AUTHOR=Baechler Britta R. , Granek Elise F. , Mazzone Scott J. , Nielsen-Pincus Max , Brander Susanne M. TITLE=Microplastic Exposure by Razor Clam Recreational Harvester-Consumers Along a Sparsely Populated Coastline JOURNAL=Frontiers in Marine Science VOLUME=Volume 7 - 2020 YEAR=2020 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2020.588481 DOI=10.3389/fmars.2020.588481 ISSN=2296-7745 ABSTRACT=Microplastics are anthropogenic contaminants found in coastal and marine environments worldwide. Pacific razor clams (Siliqua patula), important for local indigenous culture, economy, gastronomy and food security along the United States West Coast, are subjected to myriad environmental stressors including predation, storm events, disease, toxins, and microplastics. This study aimed to determine microplastic burdens in Olympic Coast, Washington Pacific razor clams and estimate annual microplastic exposure of recreational razor clam harvester-consumers from eating this species. We quantified suspected microplastic burdens in Pacific razor clams collected from eight tribal, recreational, and commercial harvest areas on the Olympic Coast in April 2018. We administered questionnaires to 107 recreational razor clam harvesters during the same timeframe to determine consumption patterns, preparation styles, knowledge and concerns about microplastics, and demographics. Razor clams containing suspected microplastics, primarily microfibers, were found at all eight sites. Average suspected microplastic burden differed by sample type (whole= 6.75 ± 0.60, gut-tissue= 7.88 ± 0.71, non-gut tissue= 4.96 ± 0.56, and cleaned samples= 3.44 ± 0.25). FTIR analyses of a random subset of microfibers in whole and cleaned clams indicated material types of polyethylene terephthalate, cellulose acetate, cellophane, polyester, nylon, and cellulose. The average number of razor clams consumed per meal by Olympic Coast recreational razor clam harvesters was 4.27 ± 0.27, which varied by gender and ethnicity, but not income or age. Harvesters ate 0–209 meals/year of razor clams (16.2% harvested but did not eat razor clams), and most respondents (88.3%) fully cleaned razor clams before consuming them. Annual suspected microplastic exposure for razor clam harvester-consumers was 60–3,070 pieces for cleaned and 120–6,020 for whole clams. Our findings suggest Olympic Coast recreational razor clam harvester-consumers are exposed to low levels of microplastics from eating razor clams. Microplastic exposure can be reduced by roughly 50% if clams are cleaned before consumption. Our work serves as an important reference in the growing portfolio of Pacific Northwest microplastic research, to inform future microplastic attenuation recommendations and development of human health standards for this type of pollution.