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Arctic sea ice is shifting from a year-round to a seasonal sea ice cover. This substantial
transformation, via a reduction in Arctic sea ice extent and a thinning of its thickness,
influences the amount of light entering the upper ocean. This in turn impacts under-
ice algal growth and associated ecosystem dynamics. Field campaigns have provided
valuable insights as to how snow and ice properties impact light penetration at fixed
locations in the Arctic, but to understand the spatial variability in the under-ice light
field there is a need to scale up to the pan-Arctic level. Combining information from
satellites with state-of-the-art parameterizations is one means to achieve this. This study
combines satellite and modeled data products to map under-ice light on a monthly
time-scale from 2011 through 2018. Key limitations pertain to the availability of satellite-
derived sea ice thickness, which for radar altimetry, is only available during the sea ice
growth season. We clearly show that year-to-year variability in snow depth, along with
the fraction of thin ice, plays a key role in how much light enters the Arctic Ocean. This
is particularly significant in April, which in some regions, coincides with the beginning
of the under-ice algal bloom, whereas we find that ice thickness is the main driver of
under-ice light availability at the end of the melt season in October. The extension to the
melt season due to a warmer Arctic means that snow accumulation has reduced, which
is leading to positive trends in light transmission through snow. This, combined with a
thinner ice cover, should lead to increased under-ice PAR also in the summer months.

Keywords: sea ice, under-ice light, ocean primary productivity, Arctic, marine ecosystems

INTRODUCTION

The Arctic is undergoing a period of profound transformation in response to anthropogenic
warming, with the loss of the sea ice cover one of its starkest changes. Since the late 1970s, the
summer ice cover has shrunk in area by 40%, whereas changes in winter have been much smaller, on
the order of 10%. This loss in sea ice area has been accompanied by loss of the thick multiyear sea ice,
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which today makes up only 30% of the Arctic Ocean sea ice
compared to 70% 40 years ago (Maslanik et al., 2011; Stroeve
and Notz, 2018). These changes reflect thinning of the ice cover,
which has thinned over the central Arctic basin by 65% since
1975 (Lindsay and Schweiger, 2015). While the 2012 sea ice extent
minimum was striking, variability is increasing, in relation to a
thinning ice cover (Goosse et al., 2009) and recent departures
from average conditions during the transition seasons have
become even more anomalous than in summer: Arctic sea ice
extent (defined as the area with at least 15% sea ice concentration,
SIC) in May and November 2016 fell nearly 4 standard deviations
below the 1981–2010 long-term average (Stroeve and Notz,
2018). This represents a distinct change in the seasonality of
the Arctic Ocean as the melt onset is happening earlier and the
fall freeze-up later (Stroeve et al., 2014; Stroeve and Notz, 2018;
Lebrun, 2019).

Shortwave radiation, and its visible fraction in particular,
provides an essential control on the Arctic surface energy
budget (Maykut, 1986; Perovich et al., 2007) and on microbial
ecosystems (Wassmann and Reigstad, 2011). In addition, light
transmitted under sea ice warms the upper ocean and in turn
drives basal sea ice melt (e.g., Maykut and McPhee, 1995; Vivier
et al., 2016).

In regards to ecosystems, light is the main energy source for
the development of phytoplankton and sea ice algae. Together sea
ice algae and phytoplankton form the base of the Arctic marine
food web, sustaining directly sea ice associated macrofaunal
and pelagic zooplankton (Kohlbach et al., 2016, 2017). The
sea ice scape greatly affects the amount of light reaching
the upper ocean. Sea ice and especially its snow cover are
excellent reflectors, whereas melt ponds and open water within
the pack effectively act as windows, increasing light supply
to the surface ocean (Frey et al., 2011; Assmy et al., 2017).
In turn, sea ice drastically attenuates light reaching the ocean
surface, which would reduce the depth over which waters are
biologically productive (Sverdrup, 1953; Horvat et al., 2017). On
the other hand, the ice underside provides a highly variable and
heterogeneous habitat for different ice-associated macrofaunal
as well as certain zooplankton whose vertical migration is often
triggered by food availability and periodic changes in light
availability (e.g., Berge et al., 2014).

As the winter ends and the sun returns above the horizon
again, light is the major factor controlling algal growth onset
(Castellani et al., 2017) and production (Horner and Schrader,
1982). Ice algae are able to take advantage of low under-ice
photosynthetic active radiation (PAR) levels during this time of
year (Mock and Gradinger, 1999) at sites with a relatively low
snow depth cover. Snow distribution in spring (March–April–
May) is thus the major physical driver of ice algae phenology,
and changes in sea ice and snow scape are expected to affect
both phytoplankton and ice algal activity. The clearest example
is provided by earlier ice retreat and delays in freeze-up, which
have cascading impacts on light availability. For one, earlier melt
onset allows light to enter the Arctic Ocean earlier and closer to
the summer solstice than it used to, whereas delays in freeze-up
have extended the light season into early winter, leading to visible
Arctic planktonic activity earlier in spring and later into fall

(Arrigo and van Dijken, 2011; Ardyna et al., 2014). The extended
open water season not only increases the coupling between the
ocean and the atmosphere, but additionally reduces the amount
of time over which snow can accumulate on the sea ice (Webster
et al., 2014; Stroeve et al., 2020). Other expected changes in
sea ice scape, such as melt pond fraction and depth, currently
challenging to detect (Zhang et al., 2018), would also influence
marine autotrophs in polar seas in summer. Together these
changes have important implications for the in-ice and under-
ice biota, influencing light availability, ocean properties, and the
timing of sea ice algae and phytoplankton blooms (Bluhm et al.,
2017). These changes in sea ice scape are also accompanied by
stratification and circulation changes, which also affect under-ice
plankton activity, via the modulation of nutrient fluxes, critical
to the total possible photosynthesis over the year (Vancoppenolle
et al., 2013; Randelhoff et al., 2020). In other words, changes in
the sea ice and snow characteristics alters phenology of primary
productivity in the Arctic Ocean.

However, our understanding of how this sea ice changes
impact primary productivity is still in its infancy. Our
understanding of ecosystem function, sea ice, and upper ocean
processes in the Arctic Ocean has been mostly derived from
a multiyear ice setting, rather than the thinner first-year ice
dominated Arctic of recent years. As a result, our current climate
models use formulations of light transmission through sea ice
in large part based on parameterizations for multiyear sea ice
(e.g., Grenfell and Maykut, 1977; Fichefet and Morales Maqueda,
1997; Perovich et al., 2002; Briegleb and Light, 2007). Recent
observations have shown that the transition from a multiyear to
first-year ice-dominated Arctic Ocean has increased the amount
of light reaching the upper ocean, with a threefold increase in
light transmittance (Nicolaus et al., 2012). This was primarily a
result from increased melt pond fraction over first-year sea ice
compared to multiyear ice. Nicolaus et al. (2012) also found that
energy absorption in first-year ice was 50% larger.

Quantifying the availability of light under the ice is key
if we are to better understand how primary productivity
functions in today’s Arctic, and how it may change in the
future. Specifically, we need to better quantify the availability
of PAR (400–700 nm) under the ice, and how this affects
ecosystem function. This requires improved parameterizations
of the light climate under an Arctic Ocean dominated by first-
year sea ice with reduced winter snow cover and increased
melt pond fraction in summer. The most comprehensive set of
measurements from six years of in situ observations from spring
to autumn were recently published by Katlein et al. (2019). These
data, while still somewhat limited in both space and time, are
improving our ability to derive robust relationships between ice
conditions (e.g., thickness, melt pond fraction, snow depth) and
light transmission.

To scale up to the pan-Arctic level, we must rely on satellite
observations and model-produced data sets of the key system
controls. Satellites provide several sea ice variables needed to
quantify under-ice light, including (a) surface albedo, (b) melt
pond fraction, (c) timing of melt onset, (d) SIC, (e) sea ice
thickness (SIT), and (f) surface topography. A key limitation
has been the snow depth on sea ice, which has generally been
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poorly mapped with satellites. This is particularly important
before the melt season starts because snow depth plays a larger
role than ice thickness in limiting light availability under the ice
(e.g., Mundy et al., 2005). Nevertheless, several recent advances
in modeling snow accumulation over sea ice have been made,
using a combination of modeling with atmospheric reanalyses
and satellite drift datasets (e.g., Blanchard-Wrigglesworth et al.,
2018; Petty et al., 2018; Liston et al., 2020), as well as
combining dual radar frequencies from satellite altimeters (e.g.,
Lawrence et al., 2018).

Another key limitation is the lack of ice thickness information
in summer, as well as the temporal and spatial coverage during
winter. Prior to the launch of ICESat-2, pan-Arctic SIT has
mostly been monitored using satellite radar altimeter missions
that span 1993 through present. These have been obtained at
various temporal and spatial resolutions, but are entirely limited
to the cold (non-melt) season (i.e., October through April). Since
2010, CryoSat-2 has provided monthly pan-Arctic SIT estimates
(e.g., Laxon et al., 2013; Tilling et al., 2018). With the launch
of ICESat-2 in September 2018, SIT may potentially also be
retrieved in summer. Further, the combination of ICESat-2 and
CryoSat-2 freeboards may give a direct estimate of snow depth
(Kwok and Markus, 2018), but this strongly depends on the
location of the dominant scattering horizon of CryoSat-2, which
is unlikely to be from the snow/ice interface (e.g., Willatt et al.,
2011). Other important sea ice features for quantifying light
availability under the ice include (1) melt ponds, (2) ridges,
and (3) leads. Each of these have been mapped using satellites
with either limited success in the case of melt ponds (Tschudi
et al., 2008; Rösel and Kaleschke, 2012; Scharien et al., 2017;
Yackel et al., 2018), or not mapped over large spatial and long
temporal scales in the case of leads (e.g., Eicken et al., 2006;
Zakharova et al., 2015; Willmes and Heinemann, 2016; Lewis
and Hutchings, 2019), and while surface roughness has been
detected (e.g., Landy et al., 2015; Petty et al., 2016; Nolin and
Mar, 2019), ridge height has yet to be retrieved from satellites.
Nevertheless, ridged ice can be important biological hotspots
(e.g., Fernández-Méndez et al., 2018).

Given that current uncertainties in the light limitation
level (Popova et al., 2010), as well as nutrient uncertainties
undermine confidence in primary production for the 21st century
(Vancoppenolle et al., 2013), progress is needed on all fronts.
This paper focuses on our capabilities for mapping light between
400 and 700 nm under ice with currently available satellite-
derived products and state-of-the art light parameterizations,
and suggests ways forward to fill important gaps to improve
our understanding on how light transmission is changing in a
changing sea ice environment. Given the limitations with today’s
satellite products on a pan-Arctic scale, we are presently restricted
to monthly means over the October to April time-period. Because
of these inherent difficulties, we focus here on the CryoSat-2
time period (October to April, 2010 to 2018), and examine how
accurately we can estimate under-ice light fields in a relevant
manner for physical and ecosystem studies at the pan-Arctic
scale. Prior to the melt season, snow depth will play the dominant
role in limiting light entering the upper ocean (e.g., Katlein et al.,
2019), and thus the focus is largely on how snow variability and

change impact under-ice light levels. We further extend our time-
period to May and July to examine how snow depth trends impact
light transmission through snow as the snowpack begins to melt.

METHODOLOGY AND APPROACH

Solar Transmission Calculations
To map the under-ice light with the satellite products, we rely
on a generalization of the approach proposed by Maykut and
Untersteiner (1971) and Grenfell and Maykut (1977), based on
a specification of apparent optical properties (AOPs), namely
surface albedo (α) and vertical attenuation coefficients (κ),
assuming a two-level Beer–Lambert exponential decay in the
snow-ice system. This approach considers that the snow-ice
system is comprised of two layers, which absorb most of the
radiation, the so-called single scattering layer (SSL), and a lower
layer, where, to a first approximation, the attenuation of light
follows the Beer–Lambert Law (e.g., Maykut and Untersteiner,
1971). While the details of the formation of the SSL are not well
known, it is observed to persist widely across melting sea ice
(Untersteiner, 1961; Perovich et al., 2002; Light et al., 2015) and is
thus assumed to form due to surface melting, with a thickness in
the range of 1–10 cm (Light et al., 2008). Alternative approaches
have also used three layers, by separating the sea ice column
below the SSL into a ‘drained layer’ (DL), and one that is under
the waterline (Light et al., 2015, see also section Appropriateness
of Methodology).

Below, we model the snow-ice system as consisting of a series
of 3 (2) layers, if snow is present (absent). On top of the system,
we assume a thin, optically defined near-surface highly scattering
layer (SSL) of thickness ho. Below the SSL, the remaining energy is
absorbed according to the Beer–Lambert Law in the remainder of
the snow (if any) and ice. The absorption of radiation in the SSL is
described by the surface transmission parameter (io) (Maykut and
Untersteiner, 1971; Grenfell and Maykut, 1977; Light et al., 2008).

The original parameterization of Maykut and Untersteiner
(1971) considers a single surface type. Here we expand this
formulation to incorporate various surface types in a single
satellite pixel. To accomplish this, we express the transmitted,
broadband irradiance (Ft , W m−2) available at the ocean-sea ice
interface, as a function of the downwelling solar irradiance at
the atmosphere-ice interface (Fo, W m−2), assuming a mix of
n sea ice/snow/water types over the satellite pixel as a sum of
the area fractions (Aj) of each ice type multiplied by the model-
computed transmittance (Tj) (ratio of transmitted over incoming
irradiance):

Ft = F0

n∑
j=1

TjAj (1)

For open water (e.g., leads), the transmittance is Tw = (1-αw),
where the albedo of open water (αw) is typically around 0.07
(Pegau and Paulson, 2001). For other sea ice types, we use the
two-level Beer–Lambert approach. In this context, for snow-
covered sea ice, transmittance (Ts) reads:

Ts = io,s(1− αs)e[−ks(hs−ho)]e[−kihi] (2)
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where hs is the snow depth and hi is the ice thickness. Similarly,
for bare ice the transmittance (Ti) is:

Ti = io,i(1− αi)e[−ki(hi−ho)] (3)

Finally, through melt ponds, we get:

Tp = io,p(1− αp)e[−kihi] (4)

where α is the albedo, k is the attenuation coefficient, and io and
ho correspond to the transmission parameter and thickness of the
surface scattering layer that forms on top of snow, if present, or
ice (if no snow is present).

Another difference from the original approach of Maykut
and Untersteiner (1971) is that we use coefficients that were
optimized based on observation-based transmittance data, over
the entire shortwave range (0.2–4.0 µm). More precisely, the
coefficients used in equations 1–4 were adjusted (Lebrun, 2019)
using the GreenEdge dataset (Oziel et al., 2019; Randelhoff et al.,
2019; Massicotte et al., 2019a). The GreenEdge field activities
took place in 2015 and 2016 within a seasonal ice environment,
and were focused on plankton and marine biogeochemistry in
Baffin Bay. Two land-fast sea ice camps were set from April to
July 2015/2016 near Qikiqtarjuaq Island on the west coast of
Baffin Bay. A cruise onboard the CCGS Amundsen across the
pack ice edge occurred in June-July 2016 in Baffin Bay. Two
hundred and fifty eight combined observations of fast and pack
ice thickness, snow depth, melt pond coverage, and above- and
under-ice spectral irradiance, were retained and processed to
adjust the parameter values summarized in Table 1. Adjustment
was made in order to achieve a reasonable match between
observed and retrieved shortwave transmittance (Figure 1),
keeping the parameters within the uncertainty range, based
on available observational studies (Perovich and Gow, 1996;
Light et al., 2008; Järvinen and Leppäranta, 2011). As all Green
Edge observations were made in seasonal ice, the optimized
parameters have to be seen as representative of a first-year sea
ice environment. Overall, the retrieved and transmittance show
a reasonable match, but uncertainties remain large, especially
at low transmittance. Processing and analysis are detailed in
Lebrun (2019).

Note, for snow there are two values used, one for a dry
snowpack and one for a wet snowpack (i.e., melt has begun).
Note also that the thickness of the near-surface high scattering
layer is assumed as 3 cm for snow and 10 cm for ice. However,
the thickness of snow and ice can be less than these values.

TABLE 1 | Values of the parameters used in this study (based on adjustment to
Green Edge observations, see Lebrun, 2019).

Surface type io ho (m) K m−1

Water – 0.35 n.a.

Snow 0.30 0.03 10 (dry)/7 (wet)

Bare Ice 0.30 0.10 1.0

Melt Ponds 0.56 n.a. n.a.

io is the surface transmission, ho is the thickness of the medium and k is the
extinction coefficient.

FIGURE 1 | Calculated versus observed transmittance (T ), based on
environmental and optical observations from the Green Edge field operations
(two fast ice camps, one drift ice cruise in spring and summer 2015–2016,
N = 258; Oziel et al., 2019; Randelhoff et al., 2019). Observed transmittance
is the ratio of irradiance under sea ice to that above sea ice, both from
radiometers deployed in situ. Calculated transmittance derives from equations
1–4, using observed values of snow and ice thicknesses, air temperature and
melt pond coverage, and with input parameters from Table 1.

Observational evidence for attenuation in very thin snow and
ice is sparse. To regularize attenuation in very thin snow and
ice we assume it to be equivalent to the attenuation in the fully
developed near-surface high scattering layer (h0 = 0.03) but
reduced in proportion to the actual thickness.

Conversion From Solar Energy to Visible
Quanta
Photosynthesis estimates rely upon photon counts in the visible
wavelength range (QPAR, µE/m2/s, 0.4–0.7 µm) rather than upon
solar energy in the solar waveband (FSW , W/m2, 0.2–4 µm). Both
are tightly (practically linearly) related, hence the conversion
from one to another is straightforward and often used in Earth
System model applications. The relationship between QPAR and
FSW can be decomposed as follows: (1) the conversion from
solar to visible energy, (2) the conversion from energy to quanta.
Formally, one gets:

QPAR =
FPAR

FSW
·

QPAR

FPAR
· FSW (5)

where FPAR/FSW and QPAR/FPAR can practically be considered
as constants. Visible energy, visible quanta and shortwave energy

Frontiers in Marine Science | www.frontiersin.org 4 February 2021 | Volume 7 | Article 592337

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-592337 February 3, 2021 Time: 11:13 # 5

Stroeve et al. Light Under Sea Ice

fluxes are defined as (Morel and Smith, 1974):

FPAR =

∫ 700 nm

400 nm
Eλdλ (6)

FSW =

∫ 3000 nm

300 nm
Eλdλ (7)

QPAR =

∫ 700 nm

400 nm
Eλ

λ

hc
dλ (8)

In temperate marine environments, these relationships are
well constrained. The ratio of PAR to solar energy ranges
overFPAR/FSW = 0.45–0.50, according to simulations with a
radiative transfer model (Frouin and Pinker, 1995; Frouin and
Murakami, 2007). A classical value for the visible quanta-to-
energy ratio is QPAR/FPAR = 4.60± 0.03 J/µE (right under sea
surface) decreasing to an average 4.15 J/µE within interior waters,
based on a compilation of observations in temperate oceans
(Morel and Smith, 1974). Therefore, over the ice-free fraction of
the pixels, we use:

QPAR = 0.50× 4.60Ft (9)

In ice-covered environments, however, differences arise because
of the presence of sea ice. Indeed, both ratios depend on the
light spectral distribution, which is altered by snow and biogenic
particles in sea ice. GreenEdge data offers a means to evaluate
these relationships in ice-covered environments (Figure 2).
GreenEdge spectral irradiance (W/m2/nm) observations feature
19 channels, with 10 nm bandwidth. Raw data were interpolated
on 1-nm-wide bands, covering a reasonable part of the full
shortwave range (320–800 nm).

Under fast and pack ice environments, both relationships
(QPAR/FPAR, FPAR/FSW) are nearly perfectly linear (R2

= 0.999,
0.994). The quantum-energetic ratio is slightly smaller than for
ice-free waters: QPAR/FPAR = 4.44± 0.005µE/J. This is because
the spectrum is shifted toward blue / green wavelengths, where
photons are more energetic, hence one needs less photons per
unit energy. A much clearer difference is that the fraction of
energy in the visible is FPAR/FSW = 0.79± 0.003, i.e., much
larger than in ice-free waters, because of the strong attenuation
power of ice and snow for infrared radiation. Based on these
considerations, over the ice-covered fraction of the pixels
(regardless of the presence of snow or melt ponds), we use:

QPAR = 0.79× 4.44Ft (10)

Data Products
While several satellite-derived sea ice data sets now exist, many
do not cover a long time-period, or cover the pan-Arctic region.
In this paper we attempt to map light under the ice with currently
available state-of-the art light parameterizations and pan-Arctic
sea ice and snow products. Given the lack of pan-Arctic SIT
information in summer, an important caveat is that we remain
limited to the cold season and monthly means, while albedo,
snow depth and ice concentration are all available at higher
temporal resolution: daily to twice-daily time-steps. Further, pan-
Arctic ice thickness estimates are currently limited to monthly

means from satellites such as CryoSat-2. Finally, while some
limited estimates of lead fractions and surface roughness exist,
they are not available at the same temporal and spatial resolution
needed for this study. Thus, in our snow depth distributions
discussed below, we assume snow accumulated over level sea
ice, though snow is redistributed and sublimated with winds
(see Liston et al., 2020). The key data sets used are described
below and will provide information on snow depth, SIC, SIT,
surface albedo, incoming solar radiation and whether or not the
snowpack is wet or dry.

Albedo and Solar Radiation
Visible satellites have provided observations of visible reflectance
for several decades. A key sensor, the Advanced Very High
Resolution Radiometer (AVHRR) has flown on several NOAA
POES satellites, providing the potential to map surface albedo
as far back as October 1978. AVHRR carries one visible
channel, one near-infrared channel, one mid-infrared and two
thermal infrared channels, from which surface albedo and surface
temperature can be determined.

The AVHRR Polar Pathfinder Extended (APP-X) data set (Key
et al., 2019), produces twice-daily (ascending and descending
passes) estimates of broadband shortwave surface albedo for both
polar regions. Here we use the data corresponding to local time
of 14:00 GMT (ascending pass). While the surface can only be
viewed during clear-sky conditions, a cloud masking algorithm
and radiative transfer modeling is used to provide an all-sky
(e.g., clear or cloudy) albedo at every satellite pixel. Further, this
radiative transfer modeling is used to infer the daily averaged
incoming solar radiation at the ground. Early evaluation of the
data product was performed through comparisons with in situ
observations collected during the yearlong Surface Heat Budget
of the Arctic Ocean (SHEBA) experiment (Moritz et al., 1993).
Results were summarized by Key et al. (1997). In short, biases
with incoming solar radiation were on the order of 9.8 Wm−2,
whereas surface albedo comparisons revealed a bias of 0.028
for the all-sky albedo. Clear-sky albedo conditions had smaller
mean errors. While these errors were previously assessed, it is
likely that the bias in albedo is larger than what was reported
previously. Data for both variables are provided daily on a 25-km
equal-area (EASE) grid.

Sea Ice Concentration and Timing of Melt Onset
Since the late 1970s, there have been a series of multi-frequency
passive microwave sensors launched that today provide more
than 40 years of brightness temperatures that can be used to map
sea ice given the large dielectric contrast between open water and
ice. Starting with the launch of the Nimbus-7 SMMR instrument
in October 1978, and followed on with successive DMSP SSMI
instruments (since July 1987) there have been daily (twice daily
for SMMR) observations of the polar regions at a nominal
spatial resolution of 25 × 25 km2. While several algorithms
exist for retrieving SIC from these brightness temperatures (e.g.,
see Ivanova et al., 2015), we rely on the NASA Team sea ice
algorithm (Cavalieri et al., 1997). This algorithm is produced
in near-real-time by the National Snow and Ice Data Center
(Fetterer et al., 2017).
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FIGURE 2 | Observational constraints on the conversion from solar energy to visible quanta in ice-covered environments, based on spectral irradiance observations
collected in the framework of GreenEdge (GE) program (+), and as retrieved from linear fits (lines). The left panel depicts the relationship in the visible range between
quanta (QPAR) and energy (FPAR). The right panel depicts the relationship between energy in the visible range (FPAR) versus energy in the solar range (FSW ).
Observational values (+) are split between the two landfast sea ice camps in Qiqitarjuak (Qiq’15 and Qiq’16) and the drift ice cruise onboard the R/V Amundsen in
Baffin Bay (Amu’16). Linear fits use coefficients corresponding to observation-based values (linear regression coefficient and mean ratio) and to classically used
values, corresponding to open water situation (Morel and Smith, 1974, MS74; and Frouin and Pinker, 1995, FP95).

While the accuracy of the SICs is generally high during the
cold season, during summer its precision is downgraded due to
liquid melt water on the snow and/or ice surface that causes the
NASA Team algorithm to underestimate the true SIC as these
areas will be interpreted as open water. As we are currently
limited to the cold season because of the lack of SIT information
once melt begins, the choice of algorithm is less important.
Importantly, the sensitivity of the microwave emissivity to liquid
water in the snowpack provides a means to flag if the melt has
begun using the approach of Markus et al. (2009). Both the
melt onset and SIC data sets are provided on a 25-km Polar
Stereographic grid. All data sets are re-gridded to a 25-km equal
area (EASE) grid.

Snow Depth
Snow depth has not been routinely observed from satellites.
Some studies have relied upon passive microwave brightness
temperatures used in the SIC algorithms to detect snow depth
over first-year ice regions (e.g., Markus and Cavalieri, 1998;
Comiso et al., 2003), yet results yield unrealistic snow depths
in regions when snow melt has started and along the marginal
ice zone (Stroeve et al., 2020). Other efforts have involved
using atmospheric reanalysis data to model snow accumulation
over sea ice, using simple (e.g., Kwok and Cunningham, 2008;
Petty et al., 2018) to more sophisticated snow models (Liston
et al., 2018, 2020). These have been implemented in either a
Eulerian (Petty et al., 2018) or Langrangian framework (Kwok
and Cunningham, 2008; Liston et al., 2020; Stroeve et al., 2020).

In this study we rely on SnowModel-LG (Liston et al.,
2020) to generate snow-depth. SnowModel-LG is a spatially
distributed snow-evolution modeling system that has previously
been demonstrated to be capable of simulating high-resolution

snow accumulation around ridges and snow dunes (Liston et al.,
2018), and has recently been applied to map snow depth and
density on a pan-Arctic scale using satellite-derived ice motion
vectors in a Lagrangian framework (Liston et al., 2020; Stroeve
et al., 2020). In short, SnowModel-LG consists of 4 sub-models:

(1) EnBal (Liston, 1995; Liston et al., 1999) calculates surface
energy exchanges and snowmelt; (2) SnowPack-ML (Liston
and Hall, 1995; Liston and Mernild, 2012) is a multi-
layer snowpack model that simulates snow depth, density,
grain size, and habit (e.g., wind slab, depth hoar), and
temperature evolution of each storm-related layer. Density
evolves as a function of air temperature, overburden
pressure, time, and the presence of blowing snow (Liston
and Hall, 1995; Liston et al., 2007). The latest version adds
vapor-flux related metamorphism responsible for growing
faceted crystals and depth hoar (Liston et al., 2020);

(2) SnowTran-3D (Liston and Sturm, 1998; Liston et al.,
2007) simulates formation and distribution of snowdrifts
that develop around topographic obstructions to wind. It
simulates the horizontal snow-transport flux at each time
step, as a function of surface shear stress from the wind,
surface shear strength of the snow, and amount of snow
available for transport; and

(3) SnowDunes (Liston et al., 2018) simulates high-resolution
snow surface features such as dunes and sastrugi. Ice
motion vectors derived from satellite play a key role in
redistributing the snow for the pan-Arctic simulations.

In this study we use the daily snow depth and density product
generated from MERRA-2 atmospheric reanalysis (Gelaro et al.,
2017) together with ice motion vectors from Version 4 of the
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Weekly EASE grid sea ice motion vector data set (Tschudi
et al., 2019). Comparison against various in situ data sets show
SnowModel-LG simulations capture the observed spatial and
temporal variability of snow accumulation (Stroeve et al., 2020).
The data set spans August 1980 through July 2018 and is offered,
as with the other products used, on the 25-km EASE grid.

Sea Ice Thickness
While we have more than 40 years of SIC observations from
satellite, we do not have a similarly long-term SIT data set.
Several satellite missions have provided insight into SIT using
either radar (e.g., ERS1/2, Envisat, CryoSat-2) or laser altimetry
(ICESat-1/2), though they are not consistent in time or spatial
area covered. In this study, we focus on the 9 years of continuous
ice thickness observations from CryoSat-2. As before, several
different algorithms exist to retrieve SIT from CryoSat-2 (e.g.,
Kurtz et al., 2014; Tian-Kunze et al., 2014; Hendricks et al., 2016;
Lee et al., 2016; Kurtz and Harbeck, 2017; Ricker et al., 2017;
Tilling et al., 2018). Note that CryoSat-2 does not measure SIT
directly but measures the ice freeboard, which together with snow
depth, snow density and ice density can be converted into SIT. In
this study we chose to use a new algorithm developed by Landy
et al. (2020), which uses a Lognormal Altimetry Retracker Model
(LARM) applied to CryoSat-2 returns, together with snow depth
and snow density from SnowModel-LG to estimate SIT. The
LARM algorithm is based on simulations of CryoSat-2 waveforms
performed with a physical model for the SAR altimeter echo
backscattered from sea ice (Landy et al., 2019). The physical
echo model accounts for realistic variations in the sea ice surface
roughness and radar backscattering properties, at the scale of the
CryoSat-2 footprint, which affect the derived sea ice freeboard.
Since SnowModel-LG has been run with both MERRA-2 and
ERA-5 atmospheric reanalysis, an average of both is taken to
represent the snow depth and density in the SIT-retrieval. Data
are provided monthly on the 25 km EASE grid.

Use of a Heterogeneous vs.
Homogeneous Snow Depth and Ice
Thickness Distribution
An important issue to be aware of when using mean snow depth
and ice thickness products for light transmission is that at 25-
km grid scales, observations clearly show that snow depth and
SIT do not follow simply mean values per grid cell (i.e., hi
and hs). They instead follow a probability density distribution
(PDF) with varying widths of distributions depending on time
of year and ice type (e.g., Renner et al., 2013). Since thin ice
or thin snow cover play an important role in light transmission
we would underestimate light transmission by simply assuming
mean values for hs and hi. In terms of SIT, models often
parameterize the sub-grid-scale SIT variations by replacing hi
by an ice thickness distribution (Thorndike et al., 1975) that
has been discretized using fixed PDFs per thickness category
(Hibler, 1984). However, several studies have highlighted the
fact that ice thickness may have more than one mode, with
bimodal distributions found in regions with both first-year and
multiyear ice present (e.g., Haas et al., 2010). Based on airborne

electromagnetic induction sounding (EM-bird) measurements
reported in Haas et al. (2010), Castro-Morales et al. (2014)
evaluated the impact of using 15 ice categories on the surface heat
budget in the Arctic Ocean. This representation of ice thickness
resolves more thin ice than the flat (e.g., same probability) seven
thickness categories used in some sea ice models. Because not
enough is known as to how ice thickness distributions may
be changing as the ice cover has thinned and become more
mobile (e.g., Rampal et al., 2009), we decided to model the
ice thickness distribution through 15 ice thickness categories
following Castro-Morales et al. (2014), such that the ice thickness
is distributed between 0 and a thickness of 3hi with a bin width of
3hi/15= 0.2hi.

As we have for SIT, snow depth is highly heterogeneous at
small spatial scales.

Abraham et al. (2015) show for example that, for the
same mean snow depth, this small-scale heterogeneity tends
to increase transmission below sea ice because of the large
contribution of thin snow. They tested various distributions
(gamma, Rayleigh) and compared them to the assumption of a
snow distribution between 0 and twice the mean snow depth,
showing little difference. Thus, in this study we also assume a
snow distribution similar to ice thickness but instead solve for
the integral of the probability density function g(hs). For example,
if we just consider the snow transmittance and assume snow is
homogenous with mean thickness, the snow transmittance can
be given by:

Ts = io[1− a(hs)] · exp(−kshs) (11)

To account for the fact that snow is heterogeneous, characterized
by g(hs) we can write: ∫

∞

0
g(hs)dhs = A (12)

where A is snow concentration or area (fraction of grid-cell
covered by snow). The first moment of g(hs) is the mean
thickness: ∫

∞

0
g(hs)hsdhs = hs (13)

Using, the first integral above (Eq. 11) one then gets:

g(hs) = A/(2hs) (14)

Calculating transmittance with g(hs), we get:

Ts =
i0

2hs

∫ 2hs

0
[1− α(hs)] · exp(−kshs)dhs (15)

Many models assume that thin ice has a thinner snow pack,
yet we lack the observations to fully support this assumption.
Since we do not fully understand how snow depth distribution
depends on ice thickness distribution we instead solve the full
snow distribution per ice thickness category. Thus, including the
ice thickness per thickness category hi,n, we obtain:

Ts,n =
i0

2hs
exp(−kihi,n)

∫ 2hs

0
[1− α(hs)] exp(−kshs)dhs (16)
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Implementation
Below we implement our transmission and PAR calculations
using the monthly mean satellite products. Since there is little
to no light during the winter months (November, December,
and January), we focus on the months of October, February,
March, and April for which there is some daylight along the
sea ice pack margins (October and February) up to the point
where there is daylight on a monthly pan-Arctic scale (March
and April). To evaluate the influence of daily snow depth and
albedo variability on under-ice PAR, we additionally fix the SIT
based on the previous monthly mean, and change it at monthly
time-steps from February to April for each year at three different
locations, centered at the following locations but for a 5 × 5 grid
cell area (or 125 km by 125 km): Chukchi Sea (72.97N/−171.29E);
Beaufort Sea (78.45N/−150.23E); Laptev Sea (77.09N/119.79E).
We implement both the homogenous snow and ice cases and
heterogeneous distributions as discussed above, and examine
their influence on the under-ice PAR. Further, since we have snow
depth and albedo estimates through the summer seasons, we
additionally investigate snow depth and albedo trends from 1982
to 2018 on light transmission to the top of the ice (i.e., through
the snowpack) in February through July.

We conclude with a discussion on uncertainty of satellite
and transmission parameters on the results. Specifically, for each
month we additionally estimate locally the error in under-ice
light transmittance as a function of uncertainty in the physical
sea ice/snow parameters (ice thickness, snow depth, surface
albedo, and SIC) as well as the attenuation properties (Table 2).
These uncertainties are considered with respect to errors in
the satellite retrievals (snow depth, albedo, ice thickness, and
ice concentration) as well as the parameters used in the light
calculations and are based on current knowledge. For the albedo,
we assume an uncertainty of 0.05, higher than the accuracy
reported in the APP-X data set, as a result of problems in handling
the anisotropic reflectance of snow, particularly under large solar
zenith angles (i.e., February). At the ice edge however, the errors
may be larger given the fact that the ice edge is not well-resolved
from passive microwave satellite data, and thin ice limitations
from CryoSat-2 become important. This is discussed further in
section “Appropriateness of Methodology.”

RESULTS

Pan-Arctic Under-Ice Light
Monthly mean (February to April and October) summaries of
under-ice PAR, transmittance and the various input data from
2011 to 2018 are summarized in Figures 3–9, respectively. All
of these results include both the snow and ice distributions as
described in Section “Data Products.” The impact of using our
modeled snow depth and thickness distributions compared to
mean values per grid cell are discussed in section “Impact of
Homogeneous vs. Heterogeneous Snow Depth and Ice Thickness
Distributions.”

Some key results stem from these maps. First, in April there
is a substantial amount of under-ice PAR (>10 µmol m−2 s−1)
entering the Arctic ocean in the southerly locations (Figure 3).

TABLE 2 | Uncertainties used for sensitivity analysis of under-ice PAR to
uncertainties in sea ice/snow physical properties and attenuation properties used
in the Beer–Lambert approach.

Parameter Uncertainty

Snow depth (hs) ±10 cma

Sea ice thickness (hi ) ±20%b

Sea ice concentration (SIC) ±5%c

Surface albedo (α) ±0.05

Ice attenuation (kice) Ranges from 0.5 to 1.5 m−1d,e

Snow attenuation (Ksnow ) Ranges from 4.3 m −1 for dense Antarctic
snow to 40 m−1 for newly fallen snowd

io,snow 0.18 (white ice – clear sky)/0.63 (blue ice –
cloudy sky)f

aListon et al., 2020; bLandy et al., 2020; cKern et al., 2019; dPerovich and Gow,
1996; eLight et al., 2015; f Grenfell and Maykut, 1977.

This is expected as there is more incoming solar radiation in these
locations compared to the central Arctic and seasonally more in
April than the other months evaluated. There is also less snow
in these regions, often less than 8 cm, which combined with
incoming solar radiation in excess of 400 Wm−2, allows for a
larger light transmission (Figure 4) and therefore, under-ice PAR.

Second, interannual variations in the under-ice PAR are
strongly linked to the snow depth variability (Figure 5). This
is particularly true from February to April, whereas SIT largely
contributes to October under-ice PAR variability (Figure 6).
The lowest pan-Arctic snow accumulation in April for example
occurred in 2013, resulting in an increase in under-ice PAR over
larger parts of the central Arctic Ocean compared to other years
(e.g., 4–10 µmol m−2 s−1 compared to on average 2–5 µmol m−2

s−1). Conversely, in 2011, snow depths across large parts of the
Arctic Ocean exceeded 35 cm, which in turn limited the under-
ice PAR to values less than 10 µmol m−2 s−1 most everywhere
in the central Arctic. Spatially, interannual variability of under-
ice PAR is large in the Beaufort Sea, reflecting large variations in
snow depth in this region (e.g., compare 2016 to 2011).

While there is less light in February and March, thin snow and
ice thickness in regions such as the Bering Sea, Sea of Okhotsk
and Baffin Bay already allow for increased light transmittance and
under-ice PAR values exceeding 20 µmol m−2 s−1. Similarly, in
some years, under-ice PAR in the Chukchi and Beaufort seas are
seen to increase to above 10 µmol m−2 s−1 already in February.
Hancke et al. (2018) have recently showed that net growth in ice
algae could be initiated at irradiances lower than 0.17 µmol m−2

s−1. Based on other studies, threshold values for onset of algal
growth are in the range of 0.5–5 µmol m−2 s−1 (see Letelier
et al., 2004; Tremblay and Gagnon, 2009; Leu et al., 2015). These
maps suggest that light levels are higher than the lower threshold
value in February for almost all regions of the Arctic Basin. This
suggests that algal growth can start even at this early state in
the season. If one considers a higher threshold than 0.17 µmol
m−2 s−1 (e.g., Hancke et al., 2018), we find that, algal growth
would happen between February and March at lower latitudes,
then move northward in April, without reaching regions further
north than 85◦ N. Only in 2012 and 2013 did light levels in the
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FIGURE 3 | Summary of the monthly mean under-ice PAR maps produced using the satellite-derived sea ice and modeled snow depth data for all months and all
years from February 2011 to April 2018.
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FIGURE 4 | Summary of the monthly mean transmittance produced using the satellite-derived sea ice and modeled snow depth data for all months and all years
from February 2011 to April 2018.
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FIGURE 5 | Summary of the monthly mean snow depth for all months and all years from February 2011 to April 2018.
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FIGURE 6 | Summary of the monthly mean ice thickness for all months and all years from February 2011 to April 2018.
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FIGURE 7 | Summary of the monthly mean sea ice concentration for all months and all years from February 2011 to April 2018.
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FIGURE 8 | Summary of the monthly mean surface albedo for all months and all years from February 2011 to April 2018.
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FIGURE 9 | Summary of the monthly mean incoming solar radiation for all months and all years from February 2011 to April 2018.
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high Arctic (above 85◦ N) become large enough to initiate algal
growth in April.

How do these results compare to published values? In the
months of February to April, transmittance values remain below
0.01 in most of the Arctic, except for the shelf areas, where
thinner ice and snow cover allow for larger transmittance values.
In October, when ice is thinner and not much snow accumulated
yet after summer melt, transmittance values are larger than 0.025.
In situ measurements of light transmission before April–May are
not available. However, in a recent compilation of under-ice light
measurements, Katlein et al. (2019) report values of transmittance
that do not exceed 0.01 in May. This is in agreement with the
present estimations, except for the marginal areas. In these cases,
though, the estimated transmittance values are still in the range
of variability shown by Katlein et al. (2019) for the late spring-
summer period. Between late April and early June (i.e., before
melt onset), reported values of light transmittance range between
0.0006 and 0.003 (see Supplementary Figure S8 in Oziel et al.,
2019), in agreement with the present results of T < 0.01. Another
newly published data set described in Castellani et al. (2020) and
available on PANGAEA1 shows a mode at transmittance values in
May and June below 0.05, again in agreement with the estimates
presented in this study.

Daily Evolutions From February to April
2012
As shown above, the use of the monthly means of each physical
parameter gives a good evaluation of inter-annual changes in
under-ice PAR on a monthly basis. However, for the timing of
a bloom, daily estimates are preferred. Here we evaluate the
influence of daily variations in snow depth and albedo on the
under-ice PAR, but fixing the SIT to the monthly mean values
and following the daily evolution of snow depth, incoming solar
radiation and surface albedo. In particular, we are interested in
when the daily PAR value increases above the threshold range
of 0.5–5 µmol m−2 s−1. In other words, when plankton is

1https://doi.pangaea.de/10.1594/PANGAEA.902056

susceptible to be more active. Such a light threshold value is
purely indicative, since a light threshold for net photosynthesis
is not well observationally constrained or even well justified.
Depending on the value of the threshold in the explored range
and on the rate of change in irradiance, the alleviated onset of
algal activity varies by days to a few weeks.

Figure 10 shows the evolution of the under-ice PAR from
1 February to 30 April 2012, as well as the corresponding
evolution of the snow depth and the albedo, for three randomly
chosen locations in the Chukchi (72.97N/−171.29E), Beaufort
(78.45N/−150.23E), and Laptev (77.09N/119.79E) seas. Note
since the albedo and incoming solar radiation are centered
around 14:00 GMT, these values represent the evolution at this
time of day. Also shown is the algal growth range threshold (gray
shading) based on Letelier et al. (2004) and Tremblay and Gagnon
(2009). First, and as expected, we can observe the important day-
to-day variations in amplitude of both snow depth and albedo
and the influence these have on the under-ice PAR. Second, we
notice the impact of the spatial variability of snow depth on the
range of amplitude of the under-ice PAR between regions. As
also shown in the monthly maps (Figure 9), less snow in the
Laptev Sea compared to the Beaufort and Chukchi seas results
in a substantial increase of the under-ice PAR earlier in the year.
Finally, already by the end of February, the amount of under-ice
PAR exceeds the lower threshold for initiating algal growth within
the Chukchi Sea, though this is strongly controlled by the amount
of snow on the ice and the albedo. In the Beaufort and Laptev
sea locations, the lack of sunlight delays the timing of light under
the ice until March, however, once there is sunlight, the under-ice
PAR within the Laptev Sea location almost already exceeds the
higher threshold for initiating algal bloom as the snow cover is
considerably thinner than in the Beaufort Sea.

Impact of Homogeneous vs.
Heterogeneous Snow Depth and Ice
Thickness Distributions
Here we examine the impact of computing light transmittance
through a heterogeneous snow depth and SIT distribution

FIGURE 10 | Daily retrieval of the under-ice PAR using daily evolutions of the physical parameters starting on February 1 2012. Parameters shown are the snow
depth and the albedo. Three locations are evaluated for a 5 × 5 pixel area around each center location: Chukchi (72.97N/−171.29E), Beaufort (78.45N/−150.23E),
and Laptev (77.09N/119.79E) seas. Gray shading corresponds to range of thresholds for algal growth (0.5–5 µmol m−2 s−1).
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FIGURE 11 | Difference in monthly mean April PAR between using a heterogenous snow depth following Eq. 12 and assuming a mean ice thickness per grid cell
versus a mean snow depth per satellite pixel.

compared to assuming mean snow depth and ice thickness values
per 25-km grid cell. For these comparisons, we use a mean SIT
per grid cell to only examine the snow distribution impact, and
vice versa, a mean snow depth to examine the influence of the
SIT distribution. Further, only the month of April is shown as it is
the month with the largest amount of light transmission through
the ice prior to melt onset. While results are largely insensitive to
year, years with thinner snowpack, or thinner ice will show overall
larger effects of including a distribution versus mean values.

As expected, for both the ice thickness and snow depth
distributions, the amount of under-ice PAR increases compared

to using mean values per grid cell (Figures 11, 12). This is
because thin ice and snow transmit much more light than
thick ice and snow. With our parameterizations, the mean
transmission is always higher than the transmission calculated
with mean thickness — a result already obtained by Abraham
et al. (2015) — in turn increasing the overall under-ice PAR
for each grid cell. Nevertheless, the differences in under-ice
PAR remain small, especially over the central Arctic where PAR
increases just slightly, between 0 and ∼2 µmol m−2 s−1 (∼5%
relative difference, or percentage of the average under-ice PAR
it represents). Castellani et al. (2017) report a threshold value

Frontiers in Marine Science | www.frontiersin.org 17 February 2021 | Volume 7 | Article 592337

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-592337 February 3, 2021 Time: 11:13 # 18

Stroeve et al. Light Under Sea Ice

FIGURE 12 | Difference in April PAR between using a mean sea ice thickness per satellite pixel versus a fifteen ice thickness categories ITD heterogeneously
distributed between 0 and 3hi , as described in section “Data Products,” and assuming a mean snow depth per grid cell.

for algal bloom of 1.78 µmol photons m−2 s−1 which is at the
upper boundary of the differences of PAR in the central Arctic.
The effect of using mean values per grid cell thus does not have
large effects on algal bloom, at least in the central Arctic. It is
different for coastal regions in the Arctic basin and also in the
Barents Sea, characterized by generally thinner snow cover as
well as thinner ice, where differences in under ice PAR are large
enough (i.e., >5 µmol m−2 s−1, or >∼12.5% relative difference
from the mean value) to impact the onset of algal bloom.

In regards to snow depth, increases in under-ice PAR above
4 µmol m−2 s−1 (10% of relative difference) are found mostly
outside of the Arctic basin (i.e., Bering Sea, Baffin Bay, Barents

Sea), but also at times within the Chukchi and Beaufort seas,
as well as the Laptev and Kara seas that can reach 5 µmol
m−2 s−1 (12.5% relative difference) or more. The largest increases
in under-ice PAR within the Beaufort Sea are found in 2016,
when there was relatively more transmittance of light as a
result of less snow accumulation compared to other years (see
also Figures 2, 4). Thus, the impact of using a snow depth
distribution varies from year to year, depending on the average
snow depth per pixel.

Similarly, for the ice thickness distribution versus mean SIT
values we observe that larger differences on the order of at least
4 µmol m−2 s−1 occur when the sea ice is thinner, as for example
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close to the shelf but also in the Chukchi and Beaufort seas,
especially during 2013, 2016, 2017, and 2018. As for Figure 10,
April 2016 is the year when the differences between the SIT
distribution and mean SIT per pixel are greater, especially in the
Chukchi Sea with more than 5 µmol m−2 s−1 difference. This
is due to the fact that for this year, the ice is overall thinner
than for the other years. During some years and regions, the sub-
grid scale SIT distribution results in larger increases in under-ice
PAR compared to sub-grid scale snow depth distribution (i.e.,
2013 in Chukchi and Laptev seas), and in others the reverse
is true (i.e., 2012 and 2015 in Beaufort Sea). Considering the
threshold reported by Hancke et al. (2018), these sub-grid scale
variations in snow depth and ice thickness may be important
in terms of timing of under-ice algal growth and thus more
research on how best to represent sub-grid scale snow depth and
ice thickness distributions is warranted, especially during this
transition from a multiyear to first-year dominated Arctic Ocean,
with corresponding changes in surface roughness.

Impact of Snow Depth Trends on
Transmission Through Snow
So far, our assessments have focused on the CryoSat-2 time-
period and during the time of the year for which thickness
observations are available. To assess longer term changes in
light availability, not just in autumn and spring, but also in
summer, we can examine how changes in snow depth and
surface albedo are impacting the amount of light transmitted
to the top of the ice (i.e., through the overlying snowpack).
In particular, we are interested in the impacts of changing
snow accumulation on light availability when light first becomes
available and until the snow melts off the ice. Figure 13 shows
trends from 1982 to 2018 in SnowModel-LG snow depths forced
with MERRA-2 atmospheric reanalysis from February through
July (see also Stroeve et al., 2020). Overall, winter and spring
snow depth is found to be declining throughout the Arctic Ocean
marginal seas, with slightly positive trends north of Greenland.
In particular, statistically significant negative trends (at 95%
confidence interval) are seen throughout the Beaufort, Chukchi,
East Siberian, Laptev, Kara and Barents seas in February to May
(between 2 to 8 cm per decade, depending on location), that
increase to cover most of the Arctic Ocean also in June, and
the central Arctic in July. Positive trends (∼1–3 cm per decade)
north of Greenland are not statistically significant, but agree with
positive trends in albedo in this region (Figure 14). Since no
trends in precipitation are revealed in the reanalysis precipitation
themselves (Barrett et al., 2019), the reduction in snow depth
in the marginal seas is most likely a result of later freeze-up
and earlier melt onset (e.g., Stroeve and Notz, 2018) that reduce
the time over which snow can accumulate, rather than a change
in precipitation. It also reflects a reduction in multiyear ice, as
the longer an ice parcel can accumulate snow, the deeper the
snowpack tends to be (e.g., Liston et al., 2020).

At the same time, and not surprisingly, the surface albedo
also exhibits generally statistically significant negative trends over
most of the Arctic basin in May, June, and July, reflecting earlier
melt onset, earlier ice retreat (i.e., open water) and melt pond

development. Negative albedo trends in February to April are
mostly confined to the regions outside the Arctic basin (e.g.,
Baffin Bay, Barents and Bering seas). Negative albedo trends
outside of the central Arctic prior to melt onset are largely the
result of a lack of winter sea ice in more recent years, as the
trends include both sea ice and open water regions. Small positive
trends are also observed in February and March (∼0.02–0.06
per decade) over the areas with sunlight in the central Arctic,
larger in February than in March. None of these trends are
statistically significant, yet we do find they are consistent with
slightly positive trends in snow accumulation that are statistically
significant north of the Canadian Archipelago. On the other
hand, positive albedo trends may also reflect problems in the
albedo estimates during this time of year. As seen previously
in Figure 10, albedo in 2012 is seen to reach nearly 1.0 in the
Chukchi Sea in February which exceeds the albedo for new snow
(0.90, Wiscombe and Warren, 1980). This likely points to a
problem in properly accounting for the anisotropic reflectance
of snow, especially under oblique solar and sensor zenith angles
found at this time of year. Positive albedo trends (∼0.01 to 0.02
per decade) in April may also reflect changes in cloud cover.
The APP-X data product produces an all sky albedo, whereby the
amount of solar radiation underneath clouds is modeled based
on estimated cloud top height, temperature and ice versus water
clouds. Problems in accurately detecting cloud cover and cloud
properties, combined with overall increases in springtime cloud
cover (e.g., Wang et al., 2012) and cloud thickness (Huang et al.,
2019) will influence the amount of incoming solar radiation as
well as the surface albedo through modification of the spectral
distribution of the incoming solar radiation (e.g., Grenfell and
Maykut, 1977; Grenfell and Perovich, 2008).

The regions with negative snow depth trends, combined with
negative albedo trends will play a significant role in increasing
light availability under the ice. While we do not have ice thickness
during that time, we can estimate how these snow depth changes,
together with albedo changes, impact light transmission through
the snow pack. These results are summarized in Figure 15.
The largest positive trends in transmittance under the snow,
exceeding 0.06 per decade are found in June in the Chukchi Sea
and then everywhere there is sea ice in July. However, already in
February small positive trends in under-snow transmittance are
observed, that are statistically significant in the Chukchi Sea, in
the East Greenland Sea and north of Novaya Zemyla (∼0.01 to
0.03 per decade). By April, statistically significant positive trends
in under-snow transmittance occur throughout the marginal seas
of the Arctic Ocean, reaching 0.04 per decade in the northern
Barents Sea. This will cause a shift of the production season onset
to earlier times in the spring in these regions. This will in turn
affect the lower trophic levels, since there might be a mismatch
between high food availability and events such as reproduction
and spawning (Durant et al., 2007). Moreover, since the trend in
snow cover is not uniform throughout the Arctic, this might lead
to not only a temporal, but also a spatial shift of growth onset.

Uncertainty Analysis
As mentioned in section “Implementation,” we investigate the
error of the under-ice PAR as a result of uncertainty on the
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FIGURE 13 | Snow depth trends (cm/yr) in February through July from 1982 to 2018 over Arctic sea ice as represented in SnowModel-LG (Liston et al., 2020) forced
by MERRA-2 atmospheric reanalysis. Trends statistically significant at the 95% confidence level are indicated by black marks.

physical sea ice/snow parameters used to compute the light
transmission as well as the values used in the radiative transfer
(Table 2). This evaluation was conducted for April of each year
of the study and the resulting errors, averaged over the Arctic
basin and for all 8 years (2011–2018) are summarized in Table 3.
Overall, the uncertainty in the under-ice PAR from uncertainties
in the physical sea ice or snow parameters ranges from ±1.5
to ±9.2 µmol m−2 s−1, or a relative error of ∼4–22%. The
uncertainty of ±20% on the SIT, gives the lowest errors in the
under-ice PAR, while an uncertainty of ±10 cm in snow depth
gives the highest PAR errors. This is followed closely by a ±5%
uncertainty in SIC with a 7.2 µmol m−2 s−1 or (17%) and±0.05
uncertainty in the surface albedo, which results in 5.0 µmol m−2

s−1, or a relative error on the order of 12.2%. The larger impact
of snow depth and albedo uncertainties relative to SIT on under-
ice PAR agrees with Katlein et al. (2019), who found that ice
thickness was an overall poor factor in determining overall light
transmittance levels. Instead, snow cover was found to provide
the primary limit on the amount of sunlight getting through the
ice (i.e., less than 1% of light is transmitted below the ice in May),
but light transmittance increases to 10% during the advanced

phase of melt pond development, which is reflected in part by
reductions in albedo during June and July (e.g., Figure 13).
Uncertainties in ice concentration naturally allow for more (less)
light absorption in open (closed) water areas.

On the other hand, uncertainties and relative errors for
extreme values of the attenuation coefficients have lower overall
relative errors compared to snow depth uncertainty, but errors
can be as high as 10% for the large range in ice attenuation
coefficients used. More important, however, are the large
uncertainties in the under-ice PAR as a result of varying the
io,snow, contributing to an under-ice PAR uncertainty of 7.5 µmol
m−2 s−1, or relative error of 18.4%. In summary, uncertainties
are within 20–30%, which is enough for a qualitative analysis
of the pan-Arctic under ice light field, but not for a precise
prediction of light levels in specific locations, nor for a precise
prediction of timing for the bloom onset. Since the largest
uncertainties are associated with snow properties (depth and
io), this points to snow as the research area where most
progress is needed.

Finally, the choice of SIC algorithm used can have a large
impact in under-ice light transmission. While Kern et al. (2019)

Frontiers in Marine Science | www.frontiersin.org 20 February 2021 | Volume 7 | Article 592337

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-592337 February 3, 2021 Time: 11:13 # 21

Stroeve et al. Light Under Sea Ice

FIGURE 14 | Albedo trends per year in February through July from 1982 to 2018 over Arctic sea ice as derived from AVHRR. Note albedo trends are given for open
water as well as ice-covered regions and thus large negative trends along the ice margins reflect in part earlier development of open water, while trends over the
icepack in summer reflect also melt pond development. Trends statistically significant at the 95% confidence level are indicated by black marks.

found on a pan-Arctic scale differences between algorithms may
cancel out, the NASA Team SIC underestimate those retrieved
from visible imagery (e.g., from the NASA Moderate Resolution
Imaging Spectroradiometer (MODIS) by 5–10%, whereas SICs
from algorithms such as the Bootstrap algorithm (Comiso et al.,
1997) overestimate MODIS-derived SICs by a similar amount.
Since the Bootstrap algorithm has higher SICs than those from
NASA Team, this will reduce the amount of light reaching the
ocean surface, especially in the marginal ice zone where the
differences between the two algorithms are most pronounced.

APPROPRIATENESS OF
METHODOLOGY

In this contribution, we attempt to compute under-ice light levels
based on current satellite products, and try to identify uncertainty

sources. In this context, the two-level Beer–Lambert approach
was the simplest available scheme, which takes into consideration
the exponential decay of light through the snow/ice/water media,
and gives reasonable transmittance retrievals, as compared with
a significant number (N = 234) of data points from the seasonal
ice zone (see Figure 1). The setting of AOPs, such as attenuation
coefficients, were tuned using field observations over first-year
ice, and may not necessarily apply over multiyear ice. However,
we found that at least in regards to κi, the value obtained of
1 m−1 differed little from classical multiyear ice derived values
(1.5 m−1). These values are also in line with those of Grenfell and
Maykut (1977) (see their Figure 5).

In terms of uncertainties in our under-ice irradiance
calculations, the most important uncertainty source relates to
non-existent or largely imprecise summer satellite products.
In spring, when satellite products are less prone to error,
uncertainties are smaller but still within 30% for each of the
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FIGURE 15 | Under-snow transmittance trends per year computed using the albedo and snow depth in February through July from 1982 to 2018 over Arctic sea
ice. Trends statistically significant at the 95% confidence level are indicated by black marks.

uncertainty sources. Next to surface albedo, snow in all its aspects
appears as a dominant source of uncertainty. This includes the
pixel-mean snow depth value, its sub-pixel distribution, and the
description of radiative transfer within snow, which is underlined
by the large errors on low transmittance values (see Figure 1),
and also by the large impact on calculated under-ice PAR of the
surface transmission parameter io within snow (see Table 3). The
new SIT product, derived from ice freeboards processed with
the LARM algorithm and using snow data from SnowModel-
LG improves the detection limit of CryoSat-2 for thin ice, with
a lower freeboard detection limit of∼2.5 cm (Landy et al., 2020).
As evidence for this enhanced thin ice detection, we find that
ice thicknesses < 0.5 m make up around 45% of measurements
across the October SIT fields, and thicknesses <0.25 m make up
around 31% of measurements. While the attenuation coefficients
for ice based on first-year ice field data may not be the same as

for multiyear ice, uncertainty in ki played a smaller role than
the uncertainty in io. These conclusions are in line with those of
Katlein et al. (2019), which is based on a different observational
dataset and with a slightly different approach.

To improve upon these uncertainties, calculations of under-
ice light field would primarily benefit from more precise satellite
products, spanning longer periods of the year (discussed further
in “Looking to the Future”), in particular regarding ice thickness,
snow depth and surface albedo. The sub-pixel distributions
of ice characteristics are beyond reach for current observing
systems. Yet these can at least be parameterized. For instance,
Abraham et al. (2015) provide analytical calculation techniques
to account for the sub-pixel snow depth distribution in under-
ice light calculations. These can readily be used and at low cost.
However, more research is needed to better understand what
ice thickness distribution should be used as the ice cover has
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TABLE 3 | Impact of uncertainties in physical sea ice/snow parameters used as input to the Beer–Lambert law on under-ice PAR in µmol m−2 s−1.

Date Albedo + 0.05 Snow depth + 10 cm SIT + 20% SIC+ 5% Kice extremes
0.5-1.5 m−1

Ksnow extremes
4.3–40 m−1

i0,snow extremes
(0.18–0.63)

PAR PAR PAR PAR PAR PAR PAR

April + 5.0 (+12.2%) +9.2(+22.5%) +1.5(+3.7%) +7.2 (+17.0%) +4.1 (+10%) +2.2 (+5.4%) +7.5 (+18.4%)

Relative error in % is also included. Results for April averaged over 2011 to 2018.

thinned and transitioned to a first-year ice regime. Generation
of open water/leads, melt ponds and thick ice from ridging may
differ from earlier studies, and in different regions of the Arctic,
which will not only influence the ice thickness distribution, but
also snow accumulation. Thus it remains unclear if a pan-Arctic
representation of ice thickness and snow depth distribution is
applicable as used in this study.

Regarding the formulation of the radiative transfer approach
used, an easy recommendation would be to better constrain
optical snow parameters from observations over various ice types,
based on more observations, more precise, including more snow
parameters. Another recommendation would be to use better
representations of radiative transfer within snow and ice. Indeed,
an easy objection to our methodology is that Beer–Lambert
Law is overly simple and does not fully hold in snow, a highly
scattering medium (Perovich et al., 2017). Another critique is
that the surface scattering layer could be not as well defined in
snow as it is in sea ice. While many studies have used the Beer–
Lambert Law assuming an exponential attenuation of radiation
with length of the medium (e.g., Maykut and Untersteiner, 1971;
Bitz and Lipscomb, 1999; Castellani et al., 2017; Vancoppenolle
and Tedesco, 2017), more physically elaborated approaches for
radiative transfer in snow and ice do exist, in particular two-
stream methods, such as such as the delta-Eddington scheme of
Briegleb and Light (2007), which relies on the specification of
intrinsic optical properties of snow and ice, namely scattering
and absorption coefficients. Two-stream schemes have better
theoretical foundations and enable the representation of a wider
range of optical phenomena (Dang et al., 2019). Yet such schemes
are also more complex, more expensive and require information
on the vertical profiles of temperature, salinity, density and
microstructure (gas, brine, minerals, and grain size), information
we do not have from satellites. Hence, at this stage, the use of
more elaborated approaches does not warrant lower uncertainties
in under-ice light distribution.

Finally, the impact of impurities on transmitted light intensity
could also be considered. In particular, ice algae may reduce
transmitted light when sufficiently abundant. Here we decided
not to take them into account, because we found their effect to
be generally low as compared with uncertainties on under-ice
transmitted light, and largely uncertain because of unresolved
spatio-temporal variations in ice algal content. Significant effects
may occur where and when algae are ∼30 mg chl m−2, and
when snow is thin, which may occur in the Bering Sea, or during
the season of algal bloom (generally after the month of April).
One prerequisite before accounting for ice algae, would be to
better constrain their abundance and spatial variability on scales
relevant for our study.

LOOKING TO THE FUTURE

Massicotte et al. (2019b) show that to properly estimate primary
production in the Arctic, we need to assess the spatial variability
of sea-ice properties. By under-ice profiling platform (e.g., ROVs
and towed nets) we can assess variability on a floe scale, but
it is only by means of satellite products that we can provide
important information on a pan-Arctic context. This study
allows the characterization of the light field over an area large
enough to capture the irradiance variability on a pan-Arctic scale.
Furthermore, for the first time we are able to provide pan-Arctic
maps of under-ice light at a spatial coverage and resolution of
most sea-ice numerical models. Most large-scale sea-ice –ocean
circulation models adopt the two layers Beer-Lambert approach
to describe the radiative transfer, and they employ a SIT and
snow depth distribution as in section “Impact of Homogeneous
vs. Heterogeneous Snow Depth and Ice Thickness Distributions”
to account for sub-grid variability. The present study is a first
step in providing products that can be used to directly compare
model outputs on a pan-Arctic scale. Moreover, for the first
time, we quantify the effects of the sub-grid distribution on the
under-ice light levels.

Ideally, we would want to additionally map the under-
ice light field from February through October on a pan-
Arctic scale, accounting for SIT changes in summer, advanced
snow metamorphism, development of melt ponds, and properly
account for snow accumulation around ridges. Unfortunately,
we lack summer SIT data and melt pond information to
extend the characterization of under-ice irradiance beyond April.
Temporally, we have been limited by the availability of sea ice
freeboard and thickness products. CryoSat-2 provides profiles of
SIT observations across the Arctic on a daily basis, but only at
the satellite sub-cycle of 30 days does it provide complete pan-
Arctic coverage and current algorithms using radar altimetry
remain limited to October through April. Since the change from
complete darkness to enough sunlight for photosynthesis to
occur can happen over a few days, daily coverage is needed.
Blending of CryoSat-2 satellite retrievals with Sentinel 3A and 3B,
can increase temporal resolution to 10-day frequency (Lawrence
et al., 2019). Nevertheless, prior to the melt season, snow depth is
arguably more important in limiting light availability and timing
of ice algal blooms.

In summer, the most important data gaps to fill are the ice
thickness and melt ponds. ICESat-2 offers the ability to provide
sea ice freeboards in summer, yet the conversion to total SIT
is difficult as this requires information on ice density which is
highly variable during the summer melt season. Instead, one
could consider using the ICESat-2 freeboards to represent the
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height of the strongly scattering surface layer (SSL). Typically,
the layer has geometric depth 3 – 5 cm and effective scattering
about two orders of magnitude larger than the interior ice. The
ice between the SSL and sea level (‘drained layer’ DL) also
has enhanced light scattering properties, typically one order of
magnitude above that of interior ice (see Light et al., 2015,
Table 1). Despite their small vertical extent, but because of their
strong scattering, these two layers are estimated to have optical
depth approximately two orders of magnitude larger than the
entire portion of the ice that sits below sea level. Because light
penetration will depend most strongly on the portions of the
ice with the largest optical depth, it may be possible to estimate
transmittance based on the thicknesses of the SSL and DL, as
derived directly from summer freeboards. The assumption is that
the optical depth of ice above freeboard is about many times more
than the optical depth of ice below freeboard, and therefore the
amount of ice floating above the water is more important for
determining how much light reaches the ocean beneath the ice
than the actual SIT.

Once the melt season starts and the snow disappears, melt
ponds dominate the amount of light entering the upper ocean
beneath the ice. Melt ponds develop in early summer of sizes
typically < 10 m, and evolve into a temporally and spatially
heterogeneous network of melt ponds intermixed by bare ice
and snow-covered ice regions. While melt ponds are not difficult
to detect using high resolution satellite imagery, such as that
from meter-scale WorldView optical imagery (e.g., Wright and
Polashenski, 2018), pan-Arctic coverage and long time-series
are not available from such high resolution imagery. Instead,
moderate resolution satellite sensors, such as the NASA Moderate
Resolution Imaging Spectroradiometer (MODIS) satellite have
been used to map melt ponds at a pan-Arctic scale (e.g., Rösel
and Kaleschke, 2012). MODIS has a spatial resolution of 250 m
for the first two visible channels and 500 m for the other five
visible channels. Since the melt ponds have a relatively small
size in relationship to the large footprint of the satellite image,
several ice types are present within each satellite pixel, requiring
some sort of spectral unmixing to retrieve the melt pond fraction.
Spectral mixture analysis (SMA) (e.g., Tschudi et al., 2008; Rösel
and Kaleschke, 2012) and Multiple Endmember Spectral Mixture
Analysis (MESMA) (e.g., Yackel et al., 2018) have been used with
limited success to map sub-pixel fractional area of surface types,
yet reference spectra for ice types can vary considerably and cause
large errors in melt pond fraction retrievals. Currently there are
no up-to-date pan-Arctic melt pond products being provided by
the science community.

Similarly, as the ice cover has transitioned from one
dominated by multiyear ice year-round to one dominated by first-
year ice, the dynamics of the ice cover have increased, creating
more occurrence of ice fracture and lead formation (e.g., Rampal
et al., 2009). Leads result in new ice formation, and thus thin ice
with little to no snow cover, and thus play an important role in
light transmission before the melt season starts. Evidence from
an Arctic fjord found that 77–86% of incidence light from 0.4
to 0.7 µm was transmitted through leads (Taskjelle et al., 2016).
Changes in albedo may in part reflect increased fracturing,
leads and thin ice formation. On the other hand, evaluation of

the APP-X data set shows non-physical artifacts in albedo that
have an impact on the under-ice PAR calculations, and more
improvements are needed to develop a long-term and reliable
surface albedo product.

Finally, ridges play an important role in redistributing snow
accumulation. While several approaches exist to quantify surface
roughness from satellite, including laser altimetry (e.g., Landy
et al., 2015; Petty et al., 2016), multi-angular optical imagery
(e.g., Nolin and Mar, 2019), and SAR backscatter (e.g., Fors
et al., 2016), the small footprint of the ICESat-2 ATLAS photon-
counting instrument (∼15 m), together with dense along-track
spacing (∼70 cm) and precise elevation measurements (<10 cm)
will allow for mapping of ridge heights. This is because ICESat-
2 will provide consecutive elevation measurements to define the
ridge height and edges with sufficient precision. This information
could be used in conjunction with SnowModel to map snow
depth at high spatial resolution and then downscale to the pan-
Arctic scale.

CONCLUSION

Arctic marine ecosystems have adapted to extremes in light
conditions, taking advantage of the short time-period over which
primary production can occur. Since satellites sensors cannot ‘see
through’ the sea ice, the response of Arctic primary production to
changes in sea ice and snow properties can only be determined
with continuous in situ monitoring of algae and phytoplankton
stocks, together with the main physical drivers affecting their
phenology: under-ice light field, sea ice and snow properties,
temperature and salinity of the ocean surface, nutrients and
mixed layer depth. However, the lack of long-term data covering
different regions and seasons makes this challenging at present. In
this paper we have attempted to map one component important
for ocean primary production, the light under the ice on a pan-
Arctic scale using currently available satellite-based products
on snow and ice conditions together with parameterizations
established from cruises and other in situ observations. Our
estimates of under-ice PAR are based on the Beer–Lambert Law,
and our interactions of light with snow and ice are based on
empirical parameterizations from in situ data collections that
depend at the moment solely on the ice thickness and snow depth,
whether or not the snowpack is melting, as well as the surface
albedo. Key uncertainties in our under-ice PAR calculations
relate to how precise current parameterizations are, how best to
distribute the mean snow and ice thickness within a 25-km grid
scale, as well as errors in satellite-retrieved variables of surface
albedo, ice thickness and concentration, and how best to model
snow accumulation.

During springtime, the high albedo of snow and its capacity
to attenuate solar radiation means that snow depth variability
largely controls under-ice PAR variability from year-to year, with
some years showing increased light penetration especially in the
Beaufort Sea in April. During October, ice thickness, albedo and
lead fraction play a more important role as there is little snow
on the ice. Ice algal in particular have adapted to very low light
levels (e.g., Berge et al., 2015), with the first bloom happening
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in the bottom layer of the sea ice already in spring when light
for photosynthesis becomes available. Thus, despite little light
entering the Arctic Ocean in February and March, inter-annual
snow depth variability can lead to more light availability even
during these months that is enough to initiate algal growth,
whereas long-term declines in snow depth over time may be
shifting the timing of under ice algal blooms to earlier in the
year. This has important implications on marine ecosystems, as
ice algae are an early food source for certain pelagic grazers (e.g.,
Leu et al., 2015).

New satellite sensors, such as ICESat-2, could enable these
under-ice maps to be extended to be year round, whilst on-
going in situ field programs, such as EcoLight and MOSAiC, will
allow us to refine the algorithms and more accurately predict
light penetration through a range of snow and ice conditions.
While there are significant challenges to overcome before we
routinely produce daily pan-Arctic under-ice light maps using
satellite observations, we feel new satellite-derived products and
focused in situ campaigns are closing the gap.
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