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Horseshoe crabs are a group of marine chelicerates that contain only four extant
species, some of which are endangered. Their hemolymph has been widely used in
medical applications for endotoxin detection. Nevertheless, there is limited information
on the profiles of their hemolymph proteins and their gut microbial diversity. In this study,
we performed the first detailed investigation of the hemolymph proteomics and gut
microbiota of two Asian horseshoe crabs Tachypleus tridentatus and Carcinoscorpius
rotundicauda. Among the identified proteins being cataloged in the juvenile and adult
hemolymph, unexpectedly, sesquiterpenoid signaling pathway proteins including Heat
shock protein 83 (HSP83), Chd64, and a juvenile hormone binding protein (JHBP)
were revealed. This provides evidence for the presence of functional sesquiterpenoid
hormonal systems in these marine chelicerates. consumption of certain horseshoe crab
species often leads to tetrodotoxin poisoning and the horseshoe crab is thought to
possess a tetrodotoxin resistance mechanism. As such, sodium channels were analyzed
and found to have critical amino acid residues that are similar to the toxin resistant
pufferfish sodium channels. The source of the toxin is unknown so we investigated
the gut microbiota, and found that Clostridium and Vibrio were the most dominant
bacteria in T. tridentatus and C. rotundicauda, respectively. Together, this study provides
a framework for further understanding of sesquiterpenoids and gut microbiota of these
marine chelicerates.

Keywords: hemolymph, proteomics, sesquiterpenoids, gut microbiota, horseshoe crabs

INTRODUCTION

The Chelicerata is the second largest subphylum in the Arthropoda after the Insecta, comprising
more than 77,000 described living species. Horseshoe crabs represent a group of marine chelicerates
in the order Xiphosura and its earliest fossil records can be traced back to the Ordovician
period (Rudkin et al., 2008; Van Roy et al., 2010). Currently, there are only four extant
horseshoe crab species, including Limulus polyphemus found in the Americas, and Carcinoscorpius
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rotundicauda, Tachypleus gigas, and Tachypleus tridentatus
distributed in Asia (Vestbo et al., 2018). These animals generally
live in shallow water regions with soft sandy or muddy bottoms,
mainly the estuaries. They are also a good indicator for tracking
the health of the coastal regions given their reproduction is
dependent on the quality of water and the nearby micro-
ecosystem (Chen et al., 2004).

The hemolymph of horseshoe crabs is well known for its
blue color, as well as for its great medical importance in
detecting contaminants in vaccines and injectable medicines.
Specifically, coagulation proteins released from crab amebocytes
detect endotoxin, a type of pyrogen that presents on the surface
of the outer membrane of gram-negative bacteria, that could be
life-threatening when introduced intravenously (Maloney et al.,
2018). The Limulus amebocyte lysate (LAL) test is an in vitro test
that is commonly used for the detection of gram-negative bacteria
since the 1970s based on the fact that a coagulative protein in the
Limulus amebocyte was found to be highly sensitive to bacterial
endotoxins (Levin and Bang, 1964, 1968). It had also been
suggested that the LAL test could be more ethical and sustainable
than the traditional rabbit pyrogen test (Mehmood, 2019).

Despite its medical importance to human society,
consumption of its body tissues, including viscera and eggs
of the mangrove horseshoe crab C. rotundicauda could result
in tetrodotoxin poisoning (Fusetani et al., 1982; Kungsuwan
et al., 1987; Tanu and Noguchi, 1999; Kanchanapongkul, 2008;
Dao et al., 2009; Suleiman et al., 2017; Zheng et al., 2019).
A previous study suggested that the horseshoe crabs could
possess a tetrodotoxin neutralizing system in their hemolymph
(Ho et al., 1994), and yet, how such toxin tolerance is achieved
remains unclear. Another question comes from the origin and/or
biosynthesis of endogenous tetrodotoxin in these animals.
Some bacteria including Pseudoalteromonas, Pseudomonas, and
Vibrio have been demonstrated to produce tetrodotoxin (Jal and
Khora, 2015; Lorentz et al., 2016), and yet, the gut microbiota
composition remains unknown in both C. rotundicauda and
T. tridentatus.

The horseshoe crabs represent an understudied basal group of
arthropods and have genuine utility in their own unique biology;
they can also provide insights into arthropod comparative
biology. In this study, we performed the proteomic profiling
of hemolymph of the two Asian species T. tridentatus and
C. rotundicauda to reveal their hemolymph composition. In
addition, we comparatively analyzed the sodium channels and
gut microbiota in T. tridentatus and C. rotundicauda, to provide
insights on the possible tetrodotoxin tolerant mechanisms
and diversity of gut microbes in the two species of Asian
horseshoe crabs.

MATERIALS AND METHODS

Experimental Animals
Two adult (one male and one female) horseshoe crabs of
T. tridentatus were purchased from local fish markets in Sai Kung
of Hong Kong. Juvenile horseshoe crabs of T. tridentatus (four
individuals) andC. rotundicauda (four individuals) with carapace

width about 4–5 cm were collected from Ha Pak Nai and Sha
Tau Kok in Hong Kong respectively. Two juvenile individuals
of each species were used in gut microbiota analysis, while the
others were used in hemolymph proteomics study. All horseshoe
crabs (except those being taken for gut microbiota analyses) were
acclimated in a culture tank with 30 ppt of artificial seawater
(ASW) at room temperature with a photoperiod of 12:12 h
(Light:Dark) before carrying out experiments.

Hemolymph Proteomics (ESI-Nano-LC
MS/MS Analysis)
Hemolymph of both species of horseshoe crabs were drawn by
syringe from the junction between the prosoma and opisthosoma
on the dorsal side, and was directly extracted for protein.
A protein sample (10 mg) was mixed with 20 µL of ProteoMiner
beads (BioRad) and incubated on a rotational shaker for 2 h at
room temperature throughout the process. The unbound excess
proteins were removed by bead washing with PBS thrice followed
by deionized water twice. The captured proteins were eluted with
elution buffer I (8 M urea, 2% CHAPS, and 5% acetic acid)
once and elution buffer II (6 M urea, 2 M thiourea, and 5%
acetic acid) twice and the elution was combined. The eluates
were reduced by 25 mM DTT for 1 h at room temperature and
alkylated with 5 mM iodoacetamide for 30 min in dark at room
temperature. The urea concentration of the samples was diluted
to 1 M with 25 mM ammonium bicarbonate buffer. Sequencing-
grade trypsin (Promega) was added to each sample in 1:20 ratio
and incubated overnight at 37◦C. The lysates were then mixed
with the same volume of 2% trifluoroacetic acid and loaded onto a
high pH reverse-phase fractionation spin column (Thermo Fisher
Scientific) and fractionated into 4 fractions with increasing ACN
concentrations (10, 15, 20, and 50%). The fractionated peptides
were dried by vacuum drying and resuspended in 2% ACN with
0.5% formic acid. The nano-LC separation was performed using
a Dionex UltiMate 3000 RSLC nano system. Peptides (1 ug) were
loaded onto a 25 cm-long, 75 µm-i.d. C18 column and eluted
from the column at a constant flow rate of 0.3 µL/min with a
linear gradient from 2 to 35% of ACN over 120 min. The eluted
peptides were analyzed by an Orbitrap Fusion Lumos Tribrid
mass spectrometer (Thermo Fisher Scientific). MS and MS/MS
scans were acquired in the Orbitrap with a mass resolution of
60,000 and 15,000 respectively. MS scan range was from 375
to 1,500 m/z. The AGC target for MS and MS/MS were 4e5
and 5e4 respectively; and the maximum injection time for MS
and MS/MS were 50 ms and 250 ms respectively. Precursor
isolation windows were set to 1.6 m/z. Data were analyzed by
Proteome Discoverer version 2.3 with SEQUEST as a search
engine to search against the proteome database generated from
T. tridentatus and C. rotundicauda genomes (Kenny et al.,
2016). The searching parameters were as follows: oxidation
of methionine (+15.9949 Da) and carbamidomethylation of
cysteine (+57.0215 Da) was set as dynamic modification;
precursor-ion mass tolerance, 10 ppm; fragments-ion mass
tolerance, 0.02 Da, protein-level false discovery rate was
calculated by Percolator at an experimental q-value (exp. q value)
threshold of 0.05. Proteins were quantified utilizing the precursor
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ion quantification module of Proteome Discoverer. BLASTP was
used to search the detected hemolymph proteins against Nr (non-
redundant) database and further annotated the GO function
via BLAST2GO package. Short peptides within 200 amino acids
were used to predict antimicrobial peptides by dbAMP (Jhong
et al., 2019). Multi-alignment of protein sequences with other
known proteins obtained from NCBI database was carried out
by MAFFT (Katoh et al., 2019), and phylogenetic tree was
constructed with MEGAX (Kumar et al., 2018) using both
Neighbor-Joining (NJ) and Maximum-Likelihood (ML) methods
with 1,000 bootstrap.

Sodium Channel Gene Analysis
The amino acid sequences of known sodium channel proteins
of pufferfish Tetraodon nigroviridis and Takifugu rubripes were
used to search against the gene models of T. tridentatus
and C. rotundicauda using the BLASTP algorithm with an
E-value threshold of less than 1E−5. Reciprocal BLASTP was
then performed on NCBI database. In addition, online NCBI
Conserved Domain Search (CD Search) Tool was used to
annotate the conserved functional domains of predicted sodium
channel proteins. The alignment of the amino acid sequences was
performed using MUSCLE (Edgar, 2004).

Gut Microbiota Analysis
The guts of the juvenile horseshoe crabs T. tridentatus and
C. rotundicaudawith carapace width about 4–5 cm collected from
the field was immediately removed on return to the laboratory.
About 10 mg of feces was removed from the gut and preserved in
95% ethanol at 4◦C. The DNA in the fecal sample was extracted
using Purelink Genomic Mini Kit (Invitrogen) according to the
instructions provided by the manufacturer. The extracted DNA
samples were then sent to Novagene (Hong Kong) Company
Limited for bacterial amplicon sequencing (16S V3–V4 region
with 100 k raw tags/sample) using the Novaseq PE250 platform
(sequencing information are shown in Supplementary Table 1).
After trimming and quality-filtering, the qualified reads were
used as input of QIIME 2 pipeline (q2cli version 2019.10.0)
(Bolyen et al., 2019). The classification results [operational
taxonomic units (OTUs)] were generated using the qiime feature-
classifier classify command with Greengenes database (13-8-99
version, DeSantis et al., 2006). Two replicates of each species were
analyzed, and only assigned OTUs with read counts more than 10
were used for further analysis.

RESULTS

Protein Content in Asian Horseshoe
Crabs Hemolymph
To reveal the protein content of horseshoe crab hemolymph,
proteomic analysis of the hemolymph proteins from both
T. tridentatus and C. rotundicauda juveniles and T. tridentatus
adults were carried out. A total of 1,056 and 1,107 proteins with
high confidence values (exp. q value <0.05) were identified in
C. rotundicauda and T. tridentatus juveniles respectively. In

addition, a total of 1,254 proteins were detected in T. tridentatus
adult hemolymph. The molecular weight distribution of
C. rotundicauda and T. tridentatus hemolymph proteins was
both observed with ∼80% within 80 kDa (Figure 1A). All these
proteins were subjected to functional annotation with gene
ontology (GO) (Figure 1B, Supplementary Tables 1, 2). In
C. rotundicauda and T. tridentatus juveniles, ∼78% hemolymph
proteins were associated with biological processes (GO:0008150)
and molecular functions (GO:0003674) (Figures 1C,D). The
majority of these proteins in two horseshoe crabs were associated
in similar functional categories (Figures 1C,D) and KEGG
pathway (Supplementary Figures 1,2), revealing conserved
functions of horseshoe crab hemolymph proteins between
different species.

Proteins involved in sesquiterpenoid hormone signaling
pathways that affects the physiology and development of
arthropods, including Hsp83, Chd64, and hemolymph juvenile
hormone binding protein (hJHBP) were also identified in the
hemolymph of these two species of horseshoe crabs for the first
time. Phylogenetic analysis revealed a close relationship of Chd64
and hJHBP to similar proteins identified in crustaceans (Figure 2,
Supplementary Tables 1, 2 and Supplementary Figures 3,4).
Abundances of these proteins contributed 0.09, 0.06, and 0.02%
to the total hemolymph proteins of adult T. tridentatus, juvenile
T. tridentatus, and C. rotundicauda, respectively.

In addition, Limulus clotting factor C, and other proteins
involved in coagulation and related immune responses in
spiders (Sanggaard et al., 2016) such as hemocyanins, von
Willebrand factor related proteins, complement component,
alpha-2-macroglobulin, histones, lectins, and coagulation factor
were also identified in the hemolymph of two horseshoe crab
species (Supplementary Tables 1, 2).

Further, 10 and 15 antimicrobial peptides (AMPs) were
identified in the C. rotundicauda and T. tridentatus hemolymph
samples, respectively (Supplementary Table 3), including the
previously characterized tachyplesin and tachystatin (Miyata
et al., 1989; Osaki et al., 1999).

Sodium Channels in Horseshoe Crabs
To reveal the possible relationships between sodium channels and
tetrodotoxin resistance in horseshoe crabs, the sodium channel
genes in the two Asian horseshoe crab species were examined
and compared. A total of 15 and 7 sodium channel genes were
annotated in C. rotundicauda and T. tridentatus respectively
(Figures 3A,B and Supplementary Table 4). By comparing
the amino acid sequences to the orthologs in pufferfish and
other tetrodotoxin-tolerant species (Jost et al., 2008), amino acid
replacements that lead to tetrodotoxin resistance in other animals
were also identified in the two species (Figure 3C).

Variations in the Diversities of Gut
Microbiome Between Two Horseshoe
Crabs
To understand and compare the gut microbiome diversity of two
horseshoe crab species, 16S amplicon sequencing of their gut fecal
samples was conducted. 349 and 184 OTUs were obtained from
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FIGURE 1 | Landscape of the proteins detected in the hemolymph of C. rotundicauda (Cr) and T. tridentatus (Tt). (A) Size distribution of detected hemolymph
proteins; (B) Protein numbers with the blast and functional annotation (GO) results in Cr juvenile (Cr J), Tt juvenile (Tt J), and adult (Tt Ad) hemolymph respectively;
(C,D) Level 3 Gene ontology (GO) terms distribution based on biological processes (C) and molecular function (D) of juvenile C. rotundicauda and T. tridentatus
hemolymph proteins.

T. tridentatus and C. rotundicauda gut, respectively (Figure 4A
and Supplementary Tables 5, 6). Distribution of these OTUs
at phylum level were examined and shown in Figure 4B.
Top phyla found in T. tridentatus were Firmicutes (33.34%),
Proteobacteria (30.85%), Tenericutes (14.56%), and Fusobacteria
(12.99%), while Proteobacteria (50.40%), Tenericutes (26.22%),
and Fusobacteria (18.05%) accounted for the top phyla found in
C. rotundicauda. Among the top 5 most abundant genera found
in the T. tridentatus and C. rotundicauda gut (Figure 4C), the
most abundant were found to be Clostridium (22.61%) and Vibrio
(36.20%) in T. tridentatus and C. rotundicauda, respectively,
and the abundance of Propionigenium, Photobacterium, and
Burkholderia were similar in the two horseshoe crab species.
Further, the abundance of 66 common genera identified in both
species was also compared (Figure 4D). This is the first result
revealing the diversity and variations of gut microbiota in wild
juveniles of the two Asian horseshoe crab species, and their
significance remains to be determined.

DISCUSSION

The hemolymph protein content of T. tridentatus and
C. rotundicauda is, in general, comparable to other arthropods
including termites and the Atlantic horseshoe crab, which have
a majority of <80 kDa protein components (D’Amato et al.,
2010; Zheng et al., 2019). Further, the identification of various

conserved chelicerate peptides, including the Limulus clotting
factor C, arachnid immunity proteins and coagulation factors,
display a conserved hemolymph biology across lineages in the
chelicerates. Unexpectedly, sesquiterpenoid pathway proteins
were also identified in both species of horseshoe crabs.

The sesquiterpenoid hormones are well known to play
important roles in arthropod development and physiology
(Cheong et al., 2015; Qu et al., 2018). Although the majority
of the functional studies on these hormones have been
carried out on insects and crustaceans, recent studies showed
that the sesquiterpenoid hormone system was established
in the last common ancestor of Arthropoda (Qu et al.,
2015, 2018). Here, we found that sesquiterpenoid signaling
pathway components Hsp83, Chd64, and hJHBP are present
in the hemolymph of both species of horseshoe crabs.
Moreover, examination of the transcriptomes of different
tissues of T. tridentatus and C. rotundicauda (Nong et al.,
2020) also revealed the expression profiles of these hormonal
pathway genes (Supplementary Figure 5). These data further
supports the existence of sesquiterpenoid hormone system in
marine chelicerates.

Hsp83 is a molecular chaperone that assists in the nuclear
import of JH-Met complex (He et al., 2014). Chd64 is a protein
in the JH signaling pathway that binds directly to the JH
response element and forms in complexes that may link juvenile
hormone production with ecdysone production (Li et al., 2007;
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FIGURE 2 | Phylogenetic relationship of juvenile hormone binding protein (JHBP) family. Maximum-likelihood phylogenetic tree showing potential hemolymph JHBP
(hJHBP) revealed in horseshoe crab hemolymph. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000
replicates) are shown next to the branches.

Tarczewska et al., 2015). To date, the hJHBP has only been
identified and functionally tested in some lepidopterans (Orth
et al., 2003; Suzuki et al., 2011), which was used to deliver
the juvenile hormone to target tissue and protect it from
degradation (Hidayat and Goodman, 1994; Debski et al., 2004).
The transportation of JH in hemolymph within other insects or
non-insect arthropods is still not clear. Previously, only cytosolic
JHBP (cJHBP) was characterized in non-insect arthropods

(Qu et al., 2015). There are different types of sesquiterpenoid
hormones in various arthropods [e.g., JH0, I, II, III, JHB3,
and methyl farnesoate (MF)], Lepidoptera species exclusively
possess JH0, JHI, and JHII in contrast to most of the other
insects which use JH III, while the non-insect arthropods use
MF as the major form (Goodman and Cusson, 2012; Qu
et al., 2018; Bendena et al., 2020; Tsang et al., under review).
The specific clade of Lepidoptera hJHBP (Figure 2) might be
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FIGURE 3 | Protein domains of identified sodium channels in panels (A) C. rotundicauda, (B) T. tridentatus and (C) Tetrodotoxin-resistant related site replacements.
Sequences used in the alignment: Takifugu rubripes Nav1.4a channel (ABB29441); Takifugu rubripes Nav1.4b channel (ABB29442); Tetraodon nigroviridis Nav1.4a
channel (ABB29443); Tetraodon nigroviridis Nav1.4b channel (ABB29444); Danio rerio Nav1.4a channel (ABB29445); Danio rerio Nav1.4b channel (ABB29446);
Homo sapiens skeletal muscle Nav1.4 channel (P35499); Homo sapiens cardiac Nav1.5 channel (Q14524) and Thamnophis sirtalis skeletal muscle Nav1.4
(AAW68224).

FIGURE 4 | Gut microbiota diversity of two Asian horseshoe crabs C. rotundicauda (CR) and T. tridentatus (Tt). (A) Comparing OTUs identified in two horseshoe
crabs; (B) Phylum abundance of identified OTUs in the gut of T. tridentatus and C. rotundicauda; (C) Top 5 most abundant genera identified in the two horseshoe
crabs; (D) Comparison of the abundance of common genera in both species. The abundance is shown in blue to red (low to high).

co-evolved with the special types of JH usage. Our finding
of hJHBP in horseshoe crabs thus provides an opportunity to
elucidate sesquiterpenoid transport in the chelicerates. Early in
1970s, Jegla et al. had demonstrated that injection of insect
ecdysone and related analogs stimulated the molting of first
stage American horseshoe crabs Limulus (Jegla and Costlow,
1970; Jegla et al., 1972). Although these studies have proven
the functional ecdysone hormonal systems in horseshoe crabs,
there is very little research about the sesquiterpenoid hormonal
system in this group of arthropods. Our findings shed new
lights on this aspect, providing useful information for future

in vivo research (e.g., sesquiterpenoids treatment, hormonal
measurement, genetic manipulation etc.).

Carcinoscorpius rotundicauda is one of the toxic marine
invertebrates that has been known to cause tetrodotoxin
poisoning, yet the cause of toxicity is still an unknown
(Kungsuwan et al., 1987; Tanu and Noguchi, 1999;
Kanchanapongkul, 2008; Suleiman et al., 2017). Given
tetrodotoxin acts as a voltage-gated sodium channel blocker,
animals that can accumulate high concentrations without
adverse effects, such as pufferfish, have evolved with adaptive
evolution in sodium channels to become toxin-resistant
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(Jost et al., 2008; Llewellyn, 2009). We thus analyzed the
numbers of sodium channel genes in the genomes of
C. rotundicauda and T. tridentatus (Figure 3). More sodium-
channel genes could be identified in C. rotundicauda
than in T. tridentatus. In addition, examination of
expression profiles of these identified sodium-channel
genes in transcriptomes of various tissues of both species
revealed that C. rotundicauda exhibited higher expression
levels of these genes (Supplementary Figure 6). Critical
amino acid positions that potentially lead to toxin
resistance in other animals were identified in these
crabs. Further experiments such as pharmacologically
treatment and toxin challenges are warranted to confirm
these correlations.

This study also investigates the potential production of
tetrodotoxin by its symbiotic microorganisms. In recent, two
studies reported on gut microbiome in early stages (first
and second instar) of cultivated T. tridentatus (Miao et al.,
2020) and wild adults of T. tridentatus and C. rotundicauda
(Wang et al., 2020), and this study provides the first result
revealing the diversity and variations of gut microbiota in
wild juveniles of the two Asian horseshoe crab species. We
then analyzed if any species of bacteria known to produce
tetrodotoxin (Magarlamov et al., 2017) was present in the
gut of horseshoe crabs. In pufferfish Arothron hispidus and
Vibrio harveyi strains isolated from this species were found
to be able to produce tetrodotoxin (Campbell et al., 2009).
However, only very low portion of Vibrio harveyi was identified
in both C. rotundicauda (1.36%) and T. tridentatus (1.12%)
(Supplementary Tables 5, 6), suggesting this strain might
not be the major source of tetrodotoxin in horseshoe crabs.
Moreover, other known tetrodotoxin-producing bacteria
species were not found in these two horseshoe crab species.
Intriguingly, a large proportion of Vibrio was identified in
the gut of C. rotundicauda which existed in much lower
proportion in T. tridentatus. Such finding could potentially
mirror the correlations of Vibrio sp. with the accumulation
of tetrodotoxin in various aquatic species (Magarlamov
et al., 2017; Turner et al., 2017; Leao et al., 2018). On
a different line, ingestion of toxic flatworm eggs had also
been suggested as the source of tetrodotoxin in pufferfish
Takifugu alboplumbeus (Okabe et al., 2019). Further, since
tetrodotoxin-producing strains have been isolated from skin
slime and kidneys of pufferfish (Campbell et al., 2009),
toxin-producing microbes could be present in other body
parts of horseshoe crab instead of gut. Thus, whether the
toxic nature of C. rotundicauda is due to the endogenous
symbiotic bacteria (contribution of other Vibrio sp. strains)
and/or exogenous source via diet perhaps via determination
of fatty acids profile (Kwan et al., 2019) remains to be
further determined.

It is becoming clear that certain symbiotic microbiota can
affect host reproduction and physiology. In arthropods, perhaps
the better-known example is that of the endosymbioticWolbachia
and that of the insects, which has been used to control mosquito
populations (Flores and O’Neill, 2018). Indeed, the interactions
between gut flora and the endocrine system of insects have also
been documented (e.g., Shin et al., 2011; Storelli et al., 2011;
Zheng et al., 2017). With this study, the possibility of determining
the pathways of sesquiterpenoid hormone action and the
effects of gut microbiota in horseshoe crab physiology, should
permit the exploration of interactions between sesquiterpenoid
regulation/metabolism and gut microbiota in this understudied
group. This may provide a good system for examining the
cross-kingdom regulation of sesquiterpenoid production and
action in arthropods.
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