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During the past decades, the aquaculture industry has developed rapidly, due to drop
in wild fish catch. Water quality variables play major role in aquaculture operations,
specifically seawater temperature has major impact on the metabolism of the fish
species and therefore on the growth rate too. Since the fish farming business relies
on the growth rate of the species to plan and operate the farm, seawater temperature
becomes crucial information. With the availability of hydrodynamic modeling tools and
global ocean information source such as Copernicus Marine Environment Monitoring
Service (CMEMS), seawater temperature can be simulated for practically any coast
with dynamic downscaling approach. However, the simulated data needs to be
assessed for uncertainties for enabling informed decision making using such model
predictions. In this paper, a coastal 3D hydrodynamic model aiming at simulating
seawater temperature is developed for the southern Aegean Sea, Greece using the
Delft3D Flexible Mesh modeling tool. Seawater temperature is impacted by atmospheric
forces; therefore, uncertainties are assessed for seawater temperature using ensemble
atmospheric forcing functions of the European Centre for Medium-Range Weather
Forecasts (ECMWF) ERA5. Spatial analysis of the uncertainty indicates regions of
different seawater temperature behavior within the model domain. Seasonal behavior of
the vertical temperature gradient suggests that farms need to adapt different operational
strategies in different seasons to make best use of the seawater temperature. The
application of CMEMS data along with ECMWF ERA5 ensemble atmospheric forcing
members proves to be beneficial in analyzing the uncertainties both in spatial and vertical
gradient of seawater temperature.

Keywords: aquaculture, dynamic downscaling, ensemble simulation, seabream, seawater temperature,
uncertainty analysis

INTRODUCTION

Fish currently supplies 17% of the protein consumed worldwide (Martin et al., 2016). The current
demand for fish is much higher than what could be supplied by marine fish catch alone (Merino
et al., 2012). These pressures put wild fish and other aquatic organisms at risk of overfishing.
These facts signify the importance of developing new aquaculture facilities for seafood production.
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Already half of the fish production in the world comes from
aquaculture (FAO, 2020). Efforts are being made to ensure
a continuous and reliable supply of good quality seafood.
These efforts encourage the setting up of new fisheries and
aquaculture facilities around the world (FAO, 2020). But for
sustainable seafood production, necessary management practices
should be in place. This includes continuous monitoring and
maintenance of the seawater quality, fish health, growth, as well
as disease monitoring. Environmental considerations for farming
operations are temperature, salinity and dissolved oxygen among
others. For operational decision making in aquaculture farms,
temperature is an important environmental property (Hurst,
2007; Ibarz et al., 2010; Besson et al., 2016; Masroor et al., 2018).
Fish species have tolerance levels of temperature and beyond
these tolerance levels, fish growth and health are adversely
impacted (Berlinsky et al., 2007; Llorente and Luna, 2013;
Balbuena-Pecino et al., 2019). At such scenarios, to run the
farm business profitably, appropriate measure needs to be taken
related to operations (Besson et al., 2016; Hobday et al., 2016).
For example, low water temperature may cause problems such
as low food intake, reduced growth and even mortality in
extreme scenarios requiring lower food feeding (Hurst, 2007).
High temperatures in summer results in oxygen constraint in
the fish cages, since at higher temperatures water does not hold
enough oxygen. This demands a low stock of fish to avoid fish
mortality resulting in economic loss (Besson et al., 2016). These
threshold seawater temperatures, whose information is beneficial
to the aquaculture farmers, are different for different species.
Therefore, seawater temperature is a main guiding variable which
farmers rely on and for this reason it is selected for further study
in this research. Several studies have been conducted in the past
to correlate the fish growth and health with water temperature
(Person-Le Ruyet et al., 2004; Berlinsky et al., 2007; Mayer et al.,
2008; Ibarz et al., 2010).

Water properties are simulated and forecasted in real-time in
many sectors using hydrodynamic and water quality modeling
(Vandenbulcke and Barth, 2015; Chaudhuri et al., 2016; Lima
et al., 2019; Pesce et al., 2019). These simulated information
benefits the farmer to plan the short and long-term operations
of the farms well in advance. For example, increasing water
temperature may result in a higher growth rate for some farmed
fish species but extremely high seawater temperatures lead to a
greater chance of disease outbreaks and algal blooms in certain
regions (Lorentzen, 2008). It is the preparedness of the farming
community which could help them benefit from thermal changes
and/or minimize any negative impact of it (Callaway et al., 2012;
Merino et al., 2012; Bell et al., 2013).

Simulation results from numerical models, for example, of
past events can be useful in preparing a suite of scenario-
based decisions, which can be used as a guideline to ensure
efficient management in aquaculture. However, uncertainties in
the model inputs and forcing, such as atmospheric forcing, as
well as inaccurate model parameterization lead to an uncertain
numerical simulation of water quality variables, which may
lead to wrong decisions. A deterministic model utilizes a single
set of inputs and model parameters yielding a single model
output which is a best guess with a false sense of certainty.

A deterministic simulation therefore has no consideration for
the uncertainties that are inherent in the atmospheric forcing
fields, boundary information or model parameters (Chaudhuri
et al., 2016). In this context, probabilistic simulation methods
offer greater advantages. The advantage of these methods over a
single deterministic simulation is that it does not predict the most
likely event, instead predicts all possible events (Buizza, 2018).
This, when seen in the context of aquaculture, gives end-users
a greater benefit as it provides more complete future scenarios
and the likelihood of certain events. Probabilistic information
of extreme scenarios, such as extreme seawater temperature
(SWT), has significant impact on various decisions that are
to be made in an aquaculture farm. These include changes
in the sea cage depth, changes in the fish stocking density,
changes in feed ratios and disease control mechanisms. All likely
events and a measure of their probability would enable informed
decision-making and help to increase the confidence of decision-
makers in the forecasted information (Vandenbulcke and Barth,
2015). Apart from this, the consistency in the simulations
from an ensemble method is proven to be higher compared to
deterministic simulations (Buizza, 2018). Studies have shown that
the additional information reflecting the uncertainties available
in the ensemble simulation have higher economic value to the
user than a single deterministic simulation (Richardson, 2000).

There is a general lack studies on quantifying uncertainties
in SWT simulations applied anywhere in the Mediterranean
Sea despite tremendous growth potential for aquaculture in the
region. Lack of uncertainty estimate puts decision making in
the aquaculture at risk due to rapid changes in the climate and
marine environment. Such changes require adequate response in
the planning and operations of farms. By developing an ensemble
model and providing three dimensional probabilistic estimates
of the SWT, we intend to support aquaculture operations in
making informed decisions. With the existing methodologies
of quantifying uncertainties, we assess the seasonal, spatial
and vertical gradient of SWT fluctuations which enables the
appropriate operational changes in the aquaculture farms.

STUDY AREA

General Information: Aegean Sea
The Aegean Sea is a part of the Eastern Mediterranean Sea. It is
shared by two countries, Greece and Turkey. The characteristic
feature of this sea is that it is dotted with numerous islands
and highly irregular coastline. Due to its complex bathymetry,
semi-isolated deep basins could be seen in the Aegean Sea,
making it complex in terms of seawater circulation. Its flow is
a combination of wind-driven and thermohaline-driven flow.
It also features complex mesoscale eddy fields (Olson et al.,
2007). The South Aegean Sea and its adjacent seas show a
circular pattern from surface down to intermediate layers. This
shows significant synoptic to inter-annual variability. In general,
cyclonic circulations are observed along the eastern and western
coastline of the Southern Aegean Sea. There is also inter-sea
exchange of waters from the neighboring seas through Cretan Arc
Straits (Kassis et al., 2016).
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Aquaculture in Greece
Favorable climatic and environmental conditions, a long
coastline, historical experience, and scientific know-how have
given Greece advantage over other European countries in terms
of aquaculture. Therefore, the coastline of Greece is dotted with
aquaculture farms across the country. At present this sector
represents a major portion of the total seafood production
in Greece1. In Greece, commonly farmed species are finfish
(seabream and seabass) and shellfish (mussels). Cage based
coastal aquaculture is the most popular form of aquaculture.
These cages are located strategically to utilize natural water
circulation and to safeguard against severe weather conditions.
Land-based breeding stations supply the fry to these cages
facilities where fish is farmed for 12–24 months. Generally, fish
is harvested at a weight range of 350–450 g. This also depends
on the local water temperature (FAO, 2011). For this study, two
aquaculture sites are selected namely Ortholithi (37◦ 21′ 2.52′′ N
22◦ 47′ 58.38′′ E) and Ovrios (37◦ 51′ 27.57′′ N 23◦ 8′ 45.60′′
E) (Figure 1). Ortholithi is located on the mainland shorelines
in the Argolic Gulf, whereas Ovrios is an island in the Saronic
Gulf. Both farms are in water depths ranging from 40 m to 80
m. The two gulf areas are unique in their bathymetry. While the
Saronic Gulf is a shallow area of around 200 m depth, the Argolic
Gulf hosts deep sea trench with depths up to 800 m (Figure 3).
The cage depth, which is measured as distance between water
surface and the bottom of the cage is 10 m in both cases. Both
circular and rectangular variants of the cages are used. The
surface dimension of individual cages differ within the same farm.

1https://ec.europa.eu/fisheries/sites/fisheries/files/docs/body/op-greece-fact-
sheet_en.pdf

FIGURE 1 | Location of the study area with two Gulf areas and two
observation points – Ortholithi and Ovrios.

Usually the surface area of cages is 15–20 m in diameter for a cage
depth of 10 m. Farms at Ortholithi and Ovrios occupy area of
∼34,000 m2 and∼20,000 m2 respectively. In both sites, European
Seabream (Sparus aurata) species is farmed. These two farms are
operated by a Greek aquaculture company, Selonda. Continuous
temperature and oxygen monitoring are carried out at the farms
for operational purposes. These data are provided by Selonda for
model validation purposes.

DATA AND METHODS

In order to support the decision making of aquaculture
operators, this study proposes a methodology to produce
three-dimensional seawater temperature fields with associated
atmospheric uncertainty using a numerical modeling tool. The
materials and methodological steps included are as shown in
Figure 2. These steps are detailed in the following sections.
First, we describe the datasets that are used to develop the
model in section “Data.” Section “Methods” elaborates on the

FIGURE 2 | Methodological framework consists three major components –
Data, Methods, and Application. There are two main models setups that are
followed. Left side track (light green) represents the deterministic model and
the right side track (dark green) represent the ensemble model.
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TABLE 1 | List of data used in the study.

Data type Availability Temporal
resolution

Spatial resolution Source Usage

Bathymetry 01-01-2019 – 15 Arc seconds (∼500 m) GEBCO_2019 Grid Model bathymetry levels

Tide signal boundary
condition

03-07-2017 to
present

– 0.0625 degrees (∼7 km) FES2012 Model simulation

Ocean boundary
conditions

1993-01-01 to
2018-12-25

Daily 0.083 × 0.083 degrees
(∼9 km)

CMEMS – global ocean
physics reanalysis

Model simulation

Atmospheric forcing
fields

1979 to present Hourly 0.25 × 0.25 degrees
(∼30 km)

ERA5 of ECMWF Model simulation

Ensemble atmospheric
forcing fields

1979 to present 3 Hourly 0.5 × 0.5 degrees
(∼60 km)

ERA5 of ECMWF Ensemble model simulation

Water level 1933–2018 Every 5 min Single station IOC sea-level station
monitoring facility

Model validation

Seawater temperature 2012–2018 Daily Two stations Selonda aquaculture farms Model validation

various steps involved in model setup. In section “Verification
measures,” various verification measures that are used to compare
the performance of deterministic and ensemble simulations are
described. In the final section “Uncertainty analysis,” the methods
of uncertainty analysis are described.

Data
Bathymetry
In this model setup, the General Bathymetric Chart of the
Oceans (GEBCO)2 data was used for the bathymetry. The spatial
resolution of the seabed level data used is 15 arc seconds
(∼500 m) (Table 1). The seabed level values were embedded on
the nodes of the numerical grid which is later used for various
model computations (Figure 3).

2https://download.gebco.net/

FIGURE 3 | Seabed level in model domain. Two gulf areas have characteristic
bathymetry, Saronic Gulf with shallow depths of ∼200–300 m and Argolic Gulf
with deep sea trench of ∼ 400–800 m depth. Two Magenta lines indicating
the boundary of the model domain.

Boundary Condition
The study primarily uses data from Copernicus Marine
Environment Monitoring Service (CMEMS) for the open
boundaries. CMEMS is designed to provide crucial data related
to marine environments mainly for European regional seas and
the global oceans3. The European regional domains include
the Arctic Sea, Baltic Sea, European North-West Shelf Sea,
Iberia-Biscay-Ireland regional Sea, Mediterranean Sea, and the
Black Sea. Their service is a product of integration between
both satellite and in-situ data, followed by a state-of-the-art
analysis using numerical models. CMEMS provides data for sea
level, salinity, water temperature and biogeochemical variables
such as oxygen, primary production, plankton, chlorophyll-
a, among others. For the Mediterranean Sea, under CMEMS
ocean products, biophysical parameters such as surface water
levels, surface temperature, current velocities, reflectance, and
chlorophyll-a concentrations, etc., are available4.

For the development of the hydrodynamic model boundary
data such as astronomical tide signals, salinity, water
temperature, steric water level, advection velocities were
used (Figure 2). While tide signals are sourced from FES20125,
other boundary data are obtained from the global-reanalysis-
phy-001-030-daily product of CMEMS4. This product has a
spatial resolution of 0.083◦ × 0.083◦ (∼9 km) (Table 1). The
vertical coverage ranges from 0.0 to 5500 m depth with 50 levels.
These data are embedded at the two open sea boundaries of the
model grid (Figure 3). We use global reanalysis data instead of
the available Mediterranean solution as the present dynamical
downscaling methodology is intended to be replicated for any
geographical area, not only the Mediterranean Sea.

Atmospheric Forcing
The complete heat flux model was implemented in the
model and this demands various atmospheric forcing data

3https://www.copernicus.eu/sites/default/files/documents/Copernicus_
MarineMonitoring_Feb2017.pdf
4https://resources.marine.copernicus.eu/?option=com_csw&view=details&
product_id=GLOBAL_REANALYSIS_PHY_001_030
5https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/
global.html
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including solar radiation, wind, air temperature, dew point
temperature, and cloud cover (Figure 2). Solar radiation is
computed within Delft3D-flexible Mesh (DFM) depending on
the time of the year and coordinate of the grid points
(Deltares, 2019). Other information is obtained from ERA5
hourly data on single levels which is fifth-generation ECMWF
atmospheric reanalysis of the global climate6. These data
have a spatial resolution of 0.25◦ × 0.25◦ (∼30 km).
Similarly, a 10-member ensemble with spatial resolution of
0.5◦ × 0.5◦ (∼60 km) available from ECMWF was used for
probabilistic simulation and uncertainty analysis (Table 1).
This 10-member ensemble covers all required atmospheric
forcing data. It is based on physical considerations using
an Ensemble of Data Assimilations (EDA) system, taking in
to account the uncertainties in the ERA5 assimilation and
modeling system7.

Validation Data
To validate the results of the hydrodynamic model, data from
different sources were used (Figure 2). At first, the water level
simulation was validated against the water level observations
from Intergovernmental Oceanographic Commission (IOC)
station at Peiraias (37◦56′05.0′′N 23◦37′16.4′′E), near Athens8

(Table 1). Simulation of the temperature was validated against
the measured temperature at the two aquaculture sites -
Ortholithi and Ovrios for the years 2016, 2017, and 2018. Farms
have maintained long-term temperature measurement at both
sites, measured at 8.00 h, 12.00 h, and 16.00 h and a daily
average value is provided. These temperatures were measured
at 4 m depth from the water surface. Various verification
measures used in model validation are elaborated in the section
“Verification measures.”

Methods
Numerical Modeling
The modeling tool employed in this research is the Delft3D-
Flexible Mesh (DFM) modeling suite. Delft3D is a multi-
dimensional (2D or 3D) hydrodynamic and transport simulation
program which calculates non-steady flow and transport
phenomena that result from tidal and meteorological forcing.
It is widely used tool for hydrodynamic, sediment transport as
well as water quality modeling. There are two computational
schemes for heat transport in the model namely complete heat
flux model and excess temperature model (Deltares, 2019). For
the better representation of seawater related physical processes
and increased accuracy the complete heat flux model was chosen.
In the following equation, the heat balance at the sea surface
is provided:

Hx = RS − Le − IR− S (1)

With RS Solar radiation at the sea surface

6https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-
levels?tab=overview
7https://confluence.ecmwf.int/display/CKB/ERA5%3A+uncertainty+estimation#
app-switcher
8http://www.ioc-sealevelmonitoring.org/station.php?code=peir

Le Latent heat flux (heat loss due to evaporation or gain by
condensation)

IR Effective infrared back radiation
S Sensible heat flux
Each of the four components of equation (1) have a

mathematical or empirical formulations which are detailed in
Lane (1989). For the complete heat flux model to be implemented
the model needs to be provided with atmospheric forcing data
such as wind speed, solar radiation influx, air temperature, dew
point temperature, and cloud cover. In DFM the solar radiation
influx was calculated internally using model grid coordinate and
time of the year. The rest of the atmospheric forcing data was
provided externally. The details of the data used in the model
development for setup, calibration and validation is provided
in Table 1. The uniform horizontal grid resolution used in
this study is ∼1 km × 1 km, whereas for vertical layering
Z layer formulation (completely horizontal layers irrespective
of water levels) was applied. Adaption of regular grid helps
in achieving the orthogonality and smoothness criteria which
otherwise is difficult to achieve for highly irregular coastline.
The grid resolution of ∼1 km × 1 km is adapted considering
few factors. Resolution of many input data are highly coarse.
In such case finer grid resolution is not justified. Also, the
SWT variability are not high in small spatial scales, unless there
are small scale influx of heat. We use a Z layer thickness of
2 m for the top 40 m water depth. For the remaining depth,
model chooses the Z layer depth with increasing thickness as
depth increases. In the current model maximum of 47 Z layers
are formed. The model simulation was performed for years
2016, 2017, and 2018. Deterministic and ensemble simulation
experiments were setup with the above described boundaries
and model forcings. The ensemble model outputs are further
utilized in the analysis of uncertainties in temporal, spatial
scales as well as along vertical gradients. We use several freely
available python libraries for the data processing, analysis,
plotting and mapping.

Verification Measures
Several verification measures are available to assess various
statistical attributes associated with both deterministic and
probabilistic simulations. In this paper, we used the measures
proposed by Mészáros and El Serafy (2018), listed in Table 2.
When the deterministic verification measures are to be used to
assess ensemble simulations, one single plausible trace needs to
be chosen from ensembles. In the study we chose the ensemble
mean for the verification. The ensemble simulation results were
also verified using probabilistic verification measures mentioned
in Table 2. The probabilistic verification measures employed are
Brier Score (Brier, 1950), Continuously Ranked Probability Score
(Bröcker, 2012) and Receiver Operating Characteristics (ROC)
curve (Hanley and McNeil, 1982).

Uncertainty Analysis
The ensemble model outputs of SWTs need to be further
processed using statistical methods to estimate the uncertainty.
The most commonly used are ensemble spread and exceedance
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TABLE 2 | Deterministic and probabilistic verification measures and formulae (f and o represent the model output and observed values respectively).

Deterministic verification measures Formulae Perfect score

Index of Agreement (IoA) d = 1−
∑n

i=1(fi − oi)
2∑n

i=1(|fi − o| + |oi − o|)2
(2) 1

Mean Absolute Error (MAE) MAE =
1
n

n∑
i=1

|fi − oi | (3) 0

Root Mean Squared Error (RMSE) RMSE =

√√√√ 1
n

n∑
i=1

(fi − oi)
2 (4) 0

Coefficient of Determination (CoD) r2
=

[covariance (f, o)]2

[variance (f)] ∗ [variance (o)]
(5) 1

Nash-Sutcliffe Efficiency (NSE) NSE = 1−
∑n

i=1(fi − oi)
2∑n

i=1(oi − o)2
(6) 1

Probability of Detection (POD)/ True positive rate POD =
hits

hits+misses
(7) 1

False Alarm Ratio (FAR) FAR =
false alarms

false alarms+ hits
(8) 0

Probabilistic verification measures

Brier Score (BS) BS =
1
n

n∑
i=1

(fi − oi)
2 where f = [0,1], o = 0 or 1 (9) 0

Continuous Ranked Probability Score (CRPS)
CRPS =

∫
∞

−∞

[P(x)− Pa(x)]2dx

where P and Pa are cummulative distribution
(10)

P(x) =

∫ x

−∞

p(y)dy (11) 0

Pa(x) = H(x − xa);H(x) =

 0 for x < 0

1 for x ≥ 0

 (12)

Receiver Operating Characteristics (ROC) curve Plot POD (y-axis) against POFD (x-axis) (13) High POD and low POFD

POFD =
false alarms

false alarms+ correct negatives

TABLE 3 | Results of verification measures for deterministic SWT and ensemble mean SWT.

Deterministic Ensemble mean

Verification measures Ortholithi Ovrios Ortholithi Ovrios Perfect score

Index of agreement [–] 0.993 0.985 0.992 0.984 1

Mean absolute error [◦C] 0.561 0.904 0.628 0.880 0

Root mean squared error [◦C] 0.729 1.088 0.626 1.277 0

Coefficient of determination [–] 0.973 0.947 0.968 0.943 1

Nash-Sutcliffe Efficiency [–] 0.973 0.947 0.968 0.943 1

probabilities. For these statistical analyses to be performed,
the distribution of the dataset must be known or assumed.
Normal distribution is usually associated with water temperature
and therefore was used in this study (Gneiting et al., 2005).
Uncertainty was analyzed using ensemble spread which is the
representation of the ensemble members in-terms of their mean
(µ) and standard deviation (σ). In practice, ensemble spread is
presented by using µ± σ, µ± 2σ, µ± 3σ, etc.

Probability of exceedance (POE) takes probabilities of the
occurrence of a defined event into account and is measured for
a threshold value of interest. While analyzing the probabilities we
focused on two thermal limits. Based on literature the upper and

lower limits of SWT were considered as 26◦C and 15◦C (Mayer
et al., 2008; Ibarz et al., 2010; Llorente and Luna, 2013; Balbuena-
Pecino et al., 2019). Various studies specify varying thresholds
for seabream. This is because some studies are laboratory based
and some are field based studies. The process of arriving at POE
involves defining Probability Density Function (PDF) f(x) and its
Cumulative Distribution Function (CDF) F(x). From the CDF,
for any given threshold value on x axis, corresponding y value
gives probability of non-exceedance (p), from which one could
estimate the probability of exceedance (1–p). These values of
p and (1–p) are computed for both spatial maps and vertical
temperature gradient maps.
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For the uncertainty analysis in the spatial and vertical gradient,
we focused on two seasons only. The months of February, March
and April are considered the winter season in terms of the lower
range of SWT, while the summer season can be attributed to
the months of July, August and September. We are interested
in the extreme SWT which occur in the months of March and
August. These months are focus of the uncertainty analysis in the
study. For simplification, we analyze the spatial and vertical scale
uncertainty for the year 2017 only.

RESULTS

Deterministic Model Results
Deterministic model results were obtained for seawater level
(SWL) and seawater temperature (SWT). These results were
further analyzed using verification measures listed in Table 2. The
SWT model result was obtained at a temporal resolution of 1 h.
In contrary the observation values of SWT were daily average
measured three times between 8 AM and 4 PM. Therefore, the
SWT model output was also taken as daily average between
this time bracket of each day. The SWL simulation for the year
2018 was verified with deterministic verification measures. While
overall range of SWL was 0.3 m to −0.3 m, the MAE and
RMSE were considerably low at 0.057 and 0.070 m respectively.
We accepted the moderate performance of the model for SWL

as this was not having a major impact on the temperature
model. The temperature model of DFM is a function of the
atmospheric forcing such as solar radiation influx, wind speed,
evaporation, etc.

Seawater Temperature (SWT) Simulation
Seawater temperature was simulated for 3 years from 2016 to
2018 for both stations - Ortholithi and Ovrios (Figure 7). In
the figure, the observation value and simulated SWT (average
value between 8 AM and 4 PM) are compared (Figure 7). The
deterministic model performance was evaluated with verification
measures listed in Table 2. The result of the verification measures
is provided in Table 3. While the overall range of SWT is
14 – 28◦C the errors are less than ∼1◦C (Table 3). Other
measures such as IoA, CoD and NSE yield values close to perfect
score of 1. These values obtained from verification measures
indicate that SWT results are satisfactory. There is a general
agreement between the observed and simulated SWT, except for
the year 2018 where the simulated values were slightly lower than
observed values and the simulated yearly peak was reached few
days earlier than observed values. This slight difference could
be attributed to measurement errors or temporal changes in
the model parameters which is not incorporated in the present
study or lack of resolution in the input atmospheric forcing
data. These data used in the model are coarser and therefore
might not be accurate reflection of the actual atmospheric

FIGURE 4 | Ensemble mean and ensemble spread of SWT with two aquaculture farms marked – Ortholithi (Green dot) and Ovrios (Magenta dot) (A) monthly mean
March 2017, (B) 3 standard deviations (σ) March 2017, (C) monthly mean August 2017, and (D) 3σ August 2017.
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FIGURE 5 | Ensemble mean and ensemble spread of vertical SWT (A) Mean – Ortholithi March 2017, (B) 3 standard deviations (σ) – Ortholithi March 2017,
(C) Mean – Ovrios March 2017, (D) 3σ – Ovrios March 2017, (E) Mean – Ortholithi August 2017, (F) 3σ – Ortholithi August 2017, (G) Mean – Ovrios August 2017,
and (H) 3σ – Ovrios August 2017.

condition at site. The exact reason for the difference in 2018
needs further investigation, nevertheless, under current study it
was not undertaken as this phase difference had little effect on
seasonal analysis.

Ensemble Model Results
The ensemble SWT results for both observation sites were
extracted in time series values. The performance of the ensemble
model runs were evaluated using deterministic verification
measures. For this purpose, a single trace of the ensemble runs

needed to be selected for comparing with observed data. Instead
of choosing one of the 10 members, we considered the mean of
all 10 ensemble members. The evaluated verification measures
are presented in Table 3. The error values calculated by MAE
and RMSE are ∼0.6◦C (Table 3). This is in comparison to
the overall SWT range of 14 – 28◦C was considered to be
low. The error in SWT for both the stations shows similar
trends, except for the initial 3–4 months when the model is
in the initial spin-off period. The highest error is seen in the
summer months of the year 2018 where model prediction is
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lower than the observation yielding negative error values. We
also see a near perfect score values for IoA, CoD, and NSE,
indicating at satisfactory model result (Table 3). Overall the
performance of the model is better at Ortholithi compared to
that of Ovrios. The reason could be that the available observed
SWT values at Ovrios was coarser. These results are comparable
to that of deterministic models (Table 3). We do not see any
major improvement or decline between the two model results.
Nevertheless, we can certainly quantify the uncertainties from
ensemble results and provide probabilistic analysis of SWT both
in spatial and vertical scales.

Ensemble model results were also spatially analyzed. The
ensemble mean of SWT and ensemble spread in terms of 3σ

maps were prepared for months of March and August for
the year 2017 (Figure 4). It is apparent that the two gulf
areas show different temperature behavior compared to the
larger open sea (Figures 4A,C). This is most likely due to
ease of heating or cooling of the water at shallow depths and
lack of ocean circulations reaching the two gulf areas. During
March (winter), Saronic Gulf show larger ensemble spread as
compared to the Argolic Gulf. However, in August (summer),
it is vice versa (Figures 4B,D). Such seasonal variation in
ensemble spread could be a function of seasonal variability in
the ensemble members of atmospheric forcings. This requires
a further seasonal analysis of the atmospheric forcing data
itself. However, the varying rates of mixing caused by varying
levels of salinity or the currents can’t be ruled out. Vertical
temperature gradient and vertical ensemble spread maps are
shown in Figure 5. These are generated using model output
at single computational cells for each month at the location
of two farms. Winter months show clear mixing of water
within 14◦C – 16◦C for entire depth with daily heating and
cooling within the top 10 m (Figures 5A,C). In summer
water column is thermally stratified. The top 20 – 30 m
depth heats up to the temperature of 27◦C in Ortholithi
station (Figure 5E). For the same depth SWT is 25.5◦C in
Ovrios station (Figure 5G). From the ensemble spread maps,
it is evident that errors are high in summer as compared to
winter at both stations (Figure 5B,D,F,H). It can be associated
with higher rate of turbulence in the season or other ocean
variables such as salinity, currents causing the varying rates
of mixing. The exact cause for temporal, spatial and vertical
scale variations in the ensemble spread need further detailed
study with other ocean variables such as – salinity, currents
and turbulences.

Probabilistic Verification Measures
We performed previously explained probabilistic verification
measures to assess the performance of the ensemble simulations.
For this purpose, we used Brier Score (BS), Continuous
Ranked Probability Score (CRPS) and Receiver Operating
Characteristics (ROC) curve. Two stations Ortholithi and Ovrios
were individually assessed for the probabilistic verification
measures for all the 3 years of simulation – 2016–2018. For
both BS and CRPS we used two different threshold temperatures
to assess the values. The lower temperature threshold of 15◦C
and an upper threshold of 26◦C was used. In case of the lower

threshold, the criteria of assessment were to verify if the model
simulation predicted the temperatures ≤ 15◦C when observed
temperature was ≤15◦C. In case of the upper threshold, the
criteria of assessment were to verify if the model simulation
predicted the temperatures ≥ 26◦C when observed temperatures
were ≥26◦C.

Based on both BS and CRPS results the ensemble model
performance was better in predicting the upper limit temperature
than lower limit temperature. In general, the performance
of the model was better at the station Ortholithi both
in the prediction of lower and upper limit temperatures
(Table 4). Large difference in CRPS value was seen in Ovrios
for 15◦C threshold. Ensemble model performed better in
this case. On the other hand, slight decline in ensemble
performance was noted in Ovrios for 26◦C threshold. Ortholithi
showed slight improvement in ensemble performance for 26◦C
threshold. At the same time, no significant difference for 15◦C
threshold was noticed.

Receiver operating characteristics curve plots the true positive
rate against the false-negative rate, which are essentially
comparing the model result and observed data. A perfect
prediction is one that shows a high true positive rate and a low
false negative rate. Therefore, the perfect prediction results in the
ROC curve on the upper left side of the diagonal line. Among
all the plots, the one for non-exceedance of 15◦C at Ortholithi
performed poorly (Figure 6A). This ROC curve was over the
diagonal line indicating poor ability to distinguish between events
and non-events. However, at the same time, Ortholithi station
showed higher performance in predicting exceedance of 26◦C
(Figure 6C). Both the models showed good ability to distinguish
between events and non-events for the Ovrios station for
both thresholds (Figures 6B,D). Except for the 26◦C threshold
at Ovrios, all other cases showed improved performance of
the ensemble simulation compared to deterministic models.
This result was consistent with the CRPS scores, where the
deterministic model outperformed the ensemble model for the
26◦C threshold at Ovrios station.

Uncertainty Analysis
Ensemble spread plots were prepared by plotting mean
(µ) ± standard deviations (σ) for each time step. In Figure 7,
µ ± σ, µ ± 2 σ, and µ ± 3 σ are shown. From
these plots, it may be observed that the uncertainty in the
SWT shows a seasonal trend. Uncertainty was comparatively
high during the summer months of July, August, and
September. Overall the ensemble spread was narrow within∼1◦C
uncertainty range. This range of spread was low indicating that
atmospheric ensembles had very limited influences on the SWT
simulation.

Probability of exceedance and non-exceedance were evaluated
spatially over the entire model domain for the representative
months, March and August according to the method specified
in section “Uncertainty analysis.” When dealing with a lower
thermal limit of 15◦C, the probability of non-exceedance was
applied. When dealing with the upper thermal limits of 26◦C,
the probability of exceedance was applied. These maps show the
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TABLE 4 | Brier score and Continuous Ranked Probability Score (CRPS) values computed for two stations.

Brier score values (Perfect Score = 0) CRPS values (Perfect Score = 0)

Ensemble Deterministic Ensemble Deterministic

Threshold temperature Ortholithi Ovrios Ortholithi Ovrios Ortholithi Ovrios Ortholithi Ovrios

15◦C 0.0907 0.1475 – – 0.0895 0.1462 0.0872 0.2174

26◦C 0.0443 0.1001 – – 0.0456 0.0984 0.0624 0.0734

FIGURE 6 | Receiver operating characteristics (ROC) curves for two stations (A) 15◦C threshold – Ortholithi, (B) 15◦C threshold – Ovrios, (C) 26◦C threshold –
Ortholithi, (D) 26◦C threshold – Ovrios. The dashed line represent the 1:1 line.

variability of the probabilities in the spatial scale. From maps
in Figure 8, we note that, the probability of non-exceedance of
the lower threshold temperature is greater in the Saronic Gulf
than in the Argolic Gulf (Figure 8A). Both the gulf areas show
a high probability of exceeding the upper threshold temperature
(Figure 8B).

Probability of exceedance and non-exceedance were evaluated
over water depths at two stations to understand the vertical

behavior of the probabilities. At Ortholithi, probability of non-
exceedance of 15◦C in the month of March was high only for
10 days in the month and occurred in daily cycles (Figure 9A).
There was a high probability of exceeding the 26◦C threshold
in the upper 20 m depth in the month of August (Figure 9B).
The stratification that is observed in the summer month is
replaced by mixed water resulting in a fluctuating probability
of non-exceedance of lower limit temperature. At Ovrios,
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FIGURE 7 | Ensemble spread of SWT simulation for (A) Ortholithi (B) Ovrios together with observations and deterministic simulation.

FIGURE 8 | Spatial maps of probability of (A) non-exceedance of 15◦C – March 2017 (B) exceedance of 26◦C – August 2017.

the probability of non-exceedance of the 15◦C threshold was
uninterrupted for whole month of March (Figure 9C). The
probability of exceeding 26◦C is high for about 10 – 20 m
depth which is regularly interrupted by the lower probability of
exceedance (Figure 9D).

It is important to note that these probabilities are not
compared to the observed values. We already noted that many of
the observed values fall outside the ensemble spread (Figure 7).
The time series comparison are only made at two observation
locations at surface and therefore have limitation in representing
the whole model domain and the model depth. The spatial and
vertical scale probabilities reveal the regions and depths that are
susceptible to be in thermal limits. Therefore these information
are still relevant in operational planning in aquaculture farms.

DISCUSSION

In the study, we demonstrated an ensemble modeling of
SWT and in principle, this study may be replicated to any
geographical location. The data sets that are used are freely
available making model development possible. The combination
of DFM modeling tool along with CMEMS boundary conditions,
ERA5 atmospheric forcing fields and GEBCO bathymetry was
adopted in this study. The use of coarser global CMEMS data
yields satisfactory results. This also widens scopes for using
higher resolution regional data sets of CMEMS in further studies.
In the study we utilized the 10 member atmospheric forcing fields
of ERA5 with each member consisting of four variables – 2 m air
temperature, 2 m dew point temperature, 10 m wind speed and
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FIGURE 9 | Vertical plots of probability of (A) non-exceedance of 15◦C at Ortholithi – March 2017, (B) exceedance of 26◦C at Ortholithi – August 2017, (C)
non-exceedance of 15◦C at Ovrios – March 2017, and (D) exceedance of 26◦C at Ovrios – August 2017.

cloud cover. This yielded a narrow ensemble spread with some of
the observation data outside the ensemble spread.

We performed the deterministic verification measure such
IoA, MAE, RMSE, CoD and NSE for the two stations. From
the results, we did not see a significant improvement in
the ensemble predictions as compared to the deterministic
predictions. However, the probabilistic verifications of CRPS
and ROC curves show that ensemble model provides slightly
better threshold predictions of thermal limits than a deterministic
prediction. This is true for all cases except for the 26◦C threshold
at Ovrios.

Atmospheric forcing fields did not result in larger ensemble
spread. Some of the extreme SWT values are outside the bounds
of ensemble spread. Also the trend in the observed SWT in the
year 2018 is not reflected in both the model results. The study
attempted to quantify the uncertainty from single source, i.e.,
atmospheric forcing. However, there is need to include other
sources of uncertainties such as model parameter uncertainty.
From the investigation into the temperature model of DFM,
it is noted that the parameters such as secchi depth (SD) –
a measurement of water transparency, eddy diffusivity and
eddy viscosity terms could be potential candidates for further
investigation into model parameter uncertainty. The absorption
of heat in the water column is an exponential function of the
distance from the water surface, which is largely controlled by the
parameter SD. SD is relatively simpler technique of measuring
the transparency of water column. A circular disk attached to
rope is dropped in water column and depth at which it is no
longer visible to naked eye is measured as SD. Evidently, higher
the value of SD, higher is the transparency of water. This means,
more solar radiation can reach the deeper waters. However, true
value of the parameter is not available for part of the Aegean
Sea. In this study, we used 10 m secchi depth value. Further
uncertainty arising from the SD needs to be quantified with

varying SD values. Similarly, parameters such as eddy diffusivity
and eddy viscosity play crucial role in the turbulence model used
in the numerical setup. In the current study we employed k-ε
turbulence model, which takes both turbulent kinetic energy (k)
and turbulent dissipation rate (ε) into account. These parameters
determines the mixing of water under turbulent condition and
therefore control the temperature fluctuations both in horizontal
and vertical scales. Further uncertainty quantification need to be
conducted for these parameters. Most reliable course of action for
the future studies is to quantify the uncertainties arising from the
model parameters.

We noted that there were regions within the model domain
which showed consistent probabilities for upper and lower
thermal thresholds. Furthermore, we observed that both the gulf
areas showed a high probability of exceeding the upper limit,
while the probability of non-exceedance of the lower limit was
greater in the Saronic Gulf than in the Argolic Gulf. Ortholithi
station did not exhibit high non-exceedance probability for 15◦C,
contrary to Ovrios station which showed high non-exceedance
probability for 15◦C, with daily interruptions of low probability.
Therefore, Ovrios station is more susceptible to the lower thermal
limits than Ortholithi station during winter. Analysis of vertical
gradient of the temperature and its probabilities reveal that in
summer seasons there is a clear stratification of water with high
probabilities of exceeding upper thermal limit at top ∼20 m
depth. Therefore, the existing cage depth of 10 m at two stations
are not sufficiently deep to offer comfortable SWT for fishes
in summer. This is also useful while developing new cages
in the region. The thermal stratification is replaced by mixed
water in the winter season. This resulted in entire column of
water showing homogenized water temperature. Such a scenario
gives no scope for changes in depth of the cage. Therefore,
different operational change needs to be followed, for example
change in the diet plan or feeding rate to suit SWT. These
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information is particularly important for establishment of new
farms in the region. Farmers could make use of the established
regional behavior to select areas of suitable SWT throughout
the year. The ability to distinguish differences in SWT behavior
in two Gulf areas is a useful mechanism in earmarking areas
of high potential for aquaculture farms. Such information is
useful for coastal development authorities in spatial planning.
However, in this study we used SWT information alone, more
comprehensive planning could be made by including other
ocean variables such as salinity, currents, dissolved oxygen, and
nutrient concentrations.

In the current study we used a uniform ∼1 km × 1 km
spatial resolution. With varying resolution of grid cells, where
finer cells are formed near the coasts, it is possible to investigate
the small scale SWT variations, caused by small scale turbulences.
However, the scope for a finer resolution model is limited
by the resolution of the input data, i.e., atmospheric forcings
and bathymetry. Unless these input data are available at finer
resolution, more resolved model grid would not improve the
model performance. Other ocean variables, i.e., salinity, currents,
dissolved oxygen, and nutrient concentrations are considered
to vary significantly within a small spatial scale depending on
sources and sinks. When these variables are to be considered,
finer grid needs to be employed. It should be noted that the
study deals with a coastal system, however, aquaculture sites are
established in coastal lagoons, estuaries and river delta around the
world for varying reasons. In such a scenario, input of freshwater,
sediment and high nutrient concentration is expected from land.
As we move from coastal systems to fluvial systems, the spatial
scale reduces. This demands finely refined model discretization
in order to capture the small scale fluctuations in the fluvial
systems. Moreover, boundary condition data from the fluvial
systems needs to be provided for better representation of the
natural phenomenon.

The simulation was performed for years from 2016 to 2018.
In this period three summers and two winter periods were
studied for uncertainty quantification. However, to understand
the long-term fluctuations in SWT, decadal model simulations
might be required. The validation of the model performance
was done at two stations for which data was secured from the
aquaculture farms. We successfully validate the model in spatial
and temporal scale. The lack of any monitoring stations with
access to vertical SWT data hinders vertical scale validation of
the model simulation. Remote sensing data both in spatial and
vertical scale is another possibility for model validation. This
would enable validation of the model in all three dimensions.
Therefore, validation of model with remote sensing data stands
as major work for future studies.

CONCLUSION

The aquaculture sector needs SWT information for crucial
operational decisions at the farms. Present ad hoc measurement
of SWT could only provide information for the present state of
the sea and could not give information on the harmful events
in future. We build on the existing knowledge on a specific
fish species and translate that knowledge for aiding decision

making using a numerical modeling tool. This study used
numerical modeling along with ensemble simulation of SWT to
provide uncertainty assessment to benefit the operations of the
aquaculture farms, which is presently not a common practice.
We successfully demonstrated modeling tool which simulates
the SWT with satisfactory results and accomplished to assess
SWT in temporal, seasonal as well as vertical scales from an
aquaculture perspective. Study demonstrated that information of
vertical behavior of the SWT is key for the aquaculture farms’
operations as it has shown different behavior in different regions
and seasons. These information are not possible to generate from
in-situ measurements alone. Study extends the data available
from larger open seas to the remote coastal areas where data is
required for the businesses. It is evident that more uncertainty
sources need to be further assessed in order to quantify the
total uncertainty in the SWT predictions. Authors recognize
that even though predicted SWT is useful in making decisions,
further value to the study could be added by combining SWT
prediction with fish physiology. Such a model links the water
quality variables such as SWT, salinity, nutrient concentrations,
etc., to the fish growth and subsequently to the economy of the
aquaculture farm.
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