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Oligotrich ciliates play a key role in linking microbial food webs to the traditional
grazing food chain. Hence, the numerical (growth) and functional (grazing) responses
of oligotrich ciliates are very important issues in studies of marine ecosystems. Most
oligotrich ciliates feed mainly on nanoflagellates, while some of them also have the
ability to consume bacteria. Up until now, studies of ciliates grazing on algae have
not specifically excluded the effects of bacteria. In the present study, we found that
the presence of bacteria in the algal culture medium affected the growth and grazing
rates of ciliates grazing on nanoflagellates, resulting in an overestimate of gross growth
efficiency at low relative algal concentrations. Strombidium sp. is prey selective mainly
grazing on bacteria at low relative algal concentrations, but on algae at high relative
algal concentrations. Carbon obtained from ciliate grazing on bacteria should be taken
into account in the coastal zone surveys and especially in culture experiments to avoid
unreasonable results of carbon flow.

Keywords: axenic algal culture, carbon flux, functional response, grazing pressure, growth efficiency, numerical
response, prey selectivity

INTRODUCTION

Oligotrichea, which mainly comprise the Choreotrichida and Oligotrichida, are the dominant
group of ciliates in the microzooplankton (Agatha, 2011). Oligotrich ciliates are important
consumers in the microbial loop and play a key role in linking microbial food webs to the traditional
grazing food chain (Azam et al., 1983; Gifford, 1991; Pierce and Turner, 1992; Liu et al., 2005). The
growth and grazing responses of oligotrich ciliates are very important issues in studies of marine
ecosystems, inasmuch as they are among the factors that affect energy transfer (Verity, 1985; Calbet
and Saiz, 2005). The composition of oligotrich ciliates often changes greatly depending on both
biotic and abiotic factors (Fuhrman et al., 2006). Hence, studies of the relationship between a
single species of oligotrich ciliate and its prey provide fundamental data for understanding the
physiological differences between different kinds of prey.

Some studies suggest that food size (Fenchel, 1986; Jonsson, 1986; Bernard and Rassoulzadegan,
1990; Hansen et al., 1994) and food quality (Chen et al., 2010; Montagnes et al., 2011) determine
the feeding behavior of ciliates (Löder et al., 2011). However, size may only be a physical constraint
(Thurman et al., 2010) while other features of the prey are also likely to play an important role in
the ciliates grazing process. Yang et al. (2015), for example, suggested that the swimming mode of
algal cells is important in affecting the prey selectivity of ciliates.
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Although most oligotrich ciliates ingest mainly
nanoflagellates, some of them such as Strombidium sulcatum
also have the ability to consume bacteria (Rivier et al., 1985;
Bernard and Rassoulzadegan, 1990). Strombidium sulcatum
occurs in many marine areas and is easy to culture (Jiang et al.,
2011; Wickham et al., 2011; Xu et al., 2011). As a result, it has
come to serve as a model organism (Fenchel and Jonsson, 1988).
Previous studies of bacterial consumption by this species have
used pico-sized prey, including live bacteria, heat-killed bacteria,
fluorescently labeled bacteria (FLB), and non-living particles
(Fenchel and Jonsson, 1988; Allali et al., 1994; Dolan and Šimek,
1997; Christaki et al., 1998). Studies of ciliate grazing on algae
have also been done, but without controlling for the presence of
bacteria (Montagnes, 1996; Gismervik, 2005). The only effective
way to reduce the effect of bacteria and to make the culture sterile
is to add antibiotics to the medium, but this method can affect
the health of both the predator and the prey (Turner and Lloyd,
1971; Hagenbuch and Pinckney, 2012).

The presence of bacteria in the algal culture medium will
inevitably affect the results of growth and grazing experiments
of ciliates feeding on nanoflagellates. Yang et al. (2015) found
that cultured Strombidium cf. sulcatum did not ingest algae
significantly but still showed growth; they considered that this
was due to the appearance of bacteria in the algal culture
medium. Ignoring bacteria ingested during the experiments
could result in underestimates of the ingestion rates of the ciliates
as well as overestimates of their growth rates and gross growth
efficiencies (GGE). At low relative algal concentrations, Chen
et al. (2010) reported greatly random values of GGE, with some
being remarkably high.

In order to understand (1) the grazing selection of ciliates
on haptophytes (T-ISO) versus bacteria, and (2) the influence
of the presence of bacteria in grazing experiments of ciliates
on haptophytes, we studied the growth of the bacterivorous
oligotrich ciliate Strombidium sp., isolated from the coastal
waters of northeastern Taiwan, under two culture conditions, viz.,
(I) grazing on the haptophyte Isochrysis galbana (T-ISO) with
bacteria present in the water column and (II) grazing only on
bacteria isolated from the rice-grain-raised water column.

MATERIALS AND METHODS

Cultures
Strombidium sp. was collected from coastal waters of
northeastern Taiwan. A single-cell culture of Strombidium
sp. in a 6-well culture plate was fed on bacteria and maintained
at 25◦C in a 12:12 light:dark cycle at 100 µmol photons m−2

s−1 in 0.2 µm filtered seawater at a salinity of 30 (practical
salinity scale). Before culturing, a petri dish (Boeco, about 9 cm
across; water depth about 1 cm) with several raw rice grains in
0.2 µm-filtered seawater was prepared and set aside for a week
under the same light and temperature conditions as the ciliates
in order to grow bacteria and kept in exponential growth phase.
The haptophyte Isochrysis galbana (T-ISO) was maintained
at 20◦C in a 12:12 light:dark cycle at 100 µmol photons m−2

s−1 in f/2-filtered seawater (Guillard and Ryther, 1962) at

a salinity of 30 in a culture flask (BD Falcon) and kept in
exponential growth phase.

Growth, Ingestion and GGE
Growth and ingestion experiments at different food
concentrations were conducted in six-well cell culture plates
(GeneDireX) using T-ISO (in non-germ free condition, i.e.,
with bacteria in the water column) and bacteria (isolated from
the rice-grain-raised water column) as prey, respectively, as the
two culture conditions. Algal and bacterial food ranged from
150–2× 104 cells mL−1 and 104–106 cells mL−1, respectively,
with values chosen to represent a range of saturated and
unsaturated conditions based on preliminary experiments.
Before the experiment, individual Strombidium sp. cells
were isolated with a capillary tube (Kibble, AK71900-00100),
transferred to a well of 0.2-µm-filtered sterile seawater, washed
gently, and transferred to another two wells in succession in
order to remove or substantially dilute any bacteria on the cell
surface or in the water. Afterwards, each Strombidium sp. cell was
maintained in 0.2-µm-filtered sterile seawater and allowed to
starve for 1 day to empty the residual food vacuoles in each cells
for the standardization of the growth and ingestion experiments.
Light and temperature conditions were the same as for culture
maintenance of ciliates, as described above.

For use in experiments and as controls, T-ISO were placed
in triplicate 12 mL f/2 filtered seawater (GeneDireX) in
concentrations of 150, 300, 625, 1250, 2500, 5000, 10000, and
20000 cells mL−1. Before transferring Strombidium sp. cells into
the wells, a 2 mL water subsample was collected from each well in
a cryogenic tube (Nalgene), fixed by 1% PFA (paraformaldehyde)
and stored in a −80◦C freezer for later analysis with a
flow cytometer (BD) to obtain the initial prey concentrations.
Ten starved Strombidium sp. cells were transferred into each
experimental well; none were introduced to the control wells.
Light and temperature conditions for the experiments were the
same as for the culturing ciliates as described above. After
3 days of culture, another 2 mL water subsample was collected
from each well in order to check the final prey concentrations
by flow cytometer as above. The remaining 8 mL of water in
each well was fixed with Lugol’s iodine to a final concentration
of 5% in order to count the Strombidium sp. cells under an
inverted microscope (NIKON Optiphot-2, JAPAN). The growth
and ingestion experiments for Strombidium sp. on bacteria alone
were conducted the same way as those on T-ISO with initial
bacteria concentrations of 104, 105, and 106 cells mL−1.

Specific growth rates of Strombidium sp., µ (d−1), were
calculated between the initial and final sampling points:

µ = ln [St/S0] t−1

where S0 is the measured concentration of Strombidium sp. at the
beginning of incubation, St is the measured concentration at the
end of incubation, and t is the time of incubation in days.

Ingestion rates of Strombidium sp., I (ng C ciliate−1 d−1), were
calculated according to the equation of Frost (1972) as modified
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by Heinbokel (1978), which accounts for depletion of prey and
any change in predator number over the incubation period as:

I = (g × P)/S

where g (specific grazing rate) = Vn–Vw, the difference
between prey net growth rate without predator (Vn) and
with predator (Vw), mean prey concentration P = (Pt–P0)×
[ln(Pt × P0

−1)]−1 and mean predator concentration S = (St–
S0)× [ln(St × S0

−1)]−1.
Growth and ingestion rate data, as a function of prey

concentration, were fit to a modified Michaelis-Menten equation
(Montagnes, 1996) using the trial and error method (Paasche,
1973) to get the best regression analysis by estimating x0 (prey
concentration threshold) from x (prey concentration) in advance:

V = Vmax(x− x0)/ [Km + (x− x0)]

where V is the ciliate growth or ingestion rate, Vmax is
the maximum rate, x is the prey concentration, x0 is the
feeding threshold (x-intercept), and Km is the half-saturation
constant (where µ = 1/2 Vmax), which describes how rapidly V
approaches its maximum.

The gross growth efficiency (GGE) of Strombidium sp. was
calculated as the ratio of ciliate growth in terms of carbon
to ingested prey carbon. The carbon contents per cell for
Strombidium sp., Isochrysis galbana (T-ISO) and bacteria are 2.62
ng C cell−1 according to the C : vol ratios of 0.19 pg µm−3 (Putt
and Stoecker, 1989), 15.4 pg C cell−1 (Chen et al., 2010) and 149
fg C cell−1 according to its mean volume of 1 µm3 observed
under an epifluorescence microscope and its carbon-volume
ratios from 51 to 241 fg C µm−3 (Vrede et al., 2002), respectively.

Protistan growth rate can be modeled as linear functions
of temperature (Atkinson et al., 2003; Montagnes et al., 2003;
Kimmance et al., 2006). In the present study, the growth rates
of free-living protists were normalized to 25◦C using linear
regression (0.07 d−1 ◦C−1, Montagnes et al., 2003) in Table 1.
However, Kimmance et al. (2006) suggested that ingestion
increases linearly with increasing temperature between 8 and
15◦C, not in the range of culture temperature in Table 2. The
difference in ingestion rates between oligotrich ciliates might be
related to the size of grazers and the temperature used in the
studies (Yang et al., 2015). Hence, the grazing rates were not
normalized in the present study.

RESULTS

Growth rate of Strombidium sp.
The numerical response of Strombidium sp. feeding on T-ISO
(in the presence of bacteria) and on bacteria alone are shown
in Figure 1. The hyperbolic regression equation of each growth
curve was obtained using the trial-and-error method, in which
µmax, KG and x0 were 1.31 d−1, 67.4 ng C mL−1 and 55.0 ng C
mL−1, respectively, when grazing on T-ISO (in the presence of
bacteria) and 0.83 d−1, 67.1 ng C mL−1 and 12.4 ng C mL−1,
respectively, when grazing on bacteria only.

The maximum growth rate (µmax) of Strombidium sp. on
T-ISO (in the presence of bacteria) was higher than that on
bacteria alone, showing that T-ISO is a better prey than bacteria
for growing Strombidium sp. The half-saturation constants
(KG) for two culture conditions were similar, indicating the
same requirement of prey concentration to achieve half of the
maximum growth rate. The threshold value (x0) of Strombidium
sp. grazing on bacteria was lower than that for T-ISO (in
the presence of bacteria), but the growth rate was nonetheless
positive even under low bacterial concentrations, demonstrating
an important role for bacteria.

Ingestion Rate of Strombidium sp.
Figure 2 shows the functional response of Strombidium sp. on
different preys. For Strombidium sp. grazing on T-ISO (in the
presence of bacteria), the curve matched hyperbolic distributions
produced using the trial-and-error method, with Imax = 36.0 ng
C ciliate−1 d−1, KI = 73.5 ng C mL−1 and x0 = 4.9 ng C
mL−1. In contrast, the ingestion rate of Strombidium sp. on
bacteria in the algal medium could not be fitted to a modified
Michaelis-Menten equation.

As for Strombidium sp. feeding on bacteria alone, the ingestion
rate did fit a modified equation produced by the trial-and-error
method, with Imax = 9.6 ng C ciliate−1 d−1, KI = 26.5 ng C
mL−1 and x0 = 11.8 ng C mL−1. The maximum ingestion rate
of Strombidium sp. grazing on Isochrysis galbana (T-ISO) (in the
presence of bacteria) was higher than that on bacteria alone.

Gross Growth Efficiency (GGE) of
Strombidium sp.
The gross growth efficiency (GGE) of Strombidium sp. was
between 6 and 15% when grazing on T-ISO (in the presence of
bacteria), but between 12 and 20% when grazing bacteria only
(Figure 3). The GGE at low prey concentration with negative
growth and ingestion rates is shown as 0.

DISCUSSION

Growth Rate of Strombidium sp.
Ciliates can generally undergo 1–2 binary fissions per day (Pierce
and Turner, 1992; Perez et al., 1997), which means that they
can grow as fast as, or even faster, than their preys such as
phytoplankton (Kamiyama, 2015). Studies of the relationship
between growth rate and various environmental factors will
help us to understand the dynamic changes of ciliates in the
natural environment (Müller and Geller, 1993). In the present
study, the growth rate parameters fitted to the curves of the
modified Michaelis-Menten equations were within the range of
those recorded all over the world (Table 1), with a maximum
growth rate (µmax) of 0.11–3.50 d−1, a half-saturation constant
(KG) of 8.5–940.6 ng C mL−1 and a threshold value (x0) of 6–
327 ng C mL−1 at culture temperatures between 15 and 26◦C. For
Strombidium sp. grazing on T-ISO (in the presence of bacteria)
at a temperature of 25◦C, these parameters were similar to
those of Chen et al. (2010), who used the same prey Isochrysis
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TABLE 1 | Parameters of growth rates for oligotrich ciliates in previous studies (laboratory culture).

Predator Prey µmax (d−1) KG (ng C mL−1) x0 (ng C mL−1) References

Strombidium sp. Isochrysis galbana and bacteria 1.31 67.4 55.0 This study

Strombidium sp. Bacteria 0.83 67.1 12.4 This study

Strombidium capitatum Isochrysis galbana and Chroomonas salina 1.70 242 271 Montagnes, 1996

Strombidium siculum Thalassiosira pseudonana 1.20 35 16 Montagnes, 1996

Strombidium siculum Isochrysis galbana, Chroomonas salina and
Rhodomonas lens

1.03 26 11 Montagnes, 1996

Strombidium vestitum Nephroselmis pyriformis 1.84 36 7 Gismervik, 2005

Strombidium acutum Nephroselmis pyriformis 1.51 48 23 Gismervik, 2005

Strombidium conicum Nephroselmis pyriformis 1.62 18 6 Gismervik, 2005

Strombidium sp. Nephroselmis pyriformis 1.72 114 24 Gismervik, 2005

Strombidium cf. sulcatum Dunaliella sp. 1.03 8.5 4.9 Yang et al., 2015

Strombidium cf. sulcatum Pyramimonas sp. 0.88 44.9 32.2 Yang et al., 2015

Strombidium cf. sulcatum Prorocentrum sp. 0.81 13.5 13.3 Yang et al., 2015

Strombidium cf. sulcatum Unidentified cryptophyte sp. 0.81 26.5 22.8 Yang et al., 2015

Strombidium sulcatum Bacteria 4.06 940.6 95.2 Rivier et al., 1985*

Strobilidium neptuni Chroomonas salina 2.48 610 327 Montagnes, 1996

Strobilidium veniliae Isochrysis galbana and Chroomonas salina 1.37 224 75 Montagnes, 1996

Lohmanniella oviformis Nephroselmis pyriformis 1.43 102 34 Gismervik, 2005

Strobilidium spiralis Nephroselmis pyriformis and Hemiselmis sp. 2.22 61 20 Gismervik, 2005

Strobilidium sp. Isochrysis galbana 1.93 50.1 19.6 Chen et al., 2010

Strobilidium sp. Nannochloropsis sp. 3.43 235.4 28.4 Chen et al., 2010

Maximum growth rate (µmax) normalized to 25◦C by linear regression (0.07 d−1 ◦C−1, Montagnes et al. (2003). ∗Converted to the same units as the present study,
assuming a bacteria carbon content of 149 fg C cell−1.

TABLE 2 | Parameters of ingestion rates for oligotrich ciliates in previous studies (laboratory culture).

Predator Prey Temp. (◦C) Imax (ng C ciliate−1 d−1) KI (ng C mL−1) x0 (ng C mL−1) References

Strombidium sp. Isochrysis galbana 25 36.0 73.5 4.9 This study

Strombidium sp. Bacteria 25 9.6 26.5 11.8 This study

Strombidium sp. Nephroselmis pyriformis 15 14.71 147.3 Gismervik, 2005

Strombidium cf. sulcatum Dunaliella sp. 7.46 53.73 Yang et al., 2015

Strombidium sulcatum Bacteria 15 35.40 Rivier et al., 1985*

Strobilidium spiralis Hemiselmis sp. 15 40.06 47.6 Gismervik, 2005

Lohmanniella oviformis Nephroselmis pyriformis 15 9.7 848.8 Gismervik, 2005

Strobilidium sp. Isochrysis galbana 26 202.56 619 Chen et al., 2010

Strobilidium sp. Nannochloropsis sp. 26 167.04 641 Chen et al., 2010

∗Converted to the same units as the present study, assuming a bacteria carbon content of 149 fg C cell−1.

galbana (T-ISO) at a temperature of 26◦C in a similar study
of the choreotrich ciliate Strobilidium sp. Both species of ciliate
appear to have similar numerical responses at the same prey
(T-ISO) concentrations.

The growth rate parameters for Strombidium sp. grazing
on bacteria were lower than those observed by Rivier et al.
(1985), who fed bacteria to Strombidium sulcatum. Strombidium
sp. could maintain its basic metabolism and showed a positive
growth rate at low bacterial concentrations, and in that
respect was superior to Strombidium sulcatum at low prey
concentrations. However, as the concentration of bacteria
increased, the maximum growth rate of Strombidium sp. was
lower than that of Strombidium sulcatum, which suggests that
bacteria are not the most suitable food for Strombidium sp.

Ingestion Rate of Strombidium sp.
The ingestion rate parameters for oligotrich ciliates as recorded
by previous studies are shown in Table 2, with a maximum

ingestion rate (Imax) between 7.5 and 202.6 ng C ciliate−1

d−1 and a half-saturation constant (KI) between 26.5 and
848.8 ng C mL−1 at temperatures between 15 and 26◦C. Imax
and KI of Strombidium sp. grazing on T-ISO (in the presence
of bacteria) were lower than those of Strobilidium sp. from
Chen et al. (2010), i.e., 36.0 vs. 202.6 ng C ciliate−1 d−1 for
Imax and 73.5 vs. 619 ng C mL−1 for KI , with the same
prey Isochrysis galbana (Table 2). The gross growth efficiency
(GGE) of Strobilidium sp. was between 10 and 70% at low
prey concentrations, but about 10% at high prey concentrations
(Chen et al., 2010). Since these two ciliates have similar
growth curves with the same prey (T-ISO) as mentioned above
(Table 1), the high GGE at low prey concentrations makes it
reasonable to speculate that Strobilidium sp. has the ability to
ingest bacteria.

Imax was 9.6 ng C ciliate−1 d−1 and KI was 26.5 ng C
mL−1 when Strombidium sp. grazed on bacteria only. The half-
saturation constant (KI) of Strombidium sp. was the lowest in
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FIGURE 1 | Growth rate of Strombidium sp. The fitted equations are µ = 1.31(x–55)/ [67.4 + (x–55)] (r2 = 0.96) for grazing on the haptophyte Isochrysis galbana (in
the presence of bacteria) and µ = 0.83(x–12.4)/ [67.1 + (x–12.4)] (r2 = 1) for grazing on bacteria only.

FIGURE 2 | Ingestion rate of Strombidium sp. The fitted equation are I = 36.03 (x–4.9) / [73.5 + (x–4.9)] (r2 = 0.76) for grazing on the haptophyte Isochrysis galbana
(in the presence of bacteria) and I = 9.64 (x–11.8) / [26.5 + (x–11.8)] (r2 = 0.999) for grazing on bacteria only.

Table 2, and the maximum ingestion rate was lower than that
of Strombidium sulcatum grazing on bacteria as observed by
Rivier et al. (1985), implying that if ingestion rate increases
linearly with increasing temperature, the maximum ingestion
rates of Strombidium sulcatum could be larger from 15 to 25◦C.

Since Strombidium sp. had a higher growth rate when grazing
on T-ISO than when grazing on bacteria only, bacteria appear
not to be the main prey of Strombidium sp., especially at high
prey concentrations, and were only an option when no better
prey was available.
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FIGURE 3 | Gross growth efficiency (GGE) of Strombidium sp. when (circle) grazing on the haptophyte Isochrysis galbana (in the presence of bacteria) and (triangle)
grazing on bacteria only.

Prey Selectivity of Strombidium sp.
In Figure 4, the data points, where other two points representing
negative ingestion rate were avoided in advance, showing the
proportion of ingested carbon derived from bacteria versus
the proportion of the carbon content in the environment (i.e., the
culture vessel) represented by bacteria did not fall on the diagonal
line of equivalency. This shows that the ciliate Strombidium sp.
engages in prey selectivity.

The bacteria in the culture medium accounted for 52–
93% of the total prey carbon content in different treatments.
Strombidium sp. mainly grazed on bacteria when the bacteria
accounted for more than 80% of the total prey carbon content
in the culture environment, a situation corresponding to a
low relative algal concentration, and under those circumstances
bacterial ingestion ranged from 60 to 100% of the total
(Figure 4). In contrast, when bacteria constituted less than 80%
of the total prey carbon content in the culture environment, a
situation corresponding to a high relative algal concentration,
the proportion of bacteria in the prey ingested by Strombidium
sp. was less than 20% (Figure 4). Briefly stated, Strombidium sp.
mainly grazed on bacteria at low relative algal concentrations, but
on algae at high relative algal concentrations.

Gross Growth Efficiency (GGE) of
Strombidium sp.
In early studies, ciliates have demonstrated a gross growth
efficiency (GGE) of between 10 and 45%, with a mean of 30%
(Straile, 1997). With the difficult of achieving a totally axenic algal
culture and researchers’ inattention to the ability of oligotrich

ciliates to graze on bacteria in previous studies, it is reasonable to
speculate that GGEs at low relative algal concentrations have been
substantially overestimated (as when bacteria accounted for more
than 80% of the total prey carbon content in the present study),
and also slight overestimated at high relative algal concentrations
(as when bacteria accounted for less than 80% of the total prey
carbon content in the present study), making the overestimation
in commonly employed models of carbon flux.

Gross growth efficiencies of the choreotrich ciliate
Strobilidium sp. grazing on Isochrysis galbana was found
to be significantly different at different prey concentrations
(Chen et al., 2010). At low relative algal concentrations it was
inconstant, and unreasonable high (nearly 80%), but it was
relatively stable (about 10%) at high relative algal concentrations.
It is reasonable to assume that these authors did not control for
the presence of bacteria in the algal culture medium (Figure 5).
In the present study with grazing on both T-ISO and bacteria
taken into account, GGE stayed in a fairly narrow range (6–15%)
with no significant overestimates (Figure 5).

Carbon Transfer by Grazing of
Strombidium sp.
Lee and Fuhrman (1987) reported the coefficient of carbon
content conversion of marine bacteria as approximately 20
fg C cell−1 and Kroer (1994) found that the carbon content
of estuarine bacteria is 117 fg C cell−1. Bacteria show
different coefficients of carbon content conversion in different
environments, ranging from 7 to 149 fg C cell−1 (Bjørnsen, 1986;
Fagerbakke et al., 1996; Trousselier et al., 1997; Theil-Nielsen and
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FIGURE 4 | Percentage of total ingested prey carbon content of bacteria when grazing on the haptophyte Isochrysis galbana (in the presence of bacteria). The
diagonal line means 1:1.

FIGURE 5 | Gross growth efficiency (GGE) of Strombidium sp. grazing on T-ISO (in the presence of bacteria) and of Strobilidium sp. grazing on Isochrysis galbana
(Chen et al., 2010).

Sondergaard, 1998; Vrede et al., 2002). Bacteria with a carbon
content of 149 fg C cell−1 were used in the present study.

Figure 6, in which a conversion coefficient of 20 fg C cell−1

for the bacteria was used, in accord with general practice in
marine microbial ecology (Lee and Fuhrman, 1987), shows the
same result as in Figure 4 (where bacterial carbon content 149
fg C cell−1). However, the gross growth efficiency (GGE) shown

in Figure 7 with the bacterial carbon content set at 20 fg C
cell−1 shows an unrealistically high GGE of about 95% at the
lowest T-ISO concentration, indicating that the carbon content
conversion of bacteria did not fit the value of GGE. In the present
study, large bacteria were collected from coastal water, not small
bacteria like those in the open ocean, and cultivated in a non-
nutrient-limited environment. This makes as estimate of 149 fg C

Frontiers in Marine Science | www.frontiersin.org 7 September 2020 | Volume 7 | Article 569309

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-569309 September 22, 2020 Time: 10:21 # 8

Chen et al. Inaccurate GGE Caused by Bacteria

FIGURE 6 | Percentage composition of total ingested prey carbon content for Strombidium sp. under the first culture condition (grazing on haptophyte Isochrysis
galbana (T-ISO), in the presence of different proportions of bacteria) (calculated with a bacteria cell carbon content of 20 fg C cell−1).

FIGURE 7 | Gross growth efficiency (GGE) of Strombidium sp. under two culture conditions: (circle) grazing on the haptophyte Isochrysis galbana (T-ISO) in the
presence of bacteria, (triangle) grazing on bacteria only (calculated with a bacteria cell carbon content of 20 fg C cell−1).

cell−1 for bacterial cell carbon content is more appropriate than
one of 20 fg C cell−1.

Previous studies have speculated that the concentration of
bacteria in the natural environment is not enough to provide
sufficient energy for ciliates even if the latter are capable of
ingesting them (Fenchel, 1980; Rassoulzadegan and Etienne,
1981; Capriulo and Carpenter, 1983; Jonsson, 1986; Fenchel
and Jonsson, 1988), and have therefore assumed that bacteria
are not the main source of prey for ciliates (Kamiyama, 2015).
However, bacterial concentrations in coastal waters and lakes
are high enough to provide ciliates with sufficient energy for

growth (Sherr et al., 1989). With the discovery that smaller
ciliates (<20 µm; Sherr et al., 1986) and other ciliates do graze
on bacteria (Borsheim, 1984; Gast, 1985; Rivier et al., 1985),
it appears that bacteria do play an important role in carbon
transformation, especially in coastal waters.

In the open ocean, the low biomass of bacteria may
not be enough to support the growth of ciliates, whose
dietary carbon mainly comes from grazing on nano-sized
plankton. However, in the coastal zone and especially
in culture, carbon obtained from grazing on bacteria
should be taken into account. Lack of attention to this
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can have a significant impact on the results of quantitative studies
of food webs and carbon flow.

CONCLUSION

The greatly random values of GGE, with some being remarkably
high, at low relative algal concentrations observed by other
researches can be explained in the present study by the prey
selective behavior of Strombidium sp., which mainly grazed on
bacteria at low relative algal concentrations, but on algae at high
relative algal concentrations. The presence of bacteria in the algal
culture medium affects the growth and grazing rates of ciliates
grazing on nanoflagellates, resulting in an overestimate of gross
growth efficiency at low relative algal concentrations.
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