

Understudied Carbon Pathways –
Zooplankton Carcass and Migratory Flux
As the literature on other high latitude systems suggests,
zooplankton carcass flux can be a seasonally significant
contribution to total carbon flux (Sampei et al., 2012; Daase
et al., 2014; Tang and Elliott, 2014). However, data on drivers
and rates of mortality and carcass flux from the Southern Ocean
are currently not available. The lack of data could lead to an
underestimation of carbon flux, especially in the HNLC waters,
where fast-sinking salp blooms could significantly increase the
downward carbon flux as “jelly falls,” e.g., by 330% in the Tasman
Sea further north (Henschke et al., 2013). Similarly, active
transport of carbon by zooplankton, both by diel and seasonal
vertical migrators, is not well understood. Translating the
seasonal changes in the distribution of acoustic scattering layers
into transported carbon is not possible without information on
species composition (Trull et al., 2019).

The “Black Box”: The Mesopelagic Zone
The transfer efficiency of organic matter through the mesopelagic
(∼200–1000 m) is driven by plankton species composition in
the epi- and mesopelagic (Lam et al., 2011). Studies such as
Liszka et al. (2019); Manno et al. (2015) and Marsay et al. (2015)
suggest that vertical distribution of zooplankton, community
composition, and feeding behavior, along with temperature in
the mesopelagic, are important in shaping the downward carbon
flux. However, mesopelagic processes, such as respiration and
remineralization of organic material and food web interactions,
are not well understood (Robinson et al., 2010). Sampling
campaigns in both regions rarely include the mesopelagic: while
zooplankton studies on the Kerguelen Plateau focus on the
upper 300 m of the water column, zooplankton data in the
HNLC waters around SOTS were either collected from surface
waters or from deeper, moored sediment traps. To increase our
understanding of interactions between mesopelagic zooplankton,
protists and bacteria, and their influence on particle formation

and remineralization, future sampling campaigns need to focus
on the mesopelagic.

CONCLUSION AND OUTLOOK

Zooplankton play an important role in the carbon flux of
both subantarctic regions. On the Kerguelen Plateau, grazing
by the mesozooplankton community limits protozooplankton
growth, which releases the grazing pressure on phytoplankton.
Zooplankton also fragment particles, leading to increased
nutrient recycling, and contribute to the carbon flux by
producing fecal pellets. High rates of omnivory and detritivory
result in a low export flux and establish the HBLE conditions
on the plateau. In contrast, the dominance of smaller-sized
zooplankton and heterotrophic protists in HNLC waters leads
to high grazing pressure on picoplankton, which leaves large
aggregates and fecal pellets for export. The lower total abundance
of detritus-feeders results in a larger export of fecal aggregates.
Knowledge gaps, resulting from limited seasonal coverage,
non-standardization and bias of methods between sampling
campaigns, and under-sampling of the mesopelagic zone,
impede our understanding of zooplankton-mediated carbon flux,
especially of the carcass and migratory flux. To predict future
changes in marine carbon storage efficiency, it is important
to focus research efforts on the zooplankton-mediated carbon
flux. The inclusion of, for example, zooplankton size fractions
or trophic modes in algorithms can refine predictions of
carbon export in the Southern Ocean. More integrated research
approaches, e.g., using the network of biogeochemical Argo floats
in combination with stationary moorings (e.g., Rembauville et al.,
2017; Trull et al., 2019), are necessary to improve inter-seasonal
and spatial data coverage of the Biological Carbon Pump in
the Southern Ocean.
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