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Silky sharks (Carcharhinus falciformis) represent a major component of global shark
catch, both directly and as bycatch, and populations are declining as a result. An
improved understanding of their movement ecology is needed to support conservation
efforts. We deployed satellite and acoustic tags (2013–2018) and analyzed historical
fisheries records (1997–2009), to investigate the spatial ecology of silky sharks in the
central Indian Ocean and a large Marine Protected Area (MPA; 640,000 km2) around
the Chagos Archipelago. We observed high fidelity to the MPA, and a sustained
diurnal association with a seamount complex, with individuals moving off at night
and returning at sunrise. Yet, we also observed large-scale divergent movements in
two satellite tagged individuals and documented the furthest recorded displacement
distance for a satellite tagged silky shark to date, with one individual moving from
the MPA to the Kenyan coast—a displacement distance of 3,549 km (track distance
∼4,782 km). Silky sharks undertook diel vertical migrations and oscillatory diving
behavior, spending > 99% of their time in the top 100 m, and diving to depths of
greater than 300 m, overlapping directly with typical deployments of purse seine and
longline sets in the Indian Ocean. One individual was recorded to a depth of 1,112
m, the deepest recorded silky shark dive to date. Individuals spent 96% of their time
at liberty within water temperatures between 24 and 30◦C. Historic fisheries data
revealed that silky sharks were a major component of the shark community around the
archipelago, representing 13.69% of all sharks caught by longlines before the fishery
closed in 2010. Over half (55.88%) of all individuals caught by longlines and purse
seiners were juveniles. The large proportion of juveniles, coupled with the high site
fidelity and residence observed in some individuals, suggests that the MPA could provide
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considerable conservation benefits for silky sharks, particularly during early life-history
stages. However, their high mobility potential necessitates that large MPAs need to
be considered in conjunction with fisheries regulations and conservation measures in
adjacent EEZs and in areas beyond national jurisdiction.

Keywords: fisheries, seamount, Carcharhinus falciformis, habitat use, biotelemetry, residency, migration, marine
protected area

INTRODUCTION

Significant historical declines have been observed in pelagic
shark populations (Baum et al., 2003; Ferretti et al., 2010;
Dulvy et al., 2014). This has largely been driven by high spatial
overlap with industrial fishing activities (Queiroz et al., 2016,
2019), where pelagic sharks account for over half of shark catch
globally (Worm et al., 2013). Central to developing the effective
conservation and management strategies urgently needed for
these species is a firm understanding of their spatial ecology
(Boerder et al., 2019).

Pelagic sharks spend considerable periods of time on the
high seas, in areas beyond national jurisdiction (Queiroz et al.,
2019), where there are limited legal frameworks to protect them
(Wright et al., 2019). However, electronic tagging indicates some
pelagic shark species exploit their environment in predictable
ways (Block et al., 2011; Lea et al., 2015; Doherty et al., 2017) or
show residency to certain sites or features (e.g., Jorgensen et al.,
2010; Queiroz et al., 2016; Carlisle et al., 2019; Aldana-Moreno
et al., 2020) providing target areas for effective management.
Yet, existing studies into pelagic shark spatial ecology are
taxonomically and geographically biased. In a recent analysis of
pelagic shark tagging data, nearly 77% of pelagic sharks tagged
were from just six species (blue shark Prionace glauca, shortfin
mako Isurus oxyrinchus, tiger shark Galeocerdo cuvier, salmon
shark Lamna ditropis, whale shark Rhincodon typus, and white
shark Carcharodon carcharias) and highlighted that the Indian
Ocean was generally data-poor compared to the Pacific and
Atlantic Oceans (Queiroz et al., 2019). As such, there is a pressing
need to broaden our understanding of pelagic shark ecology to
understudied species and underrepresented regions.

Silky sharks (Carcharhinus falciformis) are important, yet
relatively understudied, pelagic predators that inhabit continental
shelves, slopes, and offshore waters from the surface down to
500 m (Compagno, 1984; Bonfil, 2008). Adult silky sharks are
primarily piscivorous (Compagno, 1984), with juveniles also
feeding on pelagic crustaceans (Filmalter et al., 2017), and they
form large feeding aggregations when food is plentiful (Bonfil,
2008). In the Gulf of Mexico, neonates and young juveniles have
been shown to live a more coastal, demersal lifestyle than adults
(Branstetter, 1987; Bonfil, 1997). However, elsewhere, juveniles
have been regularly reported in open ocean environments (e.g.,
Filmalter et al., 2015; Hutchinson et al., 2019; Bonnin et al.,
2020), often joining schools of large pelagic fishes, such as tuna
(Camhi, 2009; Sánchez-De Ita et al., 2011). Silky sharks grow up
to 330 cm in length (Camhi, 2009), and can be highly mobile,
with maximum recorded displacement distances of over 3,000 km
(Schaefer et al., 2019). Biotelemetry devices have been deployed

in the West Indian Ocean and Pacific Ocean to explore the
movement and mortality rates of these sharks in response to
fisheries’ bycatch (Musyl et al., 2003, 2011a; Filmalter et al., 2011;
Poisson et al., 2011, 2014; Hutchinson et al., 2015; Musyl and
Gilman, 2018), and to quantify associations with fishing gear,
such as fish aggregation devices (FADs) (Filmalter et al., 2010,
2015; Muir et al., 2012). A few tagging studies have also evaluated
key behaviors such as residency patterns or habitat utilization, but
these have been focused in the Pacific Ocean (Musyl et al., 2011b;
Hutchinson et al., 2019) and the Red Sea (Clarke et al., 2011a),
covering just a fraction of their circumtropical range.

Silky sharks are one of the most heavily exploited
elasmobranch species, targeted by both artisanal and industrial
longline shark fisheries (Hazin et al., 2007; Bonfil, 2008;
Henderson et al., 2009). Their tendency to associate with schools
of tuna also results in them representing a major component of
bycatch in tropical longline and purse seine fisheries (Román-
Verdesoto and Orozco-Zöller, 2005; Bonfil, 2008; Watson
et al., 2009; Clarke et al., 2011b; Gilman, 2011). Furthermore,
their propensity to associate with floating objects, especially as
juveniles (Romanov, 2002; Amandè et al., 2008), makes them
particularly vulnerable to FAD fishing (Filmalter et al., 2011),
where they can comprise up to 95% of the total elasmobranch
bycatch (Román-Verdesoto and Orozco-Zöller, 2005; Gilman,
2011; Lawson, 2011), with a high proportion being juveniles
(Amandè et al., 2008, 2010). Mortality rates of sharks caught
by purse seiners is also high, with less than 20% of released
individuals thought to survive (Poisson et al., 2014; Hutchinson
et al., 2015). As a result, the silky shark population in the
Atlantic Ocean is declining (Rigby et al., 2017) and stocks in the
Western and Central Pacific (WCPFC, 2018) and Indian Ocean
are “subject to overfishing” (Urbina et al., 2018). A number of
conservation and management actions have been initiated to
address perceived declines, such as the listing of silky sharks on1

of the Convention on the Conservation of Migratory Species
of Wild Animals (CMS) and see footnote1 of the Convention
on International Trade in Endangered Species of Wild Fauna &
Flora (CITES), or the prohibition of all vessels from retaining or
landing any silky shark in the Western and Central Pacific Region
(CMM 2013–08). Yet, these measures alone have not reversed
population declines, and the status of silky sharks globally was
recently uplisted from “Near Threatened” to “Vulnerable” on
The IUCN Red List of Threatened Species (Rigby et al., 2017).

No-take marine protected areas (MPAs), also known
as marine reserves, have been proposed as effective shark

1CITES (https://cites.org/eng/app/index.php) and of the CMS (https://www.
cms.int/en/species/appendix-i-ii-cms#: :text=Appendix%20II%20covers%20migra
tory%20species,could%20be%20achieved%20by%20an).

Frontiers in Marine Science | www.frontiersin.org 2 December 2020 | Volume 7 | Article 596619

https://cites.org/eng/app/index.php
https://www.cms.int/en/species/appendix-i-ii-cms#:~:text=Appendix%20II%20covers%20migratory%20species,could%20be%20achieved%20by%20an
https://www.cms.int/en/species/appendix-i-ii-cms#:~:text=Appendix%20II%20covers%20migratory%20species,could%20be%20achieved%20by%20an
https://www.cms.int/en/species/appendix-i-ii-cms#:~:text=Appendix%20II%20covers%20migratory%20species,could%20be%20achieved%20by%20an
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-596619 December 16, 2020 Time: 13:10 # 3

Curnick et al. Spatial Ecology of Silky Sharks

conservation strategies within exclusive economic zones (EEZ)
(Baum et al., 2003; Robbins et al., 2006; Watson et al., 2009).
However, the success of small-scale no-take MPAs in protecting
sharks can be limited (Robbins et al., 2006), as even reef sharks
can range beyond the limits of small MPAs (Chapman et al.,
2005). Large no-take MPAs that encompass vast swathes of
open ocean could be part of the solution for the conservation
of sharks (Wood et al., 2008; Game et al., 2009; Koldewey et al.,
2010). Yet there is limited evidence that large no-take MPAs
can protect mobile pelagic species such as sharks or tunas, with
protected areas potentially displacing fishing effort to other
areas (De Santo et al., 2011; Kaplan et al., 2014; Curnick et al.,
2020). Therefore, the efficacy of MPAs for pelagic sharks will be
dependent on the spatial relationship between the habitats of
sharks and protected area coverage.

In this study, we investigate movement behaviors of silky
sharks in the central Indian Ocean and consider the role of
the Chagos Archipelago, and the British Indian Ocean Territory
(BIOT) MPA that surrounds it, in their spatial ecology. It has
been previously hypothesized that this MPA’s large size and
habitat heterogeneity could provide conservation benefits for
pelagic sharks (Koldewey et al., 2010). However, important
knowledge of the spatial ecology and habitat use of pelagic
sharks within the central Indian Ocean is sparse. Using a
combination of biotelemetry tags (both satellite and acoustic) and
historical fisheries data, we aimed to (i) understand the horizontal
movement patterns, habitat use and site fidelity of silky sharks
within the MPA and how they are connected to the wider Indian
Ocean, (ii) quantify the vertical and thermal habitat use by silky
sharks, and (iii) assess the relative abundance and population
demographics of silky sharks around the Chagos Archipelago.
This study contributes to the understanding of silky shark ecology
with several novel insights gained into their movement behavior.

MATERIALS AND METHODS

Study Site
The Chagos Archipelago is situated 500 km south of the Maldives
and is a group of 55 islands, submerged banks (Sheppard et al.,
2012), and 73 seamounts (Yesson et al., 2020). Extending out
to the full EEZ, the BIOT MPA covers 640,000 km2 of ocean,
with the vast majority being deep oceanic water with maximum
depths of over 5,000 m. The BIOT MPA was declared a no-
take protected area in 2010 with the exclusion of all industrial
fishing practices. Prior to the establishment of the MPA, the
main licensed commercial fishery was for tunas and billfishes,
using both longline and purse seine methods (Dunn and Curnick,
2019; Curnick et al., 2020), with considerable shark bycatch
(Koldewey et al., 2010).

Telemetry
Shark Capture and Tagging
Silky sharks were caught around the Chagos Archipelago in
February and March of 2013 and 2018 using baited handlines
with barbless circle hooks. Once hooked, sharks were brought
alongside the tagging platform, tail-roped and inverted to initiate

tonic immobility (Kessel and Hussey, 2015). Once secured, total
length, sex, tagging location (latitude and longitude) and date
were recorded for each individual (except for one shark where
sex was not recorded). Silky sharks were tagged with either pop-
up archival transmitting satellite tags (MiniPATs models 247 and
386; Wildlife Computers, Redmond, WA, United States), Smart
Position or Temperature Transmitting tags (SPOT5; Wildlife
Computers, Redmond, WA, United States), acoustic tags (V16, 69
kHz, transmission interval 30–90 s or 125–175 s; Vemco, Halifax,
Nova Scotia, Canada), or ‘double tagged’ with a combination of
satellite and acoustic tags (Table 1).

MiniPATs (n = 6) were leadered with 15 cm of 180 kg
monofilament (Moimoi, Kobe, Japan), covered with a single
layer of aramide braided cord, two layers of shrink wrap
(thermoplastic), and attached to a custom titanium dart (Wilson
et al., 2015). MiniPATs were embedded with a stainless-steel
tip into the muscle tissue at the base of the dorsal fin through
a small incision made with a sterile scalpel blade. Tags were
set to activate upon entering the water and record ambient
light, temperature and depth and were programmed to detach
from tagged sharks after 100–300 days (see Table 1). Depth and
temperature data were summarized into 24 h bins, and for two
individuals, transmitted time series at 2.5- or 10-min intervals
when available. At the end of the deployment period, or after a
premature release, MiniPATs surfaced and relayed the data via
the Argos satellite system2. Data messages were then viewed,
processed and downloaded through the Wildlife Computers Data
Portal3. A premature release procedure, whereby the tag would
detach from the tether if the tag recorded a constant depth (±3
m) for a period greater than 3 days, was programmed to ensure
tag retrieval in the case of shark mortality.

SPOT tags (n = 2) were attached to the top of the first dorsal fin
of two sharks using a two-bolt attachment following Weng et al.
(2005). SPOT tags were cleaned with alcohol prior to attachment
and had a thin rubber pad to limit abrasion with the shark fin.
Tags transmitted location data to Argos satellites whenever the
shark’s fin broke the surface of the water long enough for the tag
to send a message (∼15–30 s). The accuracy of position estimates,
referred to as location class (LC), was variable and depended on
the number and time between transmissions received during a
satellite pass. Position accuracy records are classified as either LC
3 (<250 m), 2 (250–500 m), 1 (500–1,500 m), 0 (>1,500 m), A or
B (no estimate of spatial accuracy), or Z (invalid) as determined
by the Argos system (see Witt et al., 2010)2. Only Argos-derived
locations with LC 1, 2, or 3 were used in this study.

To explore potential residency to geographic features within
the MPA, four sharks were tagged at the Sandes-Swart seamount
complex in the south of the archipelago with long-term (VEMCO
V16) acoustic transmitters in March 2018. Acoustic tags were
soaked in betadine and implanted intraperitoneally through a
small incision created with a sterile blade (∼2–3 cm) just off the
midline of their abdomen. A single suture (Ethilon, United States)
was then used to close the incision. Acoustic tags transmit a
unique identification code at regular intervals with a nominal

2www.argos-system.org
3www.wildlifecomputers.com
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TABLE 1 | Tag deployments on silky sharks (Carcharhinus falciformis) around the Chagos Archipelago between 2013 and 2018.

Shark ID Deployment
date

Deployment
latitude

Deployment
longitude

Sex TL FL PCL MiniPAT Programmed MiniPAT
deployment duration (days)

SPOT V16

1 12/02/2013 −5.259 71.978 U 194 – – TS 180 – –

2 21/03/2013 −6.841 71.202 F 195 – – PDT 270 Yes –

3 22/03/2013 −5.261 71.681 F 225 – – NDR 180 Yes –

4 17/03/2018 −7.138 72.197 M 148 117 105 PDT 300 – Yes

5 17/03/2018 −7.138 72.197 F 159 131 118 NDR 240 – Yes

6 17/03/2018 −7.138 72.197 F 169 134 121 TS 100 – Yes

7 17/03/2018 −7.138 72.197 F 162 128 118 – – – Yes

Location data represented in decimal degrees. For sex, U, unknown; F, female; and M, male. TL, Total length (cm); FL, Fork length (cm); and PCL, Precaudal length (cm).
The MiniPAT (Wildlife Computers) column indicates depth and temperature data used in analysis: PDT, summary profiles of depth and temperature data collected; TS,
time-series of depth and temperature collected; and NDR, No data reported (tag failed). V16, acoustic tags (Vemco); SPOT, Smart Position or Temperature Transmitting
tags (Wildlife Computers).

delay of either 30–90 (Sharks 4 and 5) or 125–175 s (Sharks 6
and 7), for the duration of their battery life (up to 10 years). This
code is detected and recorded by a receiver when the shark swims
within ∼500 m (Jacoby et al., 2020). Sharks were acoustically
tracked as part of a broader tagging program (including both
reef-associated and pelagic species) between March 2013 and
March 2020 around the Chagos Archipelago (see Carlisle et al.,
2019; Andrzejaczek et al., 2020; Jacoby et al., 2020). In March
2019, data (corresponding to March 2018 to March 2019) were
downloaded from 47 acoustic receivers [VR2Ws, VR2W-ARs
(AR—Acoustic Release), VR2W-UWMs, and VR4Gs; Vemco,
Nova Scotia, Canada] located across Peros Banhos atoll (n = 25),
Salomon Atoll (n = 7), Great Chagos Bank (n = 3), Nelson
Island (n = 1), Egmont Atoll (n = 4), Speakers Bank (n = 3),
Benares Shoal (n = 2), Blenheim Reef (n = 1), and Victory Bank
(n = 1) (see Carlisle et al., 2019; Jacoby et al., 2020; Figure 1).
Receivers were deployed on or adjacent to reefs on the ocean-
side of geographic features (atoll, shore, or bank) and at depths
between 20 and 30 m (Figure 1). Across the same monitoring
period, three VR2W-ARs were deployed linearly east-to-west on
the Sandes-Swart seamount complex (SS01 72.225, −7.146; SS03
72.192, −7.137; and SS04 72.133, −7.149). These summits each
reach a depth of ∼70m and rise from depths of more than 600m
(for full description, see Hosegood et al., 2019). Receivers were
deployed at depths between ∼95 and 350 m (Figure 1) and the
distances between SS01 and SS03 was∼3.8 km and between SS03
and SS04 was∼6.6 km.

All procedures were approved by the Stanford University
Administrative Panel on Laboratory Animal Care (APLAC)
under permit APLAC-10765 and by the Zoological Society of
London’s Ethics Committee under permit 186-BME-0652.

Horizontal Movement Patterns

Satellite Tracking
For individuals tagged with MiniPATs, location estimates
were processed using the manufacturer’s software, Geolocation
Processing Estimator 3 (GPE3; Wildlife Computers Inc.,
Redmond, WA, United States), which has been used widely to
process elasmobranch tracking data (e.g., Skomal et al., 2017;
Hutchinson et al., 2019; Peel et al., 2020). GPE3 generates two
maximum likelihood position estimates per day using a hidden

Markov model (Patterson et al., 2009) with a 0.25◦ × 0.25◦
grid spacing, and position estimates (two per day) interpolated
and smoothed with a cubic spline. Program parameters were
defined for silky sharks to generate maximum likelihood position
estimates and maximum likelihood tracks (MLT). These included
animal speed (representing the standard deviation of a normal
distribution of the diffusion rate for the animal), model domain
(using only the marine domain to exclude points on land),
sea surface temperature (referencing position estimates against
known environmental conditions; NOAA High Resolution SST
data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado,
United States, from their website at http://www.esrl.noaa.gov/
psd/); underlying bathymetry (referencing position estimates
against known depths; Amante and Eakins, 2009); and by
comparing observed twilight light readings with expected twilight
data. GPE3 model runs were further constrained by the inclusion
of known positions from SPOT fixes (using only positions of LC
1, 2, and 3), and acoustic tag detections (limited to two locations
per 24 h, with the middle detection of the sequence taken on
occasions that sharks were detected multiple times on the same
receiver on the same day) during the period that the animal was
tagged with a MiniPAT. Input data to the model also included
the deployment location recorded with GPS and the endpoint tag
pop-up location from Argos. Speed filters were applied iteratively
to the longest track by distance (Shark 4), with GPE3 model runs
examined every 0.25 m/s, from 0.5 to 3.0 m/s. Outputs were
compared using the GPE3 quality score provided, with 1.5 m/s
producing the most likely track (Supplementary Table 1). For
consistency, this speed filter was then applied to the tracks of
the other three sharks. MLTs were plotted in R (R Development
Core Team, 2018) using the “ggplot2” and “marmap” packages
over a bathymetry layer obtained from the ETOPO1 database
hosted on the NOAA website at 4 min resolution through the
“marmap” package in R. As Shark 3’s MiniPAT did not report, its
track was generated only using SPOT fixes of LC 1, 2, and 3. Total
track length (km) and displacement distance (kilometers between
tagging location and pop-off location, km) were calculated within
the “move” package (Kranstauber and Smolla, 2015). We then
averaged the GPE3 generated 12-h probability density surfaces
for each tag and resampled the 0.25◦ GPE3 grid at a resolution of
0.0125◦ using bilinear interpolation using the R package “raster”
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FIGURE 1 | The location of Vemco acoustic receivers across the Chagos Archipelago between March 2018 and March 2019. Colors represent receiver type. Labels
depict the location of major island groups, atolls and submerged banks referred to in this study.

(sensu Stewart et al., 2016). From these, we calculated the 50,
75, and 95% polygons as a metric for each animal’s activity
space from the merged probability surfaces and estimated their
size (km2) and overlap (proportion of full probability surface)
with the BIOT MPA.

Acoustic Tracking
For those individuals carrying acoustic tags, we first defined
the “monitoring period” as the number of days between the
tagging date (17/03/2018, the same for all tagged individuals)
and when the receivers were downloaded at the end of the
study (23/03/2019). Second, we defined ‘detection period’ as
the number of days between the tagging date and the last
detection by an individual on any one of the acoustic receivers
around the archipelago. False detections caused by tag clashes
or ambient noise (69 kHz) were removed (as per Jacoby et al.,
2020). Two measures of residency were then calculated as
per Cochran et al. (2019). First, we calculated the minimum

residency index (Rmin) as the proportion of unique days detected
across the monitoring period for each shark. However, Rmin
is conservative and is sensitive to fieldwork schedules and
assumes the animal is alive and the tag is functioning across
the full monitoring period, potentially underrepresenting true
residency. We therefore also calculated the maximum residency
index (Rmax) as the proportion of unique days detected across
the detection period. In conjunction, these metrics represent
the upper and lower bounds for each animal’s true residency
behavior (Cochran et al., 2019). Visit characteristics (duration
and frequency of visits to receiver locations) were calculated for
each individual following Meyer et al. (2009, 2018). A visit started
and ended when either the location changed, or the transmitter
was not detected for 30 min. Visits consisting of single transmitter
detections were considered to last 5.9 min (equivalent to the
transmitter pulse train duration of 3.6 s, preceded and followed
by listening periods equivalent to the maximum nominal delay of
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175 s) (Supplementary Table 3). We examined temporal overlap
of individuals visiting the same receiver station. Detection time
was converted to local time (Indian Chagos Time, UTC+6 h)
and rounded to the nearest hour to explore diel patterns in
occurrence at the seamounts. We then calculated the average
hourly presence rates for each individual on any of the receivers
from the hour of their first detection through to the hour of their
last detection. For example, if shark “x” was detected at 06:00:00
14 times across a full 50-day detection period, the presence rate
at 06:00:00 would be 0.28.

Vertical Habitat Utilization
Depth and temperature data from MiniPATs were either
summarized into daily (24 h) bins (Sharks 2 and 4) or transmitted
as time series at 150 s (Shark 6) or 600 s (Shark 1) intervals
(Table 1). All values are expressed as the daily mean ± standard
deviation. For the summarized data, the temperature bins
were: < 5◦C; 5 ≤ 10◦C; 10 ≤ 14◦C; 14 ≤ 18◦C; 18 ≤ 20◦C;
20 ≤ 22◦C; 22 ≤ 24◦C; 24 ≤ 26◦C; 26 ≤ 28◦C; 28 ≤ 30◦C;
30 ≤ 32◦C and > 32◦C. For depth, these bins were: < 5 m;
5 ≤ 10 m; 10 ≤ 25 m; 25 ≤ 50 m; 50 ≤ 75 m; 75 ≤ 100 m;
100≤ 150 m; 150≤ 200 m; 200≤ 250 m; 250≤ 300 m; 300≤ 600
m and > 600 m. Time series data were split into diel phases
using the R package “suncalc” (Thieurmel and Elmarhraoui,
2019) in combination with estimated daily locations, and mean
depths occupied during the day and night were compared using
a Wilcoxon signed rank test for each individual. Dives beyond
140 m depths were quantified, with dive duration estimated as
the period of time between leaving and returning to the top
100 m. To minimize the influence of the capture process on
shark behavior, we removed the first 24 h post-tagging from our
analyses (Cliff and Thurman, 1984).

Relative Abundance and Population Demographics
We obtained fisheries observer data from around the Chagos
Archipelago from the Marine Resources Assessment Group
(MRAG) who managed fishing licences in the area prior to the
MPA’s establishment (Mees et al., 2009).

To assess the relative abundance of silky sharks around the
Chagos Archipelago, we calculated mean nominal catch per unit
effort (CPUE—number of sharks caught divided by the number
of hooks deployed, multiplied by 1,000) for silky sharks from
longline hook survey data (n = 41 sets) between November 2000–
January 2003 (equating to ∼1.3% of all longlines set during this
period). Equivalent data for purse seine fishing were not available.
To quantify the relative contribution of silky sharks to the total
catch and total shark catch, the CPUEs of all other major species
caught were also calculated.

To characterize silky shark population demographics within
the BIOT, we analyzed the fishery observer reports from 116
fishing events between November 1997 to November 2009
(equating to ∼0.7% of all logged longline and purse seine events
during this period). For each observed fishing event, data on
the sex, weight and fork lengths (FL) of individuals caught were
recorded, along with the gear used (“Longline,” “Purse Seine,”
or “Unknown”). In order to easily compare these data with
published length-at-maturity studies, we converted FL to total

length (TL), using the relationship published by Joung et al.
(2008) (TL = 1.21 ∗ FL + 2.36). Following a Shapiro-Wilk test
for normality, a two-sample t-test was used to compare the
sizes of sharks caught by longline and purse seine vessels. Silky
sharks were deemed as sexually mature if their TL exceeded
210.0 cm for females and 212.5 cm for males (Joung et al., 2008).
A two-proportions Z-test was then carried out to assess whether
there was a significant difference in the proportion of immature
individuals caught by each gear type (longline versus purse seine).

RESULTS

Horizontal Movement Patterns
Six silky sharks (four female, one male and one of unknown sex)
were satellite tagged with MiniPATs in the BIOT MPA in February
and March 2013 and March 2018 (Table 1). All individuals were
immature, except for Shark 3. Four sharks were successfully
tracked for durations that ranged from 15 to 270 days with a mean
duration of 154 days. These silky sharks showed high variability
in individual movement behaviors (Table 2 and Figure 2). We
estimate that 77% of Shark 1’s 50% polygon (70,540 km2) and
37% of its 95% polygon (265,391 km2) overlapped with the BIOT
MPA. By comparison, 29% of Shark 4’s 50% polygon (155,082
km2) and 12% of its 95% polygon (416,723 km2) overlapped
with the BIOT MPA (Supplementary Table 2). Shark 1 headed
predominately due east, with the tag popping off in the high-seas,
1,150 km away from the tagging location (Figure 2A). Shark 4
headed predominantly due west, with the tag popping off along
the coast of Kenya, 3,549 km away from the tagging location, and
having crossed four different EEZs (BIOT, Mauritius, Seychelles
and Kenya) (Figure 2A). Conversely, Shark 2 was tracked for
270 days, had an estimated track length of over 3,000 km, yet its
total 95% probability surface (53,082 km2) was entirely within
the MPA boundary (Table 2, Figure 2B, and Supplementary
Table 2). The 95% probability surfaces of Shark 3 and 6 were
also entirely within the MPA boundary, but with considerably
shorter track durations (Table 2, Figure 2C, and Supplementary
Table 2).

Acoustically tagged silky sharks were only detected on the
three receivers deployed on the Sandes-Swart seamount complex
(SS01, SS03 and SS04). All sharks were detected on all three
seamount receivers, although principally on receivers SS03 and
SS04, that were furthest west (Figures 3A,B). Sharks 4, 5, and
6 were not detected on any receiver after 29, 11, and 23 days,
respectively, with Rmin ranging from 0.01 to 0.07 and Rmax
ranging from 0.17 to 0.91 (Table 3 and Figure 3A). Shark
7 was at liberty for 326 days, with a Rmin of 0.57 and a
Rmax of 0.65 (Table 3). Across the four individuals, average
presence rates on any of the seamount receivers peaked at dawn
(0.36, 06:30–07:30) and was lowest around midnight (0.002,
Supplementary Figure 1). Diel detections varied by receiver.
Detections on the receivers SS04 and SS03 predominately
occurred during daylight hours, with a drop-off in detections
after 19:00 and increasing again after 06:00. Detections on
SS01 primarily occurred at night, between 19:00 and 07:00
(Figure 3B). Shark 7 was detected at SS03 on 130 unique
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TABLE 2 | Satellite tag (MiniPATs, Wildlife Computers) deployments on silky sharks (Carcharhinus falciformis) around the Chagos Archipelago between 2013 and 2018.

Shark ID MiniPAT
pop-up

date

Days at
liberty

MiniPAT
pop-up
latitude

MiniPAT
pop-up

longitude

Number of
known

locations

Displacement
distance (km)

Track
distance

(km)

Proportion
overlap between

track and the
BIOT MPA

Max depth
(m)

TS daytime
mean depth

(m)

TS night-time
mean depth

(m)

1 09/05/2013 87 −5.375 82.369 0 1150.08 2519.35 0.77 400 21.98 ± 11.76 14.21 ± 13.38

2 15/12/2013 270 −6.455 71.219 16 49.84 3032.03 1.00 1112 – –

4 17/11/2018 245 −3.303 40.256 33 3548.87 4782.66 0.29 392 – –

6 27/04/2018 15 −7.131 72.124 5 2.76 149.53 1.00 314.5 33.86 ± 14.34 22.41 ± 17.79

Location data represented in decimal degrees. Track duration is the number of days between tagging date and MiniPAT pop-off date. Displacement distance is the linear
distance between tag deployment and tag pop-off locations. Known locations are acoustic detections or SPOT tag position estimates used to constrain the state space
model within Global Position Estimator 3 (GPE3, Wildlife Computers). Track distance is calculated as the total distance of the maximum likelihood track generated from
GPE3. Mean daytime and night-time depths are from tags generating time-series data only. Overlap was calculated as the proportion of the 50% likelihood polygons
from the GPE3 probability surfaces that intersected with the BIOT MPA boundary. Overlap scores relating to the 75 and 95% likelihood polygons are presented in
Supplementary Table 2.

FIGURE 2 | Tracks of five silky sharks (Carcharhinus falciformis) tagged around the Chagos Archipelago between 2013 and 2018. Sharks 1, 2, 4, and 6 were tagged
with MiniPATs and MLTs were derived using manufacturers geolocation software (GPE3; Wildlife Computers Inc., Redmond, WA, United States), with position
estimates interpolated to a 0.025◦ × 0.025◦ grid spacing and smoothed with a cubic spline. Speed filters were set to 1.5 m/s for all MLTs. As Shark 3’s MiniPAT did
not report, its track was reconstructed from SPOT fixes only. MLTs are those of Shark 1 (Orange) and Shark 4 (Blue) (both A), Shark 2 (Green, B), Shark 3 (Red), and
Shark 6 (Purple) (both C). Tagging location is indicated with a white circle, tag pop-up position with a white triangle. Shark 5 (satellite tag did not report) and Shark 7
(acoustic tag only) were tagged at the same location as Sharks 4 and 6. Track color lightens as the track progresses. Polygons represent the merged probability
density surfaces for each MiniPAT, with light to dark shades representing 95, 75, and 50% probability contours. The boundary of the British Indian Ocean Territory
(BIOT) Marine Protected Area (MPA) is shown with the solid black line. The gray outline depicts islands, atolls and submerged reefs. Underlying bathymetry was
obtained from the ETOPO1 database hosted on the NOAA website at 4 min resolution through the ‘marmap’ package in R (R Core Team, 2020).
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FIGURE 3 | Acoustic detections of four silky sharks (Carcharhinus falciformis) at the Sandes-Swart seamount complex in the Chagos Archipelago in March 2018.
(A) Detections over time for all four individuals. (B) Diel detections for individuals (circle = Shark 4, square = Shark 5, diamond = Shark 6, and triangles = Shark 7)
across the full time series. Dark gray shaded areas represent night-time (19:30–06:30), and lighter gray shaded areas represent dawn (06:30–07:30) and dusk
(18:30–19:30). Colors represent the receivers the shark was detected on with blue = SS01; red = SS03; and yellow = SS04.

TABLE 3 | Acoustic tag deployments on silky sharks (Carcharhinus falciformis) around the Chagos Archipelago between 2013 and 2018.

Shark ID V16 code Sex TL Tagging
date

Last date
detected

Monitoring
period (days)

Detection
period (days)

Number of unique
days detected

Number of
detections

Rmin Rmax

4 28613 M 148 17/03/2018 15/04/2018 371 29 26 452 0.07 0.90

5 28616 F 159 17/03/2018 28/03/2018 371 11 10 140 0.03 0.91

6 19509 F 169 17/03/2018 09/04/2018 371 23 4 11 0.01 0.17

7 19511 F 162 17/03/2018 06/02/2019 371 326 213 987 0.57 0.65

F, female; and M, male; TL, Total length (cm); V16, acoustic tags (Vemco). Monitoring period represents the number of days between the tagging date and when the
receivers were downloaded at the end of the study (23/03/2019). Detection period is the number of days between first and last detection. Minimum residency index (Rmin)
equates to the number of unique days a proportion of the monitoring period. Maximum residency index (Rmax ) equates to the number of unique days a proportion of the
detection period.

days—equivalent to this individual visiting at least once every
2–3 days—suggesting a core use area. The total number of
visits to each receiver by each individual ranged from 1 (Shark
6 at SS04) to 270 (Shark 7 at SS03), with a maximum of
eight visits to a receiver by an individual within a single day
(Supplementary Table 3). With the exception of Shark 6 (lowest
residency), the mean time elapsed between consecutive visits
(i.e., absence period) by each individual to their most frequented
receiver station (SS03) was relatively brief (Shark 4: 0.55 days;
Shark 5: 0.28 days; Shark 7: 1.17 days). Mean visit durations
at each receiver station were typically brief (overall mean of
16.5 min), and varied by individual, ranging from 5.89 min
(Shark 6 on receivers SS03 and SS04) to 30.17 min (Shark 5
on SS04) (Supplementary Table 3). Maximum visit duration
was 148.67 min (Shark 4 on receiver SS04); however, visits

exceeding 1 h at any receiver station were relatively uncommon,
accounting for only 3.90% of all visits. The maximum number
of individuals simultaneously visiting the same receiver station
was two, and only occurred on six and five occasions at SS03
and SS04, respectively, and lasted between 1.69 to 48.35 min
(overall mean 10.49 min).

Vertical Habitat Utilization
Depth and temperature data were recorded by MiniPATs
deployed on four sharks (Sharks 1, 2, 4, and 6; Table 1). Tagged
individuals spent 99.41± 0.20% of their time in the top 100 m of
the water column, with the largest proportion of time in depths
of 25–50 m (31.13 ± 8.57%), followed by depths of 10–25 m
(30.55 ± 5.47%; Figure 4A). All sharks dived to depths greater
than 300 m, with a maximum recorded depth of 1112 m reported
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FIGURE 4 | Summarized depth and temperature data recorded by MiniPAT tags deployed on four silky sharks (Carcharhinus falciformis) tagged around the Chagos
Archipelago. Histograms represent mean percent time spent at (A) depth and (B) temperature. Error bars indicate ± one standard error.

from Shark 2. Tagged sharks occupied temperatures of 24–30◦C
for 96.11± 1.52% of the deployment period (Figure 4B).

Time-series data collected at 10- and 2.5-min intervals from
Sharks 1 (n = 8 days) and 6 (n = 16 days), respectively,
revealed patterns of diel vertical movement and oscillatory diving
(Figure 5). Mean depths were significantly deeper in the day
than at night (Table 2; Wilcoxon signed rank tests: Shark 1:
V = 35, p = 0.02; Shark 6: V = 133, p ≤ 0.01). These two sharks
continued to oscillate through the water column between diel
phases, spending considerably less time in the surface 5 m during
the day and shifting to a shallower distribution at night (Figure 5
and Table 2). We observed seven dives beyond 140 m by Shark
6, with five occurring within an hour of sunrise (∼07:00) or
sunset (∼19:00), one at 04:00 and another at 11:00 local time. The
median dive duration was 7.5 min. Shark 1 did not undertake any
dives beyond 140 m throughout its time at liberty.

Relative Abundance and Population
Estimates
In the months of November to January between 2000 and 2003,
the catch of longliners operating around the Chagos Archipelago
was dominated by yellowfin Thunnus albacares (28.33% of catch
by number) and bigeye tuna Thunnus obesus (25.91%). Sharks

contributed 4.18% of the total catch by number. Furthermore,
blue sharks (0.66), pelagic thresher sharks Alopias pelagicus
(0.44), and silky sharks (0.34) were the most frequently caught
per set. Silky sharks accounted for 14.84% of all sharks identified
to species level and 13.69% of all sharks caught (Table 4). Silky
sharks were caught at an average catch rate of 0.20 individuals
per thousand hooks set (for comparison, the target species
of tuna were caught at roughly 10 individuals per thousand
hooks). Pelagic thresher sharks were caught at a rate of 0.25 per
thousand hooks and blue sharks at a rate of 0.68 per thousand
hooks (Table 4).

Silky Shark Size Distributions
Of the 677 sharks reported by fisheries observers between
November 1997 and November 2009, 69 were identified as silky
sharks and reported as being caught within BIOT. Of all the silky
sharks reported, 23 were from longlines (15 female, 7 male and
1 unsexed), 22 from purse seines (12 female and 10 male) and
24 from unrecorded fishing methods (11 female, 8 male and 5
unsexed) (Figure 6). The average length of silky sharks caught
around the Chagos Archipelago was 211.12 cm (± 8.01 s.e.), with
no statistical difference between sex (females 204.49 ± 10.58 cm;
males 205.83 ± 12.82 cm), and 55.88% of individuals being
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FIGURE 5 | MiniPAT depth (blue) and temperature (red) time-series data from tags deployed on two silky sharks (Carcharhinus falciformis) tagged around the
Chagos Archipelago. Gray shaded areas represent night-time (19:00–07:00) and white daytime (07:00–19:00). (A) Representative diel vertical movements of shark 1
over 2 days. (B) The entire transmitted depth and temperature series from shark 6.

immature juveniles. The average length of silky sharks caught
by longlines (211.46 ± 8.01 cm) was significantly larger than
individuals caught by purse seines (148.55 ± 6.10 cm) (two
sample t-test: t = 5.31, df = 33.96, p < 0.01) and purse seines
(100%) caught a significantly higher proportion of juveniles than
longlines (54.55%) (Chi-squared = 10.48, df = 1, p < 0.01).
Only 16.67% of sharks from unrecorded fishing methods were
immature, and all were female (Figure 6).

DISCUSSION

Understanding the movement patterns, depth and thermal
preferences of vulnerable pelagic sharks can inform efforts to

minimize negative fisheries interactions (Queiroz et al., 2016;
Hazen et al., 2018). Through analyses of biotelemetry and
fisheries data in the central Indian Ocean, we demonstrate
the high variability in horizontal movement behavior of silky
sharks in the region and consider the ecological significance of
the Chagos Archipelago and the MPA that surrounds it. This
study advances our understanding of this relatively understudied
species in a region where many fish stocks are already heavily
depleted and pressure is expected to increase considerably, with
nearly half the world’s human population expected to live around
the Indian Ocean by 2050 (Doyle, 2018). Our findings contribute
toward the understanding and the evaluation of the role that
large-scale spatial management strategies, like MPAs, may have
in the conservation of mobile pelagic species.
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TABLE 4 | Summary table of the frequency (f), CPUE (Number caught per
thousand hooks), standard errors (s.e.), and percentage contributions to catches
for tunas and sharks from 41 longline sets surveyed as part of an observer run
hook survey between November and February in 2000 to 2003 around the
Chagos Archipelago.

Species f Mean
CPUE

s.e. Percentage of

Total
catch

Identified
sharks

All
sharks

Yellowfin tuna
Thunnus albacares

0.98 10.01 3.66 28.33

Bigeye tuna
Thunnus obesus

0.93 9.27 1.54 25.91

Blue shark
Prionace glauca

0.66 0.68 0.39 1.82 47.10 43.45

Pelagic thresher
shark Alopias
pelagicus

0.44 0.25 0.22 0.67 17.42 16.07

Silky shark
Carcharhinus
falciformis

0.34 0.20 0.09 0.57 14.84 13.69

All other identified
sharks

0.44 0.29 0.10 0.80 20.65 19.05

Unidentified sharks 0.24 0.11 0.07 0.32 7.74

All sharks
combined

1.00 1.54 0.16 4.18

Silky sharks are known to be highly mobile, with previous
studies reporting maximum displacement distances of 1,010 km
(Hutchinson et al., 2019), 1,339 km (Kohler et al., 1998),
2,200 km (Lara-Lizardi et al., 2020), and even 3,195 km (Schaefer
et al., 2019). Two of the sharks tagged within this study
exhibited large ranging movements, with Shark 4 (displacement
distance 3,549 km, total track distance of 4,782 km) considerably
exceeding the published maximum displacement distance for
the species. Although both sharks spent considerable periods of
time within the BIOT MPA before exiting, such wide-ranging
movements suggest large distribution ranges, spanning multiple
EEZs and the areas beyond national jurisdiction. This emphasizes
the importance of implementing effective fishery management
and developing multi-national conservation measures, especially
for purse seiners where mortality rates are high, even if sharks are
released (Poisson et al., 2014; Hutchinson et al., 2015; Eddy et al.,
2016). For example, the use of non-entangling FADs (Franco
et al., 2012; Lopez et al., 2017) can reduce the potential of ghost-
fishing events (Filmalter et al., 2013) and the introduction of
best practice handling and release procedures can reduce post-
release mortality (Poisson et al., 2016). Yet, spatial protection can
be effective for wide-ranging marine predators even if they do
not encapsulate the species’ entire home range, if they contain
core habitats supporting key life-history stages, such as breeding,
feeding or gestation (Hooker et al., 2011).

The distribution and movement of pelagic predators has
been shown to correlate with environmental conditions, such
as thermal fronts, chlorophyll-a concentrations and upwelling
events (Block et al., 2011; Lezama-Ochoa et al., 2016; Braun
et al., 2019; Lopez et al., 2020). The two silky sharks with

the largest displacement distances within this study displayed
divergent movement trajectories, with one heading east and the
other west. It is important to note that these two individuals
were tagged at a similar time of the year, although 5 years
apart. As such, inter-annual fluctuations of climate and prevailing
oceanic conditions, such as the Indian Ocean Dipole (IOD) (Saji
et al., 1999), may have played a factor in the direction and
nature of their respective movements. When the IOD is positive,
upwelling occurs along coasts of Sumatra and Java, increasing
primary productivity in the east and decreasing productivity
in the west (Marsac, 2008). Interestingly, Shark 1 headed east
during a negative IOD phase and Shark 4 headed west during a
positive IOD phase, contrary to our expectation that silky sharks
would migrate toward more productive areas. Importantly,
given our small sample size, differences observed here could be
simply attributable to individual variation, especially as divergent
longitudinal movements of silky sharks have been observed in
individuals tagged at several other locations (Musyl et al., 2011b;
Filmalter et al., 2015; Hutchinson et al., 2019). Alternatively,
movement behaviors of individuals may have been artificially
impacted by association with drifting FADs (Hutchinson et al.,
2019), although a recent study demonstrated that at least 30% of
juvenile silky shark movements were not associated with surface
currents (Bonnin et al., 2020).

Whilst the aforementioned individuals demonstrate the high
mobility potential of silky sharks, the majority of the tagging
data available for the species indicate far shorter displacement
distances and stronger residency behavior (Kohler et al., 1998;
Clarke et al., 2011a; Hutchinson et al., 2019). Shark 2’s 270-
day maximum likelihood track and 95% probability polygon was
entirely within the MPA boundary and around the geographical
features of the Chagos Archipelago. Shark 7 also exhibited
prolonged residency at the Sandes-Swart seamount complex. The
Chagos Archipelago has been previously described as harboring
reef fish biomass up to six times higher than elsewhere in the
Indian Ocean (Graham et al., 2013) and having high levels of
primary production (Hosegood et al., 2019) compared to the
surrounding largely oligotrophic ocean (Morel et al., 2010). The
archipelago also contains ∼73 seamounts (Yesson et al., 2020)
that are hotspots of pelagic biodiversity (Morato et al., 2010;
Letessier et al., 2019), and silky sharks are known to frequently use
shallow areas adjacent to deep water (Compagno, 1984; Clarke
et al., 2011a). As only one adult silky shark was tagged for a
limited duration, we cannot rule out that adult sharks may be
less resident than the juveniles tracked for longer here. However,
the rich resources and varied habitats of the Chagos Archipelago
may be providing all the resources required, reducing the need for
wide-ranging foraging behavior, especially for juveniles and early
life stages. As reducing juvenile mortality has profound positive
effects on future population growth (Cortés, 2002; Beerkircher
and Shivji, 2003), the exclusion of industrial fisheries, the biggest
threat to juvenile silky sharks (Lawson, 2011; Clarke et al.,
2018), from the BIOT MPA could be providing considerable
benefits for the species. However, this is dependent on effective
enforcement and management. The BIOT MPA is threatened
by targeted illegal, unreported and unregulated fishing (IUU)
vessels, principally from Sri Lanka and India (Clark et al., 2015;
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FIGURE 6 | The size distribution of silky sharks (Carcharhinus falciformis) caught around the Chagos Archipelago between November 1997 and November 2009 by
purse seine, longline and unknown gear (left) and of female, male and individuals of an unknown sex caught by all gear types (right). Vertical dashed lines represent
the mean lengths recorded by each respective group. Vertical dotted lines represent the estimated total length of maturity of female (210 cm) and male (212 cm) silky
sharks (Joung et al., 2008).

Ferretti et al., 2018; Tickler et al., 2019; Jacoby et al., 2020) and
FADs still drift through, potentially aggregating biomass and
exporting it outside and into fishable waters.

Notwithstanding some spatial overlap, individuals were
temporally separated and visits to receiver stations were
typically brief and relatively frequent. We observed considerable
differences in detection patterns between individuals, ranging

from prolonged occupancy across ∼11 months to repeated
detections across a shorter period, 11–29 days. Large variation
in residency behavior, including prolonged occupancies, have
previously been documented amongst a silky shark population in
the Red Sea (Clarke et al., 2011a). Shark 7 remained associated
with the seamount for nearly an entire year, suggesting a
high degree of fidelity or philopatry to this feature. Seamounts

Frontiers in Marine Science | www.frontiersin.org 12 December 2020 | Volume 7 | Article 596619

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-596619 December 16, 2020 Time: 13:10 # 13

Curnick et al. Spatial Ecology of Silky Sharks

have been previously demonstrated as important sites for
pelagic sharks (Morato et al., 2010, 2016; Letessier et al., 2019)
and oceanographic observations of the Sandes-Swart seamount
complex have attributed the aggregations of predators at its
summit to the accumulation of biomass induced by the presence
and formation of internal lee waves (Hosegood et al., 2019).
Conversely, the relatively high Rmax and low Rmin indices in
Sharks 4 and 5, suggest intense use of these features during
short time periods. Sharks may therefore be utilizing the
seamounts as meeting or feeding points intermittently during
larger movements. Such association behavior is also consistent
with silky shark interactions with FADs, which they typically
associate with for between 15 and 30 days (Filmalter et al.,
2015; Hutchinson et al., 2019). Importantly, we recognize that
tag failure or mortality can also cause the subsequent lack of
detections and is a limitation of acoustic data. We also note
that, despite acoustic receivers being located throughout the
archipelago (Carlisle et al., 2019), silky sharks were only detected
on the receivers located on Sandes-Swart seamount complex,
close to where they were tagged. However, as the next nearest
receivers were located at Egmont Atoll, over 90 km to the north
west, we cannot rule out that silky sharks were using other
shallow features nearer by, such as Diego Garcia, the Great
Chagos Bank or Pitt Bank, that were not monitored by acoustic
receivers during this study.

There were clear diel variations in the detections of silky
sharks at the seamount. Consistent detections on the seamount
during the day and absences at night are in parallel to silky shark
behavior observed around FADs, where night-time absences were
attributed to feeding excursions (Filmalter et al., 2015). Juvenile
silky sharks may therefore be behaving as central place foragers
around this feature, as has been demonstrated in reef sharks
around Palmyra Atoll in the Pacific (Papastamatiou et al., 2018),
during the duration of their association.

We report that tagged silky sharks displayed patterns of diel
vertical migration, oscillatory diving behavior and spent > 99%
of their time in the top 100 m of the water column, while
also diving to depths of greater than 300 m. Our findings are
therefore broadly consistent with observations of silky sharks
in the Pacific (Musyl et al., 2011b; Hutchinson et al., 2019).
Yet, we also observed much deeper dives, with one individual
recorded to a depth of 1,112 m, the deepest recorded dive
for the species (previously reported at 640 m; Hueter et al.,
2018). The vertical distribution and diving behavior of pelagic
predatory fishes is typically driven by the need to optimize prey
encounter rates and energy expenditure, while remaining within
preferred environmental conditions (i.e., temperature, oxygen)
(Carey et al., 1990; Klimley et al., 2002; Meyer et al., 2009;
Andrzejaczek et al., 2019). Consistent with studies in the Pacific
(Hutchinson et al., 2019), Atlantic (Hueter et al., 2018), and
western Indian Ocean (Filmalter et al., 2015), silky shark diving
depths were, on average, shallower at night than during the day,
but deeper dives were generally associated with local dawn and
dusk. We interpret this to be foraging behavior, as mesopelagic
species are a regular occurrence in the diet of Indian Ocean silky
sharks (Filmalter et al., 2017). Overall, the vertical niche occupied
by silky sharks in this study overlaps directly with the hanging

depth of purse seine nets (up to 200 m) in the Indian Ocean
(Kaplan et al., 2014), putting them at high risk of capture should
they leave the protection of the MPA. However, typical depths of
longline hooks set in the Indian Ocean for yellowfin or bigeye
are deeper, between 100–250 m and 100–400 m, respectively
(Nishida et al., 2003). As such, there is less direct vertical overlap
with longlines, although sharks may undertake deeper vertical
movements if attracted to baited hooks, as they are frequently
caught by longliners in the Indian Ocean (Huang and Liu, 2010).

It has been hypothesized that pelagic shark species display
thermal (Musyl et al., 2011b) and vertical niche partitioning
(Choy et al., 2009). Previous studies have shown silky sharks
residing in waters within 2◦C of the surface water temperature
in the Red Sea (Clarke et al., 2011a), but being limited to
water temperatures above 23◦C (Musyl et al., 2011b) and
occupying water temperatures between 24 and 29◦C in the
Pacific (Hutchinson et al., 2019). Similarly, individuals tagged
around the Chagos Archipelago occupied the 24–30◦C thermal
band for 96% of their time at liberty. Thermal niche is coupled
with horizontal and vertical distributions and is temporally and
spatially variable (Musyl et al., 2011a). The interannual variability
in sea surface temperature driven by climatic oscillations, such
as the IOD (Saji et al., 1999), could therefore drive temporal
variation in vertical habitat use. This may explain the variation
in mean diel depths between the two sharks reporting time-series
data tagged in similar months, though 5 years apart, although
more tagging data is needed in this area to investigate this
hypothesis further.

Analysis of the historical fisheries data indicated that silky
sharks were a significant component of the pelagic shark
community around the Chagos Archipelago between November
2000 and February 2003, prior to the MPA’s establishment.
Furthermore, the vast majority of individuals caught were
juvenile, indicating that the MPA may be an important area
for silky sharks during early life stages. Silky sharks contributed
0.6% of total longline catch. This is broadly consistent with those
observed across the Indian Ocean by longlines targeting bigeye
tuna, although considerably lower than those targeting yellowfin
tuna (7.5%) (Huang and Liu, 2010). This is primarily driven
by variations in fishing method, such as hook depth, which is
increased when targeting bigeye tuna and can lower silky shark
catch by a factor of 6.4 (Gilman et al., 2008). Unfortunately, no
data were available on hook depth, nor other fishing method
variations, such as bait selection, soak time or deployment time,
which are also known to influence catch rates and composition
(Romanov, 2002). However, as yellowfin tuna were the dominant
catch, we can assume some lines were targeted at this species and
therefore silky shark catches were lower than expected. These
are likely attributable to the ban on wire leaders in BIOT in
1999 (Dunne et al., 2014), a measure previously shown to reduce
the silky shark catch rates by ∼40% (Ward et al., 2008), or the
prohibition of fishing within 12 nautical miles of the islands,
atolls and reefs of the archipelago (Dunne et al., 2014), as shallow
coastal habitats can be an important habitat for juvenile silky
sharks (Branstetter, 1987; Bonfil, 1997).

The fisheries observer data represent the best available
information on historic pelagic shark communities for the
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territory, yet there are important considerations when making
inferences given their limited coverage. For example, we cannot
rule out seasonal variation in silky shark catch rates. The longline
hook survey only spanned three years and all sets surveyed
were carried out between November and January, the traditional
peak fishing season around the Chagos Archipelago (Dunn and
Curnick, 2019; Curnick et al., 2020), when migrating tuna are
thought to pass through the area (Pearce, 1996). This may in turn
lead to increased catch rates of pelagic predators during this time,
especially silky sharks who associate with these target species.
Species specific shark catches, however, were not routinely
recorded in logbooks, despite the IOTC requesting their inclusion
in 2005 due to limited shark-specific data (Molina et al., 2005).
As such, it is difficult to ascertain whether the patterns seen in the
observer data, given the relatively low number of lines surveyed
and uneven sampling, were truly representative of catches by
the fishery. Further, no quantitative survey data were available
for purse seiners in BIOT, where silky shark bycatch is higher
(Molina et al., 2005; González et al., 2007), especially for those
using FADs (Amandè et al., 2008; Watson et al., 2009; Gilman,
2011).

Within a relatively small sample size, we observed very distinct
spatial tracks with a large degree of variation between individuals.
Such intra-species variation has been previously noted in silky
sharks (Filmalter et al., 2015) and other elasmobranch species,
such as the reef manta ray (Mobula alfredi) (Andrzejaczek et al.,
2020) and Galapagos shark (Carcharhinus galapagensis) (Lowe
et al., 2006). We advocate that an extensive tagging program
with deployments across multiple sexes, life stages, regions
and seasons is urgently needed to confirm whether behaviors
observed here are consistent through time and ontogeny and
are representative of the Indian Ocean population. Such data are
crucial to inform future stock assessments for the species that
are currently uncertain and data-poor, resulting in management
advice being unclear (IOTC, 2017). Further, such data could
support the development of adaptive spatial management or
dynamic ocean management (Lopez et al., 2020), which are seen
as promising tools to improve the conservation and management
of these species, and are being considered by several fisheries
management organizations (Hobday et al., 2013; Maxwell et al.,
2015; Hazen et al., 2018; Welch et al., 2019).

We provide intriguing insights into the behavior of silky
sharks in the central Indian Ocean, documenting the furthest
displacement distance and deepest dive for the species, yet
also demonstrating high site fidelity and prolonged residency.
However, given the small number of animals tracked and
high variability observed, further investigations are required to
confirm how silky sharks found in the MPA are connected
to the wider Indian Ocean, whether their behaviors are
consistent through time and ontogeny, and what environmental
conditions drive these behaviors. We also highlight the value
of combining telemetry studies with historical fisheries analyses,
and the importance of broadening elasmobranch research to
understudied species in data-poor regions. High site fidelity
to geographic features and predictable utilization of them by
juveniles, as observed here, suggests that well enforced protection
in key areas could be an effective conservation strategy for

the species. We conclude that spatial protection should be a
component of a holistic management strategy for the species,
alongside fisheries regulations and conservation measures in
adjacent EEZs and in areas beyond national jurisdiction.
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