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We investigated diets of 24 Barents Sea zooplankton taxa to understand pelagic
food-web processes during late summer, including the importance of sea ice algae-
produced carbon. This was achieved by combining insights derived from multiple
and complementary trophic marker approaches to construct individual aspects of
feeding. Specifically, we determined proportions of algal-produced fatty acids (FAs) to
reflect the reliance on diatom- versus dinoflagellate-derived carbon, highly branched
isoprenoid (HBI) lipids that distinguish between ice-associated and pelagic carbon
sources, and sterols to indicate the degree of carnivory. Copepods had the strongest
diatom signal based on FAs, while a lack of sea ice algae-associated HBIs (IP25,
IPSO25) suggested that they fed on pelagic rather than ice-associated diatoms. The
amphipod Themisto libellula and the ctenophores Beroë cucumis and Mertensia ovum
had a higher contribution of dinoflagellate-produced FAs. There was a high degree of
carnivory in this food web, as indicated by the FA carnivory index 18:1(n−9)/18:1(n−7)
(mean value < 1 only in the pteropod Clione limacina), the presence of copepod-
associated FAs in most of the taxa, and the absence of algal-produced HBIs in small
copepod taxa, such as Oithona similis and Pseudocalanus spp. The coherence between
concentrations of HBIs and phytosterols within individuals suggested that phytosterols
provide a good additional indication for algal ingestion. Sea ice algae-associated HBIs
were detected in six zooplankton species (occurring in krill, amphipods, pteropods,
and appendicularians), indicating an overall low to moderate contribution of ice-
associated carbon from late-summer sea ice to pelagic consumption. The unexpected
occurrence of ice-derived HBIs in pteropods and appendicularians, however, suggests
an importance of sedimenting ice-derived material at least for filter feeders within the
water column at this time of year.

Keywords: food web, Barents Sea, sea ice, carbon sources, trophic markers, fatty acids, highly branched
isoprenoid (HBI) lipids, sterols
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INTRODUCTION

The Barents Sea epitomizes a valuable, high latitude system
undergoing rapid climatic warming. This sea comprises a highly
productive Arctic shelf sea and nursery ground for commercially
important fish species (Hunt et al., 2013; Fuglestad et al., 2020;
Kvamsdal et al., 2020). While its southern part is influenced
by Atlantic waters supporting rich fish stocks, the northern
part is governed by a colder Arctic climate. During winter,
most of the Barents Sea north of 75◦N is covered with sea ice,
while the southern part remains ice-free (Vinje and Kvambekk,
1991). Seasonal and interannual variability in ice coverage is
large, however, and depends directly on the inflow of Atlantic
water as well as atmospheric and oceanic circulation patterns
(Schlichtholz, 2011; Årthun et al., 2012; Lind et al., 2018).
Increasing atmospheric temperatures and warming Atlantic
waters in recent decades have resulted in a decline in sea-ice
coverage and a decrease in sea-ice import, which is particularly
pronounced in the northern Barents Sea (Long and Perrie, 2017;
Onarheim and Årthun, 2017; Lind et al., 2018).

Such environmental changes have major impacts on primary
producers (algae) and their interactions with consumers in the
Barents Sea ecosystem (Wassmann et al., 2006; Stige et al., 2019;
Dalpadado et al., 2020; Dong et al., 2020). Zooplankton are
key components of marine ecosystems, transferring energy from
algae to fish and ultimately to top predators (Wassmann et al.,
2006; Hop and Gjøsæter, 2013; Planque et al., 2014). As such, they
are well adapted to the prevailing environmental conditions and
the seasonality of food supply, and therefore zooplankton can be
sensitive to changes in their habitat, with cascading effects along
the food chain (Blanchard, 2015).

As the Barents Sea has warmed, sea-ice retreat and the longer
open water season have caused a sharp increase in estimated net
pelagic primary production (e.g., Ellingsen et al., 2008; Arrigo
and van Dijken, 2015), which can improve feeding conditions
for zooplankton and fish in phytoplankton-based food chains.
However, organisms with a strong reliance on sea ice can be
negatively impacted (Stige et al., 2019; Dalpadado et al., 2020).
Many Arctic species, across all trophic levels, are known to
have a strong association with sea ice, for feeding, reproduction
and refuge (Hop et al., 2000; Poltermann, 2001; Lone et al.,
2019). Shrinkage and confinement of the sea-ice habitat to more
northern regions will likely have negative consequences for these
species. While algae associated with the sea ice may comprise
less than 25% of the annual Barents Sea primary production
(Hegseth, 1998; Wassmann et al., 2006), they can nevertheless be
an important carbon source for the food web both early in the
season (Conover et al., 1986; Søreide et al., 2010) and later during
summer (Tamelander et al., 2006; Assmy et al., 2013; Kohlbach
et al., 2016, 2017b).

In the Barents Sea, pronounced interannual variability
in physical conditions is reflected in large fluctuations of
zooplankton composition between seasons and years (Dalpadado
et al., 2003; Gluchowska et al., 2017; Stige et al., 2019). Calanus
copepods generally dominate the zooplankton biomass in the
northern regions (Aarflot et al., 2018). While Calanus glacialis is
more abundant in Arctic shelf waters, C. finmarchicus dominates
in the Atlantic sector of the Barents Sea, and C. hyperboreus

is overall less abundant than the former two species as it is
predominantly found in waters deeper than the Barents Sea
(Hirche, 1997). Moreover, small copepod taxa, such as Oithona
spp., Pseudocalanus spp., Microcalanus spp. as well as krill
(Thysanoessa spp.), amphipods (Themisto spp.) and pteropods
(Clione limacina and Limacina helicina) can occur in high
abundances (Falk-Petersen et al., 1999; Wassmann et al., 2006).

Gelatinous zooplankton have been less studied, though
scientific interest in such species and their function in food-
web processes has increased worldwide in recent years (Condon
et al., 2012; Jaspers et al., 2015; Aubert et al., 2018). Gelatinous
zooplankton, such as ctenophores, are not assumed to be a major
prey item for fish, although recent studies suggest that increasing
water temperatures might favor ctenophores, as they were found
more frequently preyed on by cod (Gadus morhua) (Eriksen
et al., 2018a). For these reasons, our study compared a wide suite
of Arctic zooplankton species, assessing diets of the gelatinous
component in a comparative context with the other species.

To study predator-prey relationships of marine organisms,
different biochemical methods can be applied. Marine algae
produce a number of biomolecules that are transferred along the
food chain without significant changes, and can be employed
as so-called trophic markers (Ruess and Müller-Navarra, 2019).
Marker fatty acids (FAs) can be traced in the consumers
across multiple trophic levels (Scott et al., 1999; Haug et al.,
2017) and provide information on their carbon and food
source preferences (Wang et al., 2015; Kohlbach et al., 2016).
Furthermore, distinguishing between pelagic or ice-associated
carbon can potentially be achieved by investigating the presence
and distribution of certain highly branched isoprenoid (HBI)
lipids biosynthesized by specific pelagic and ice-associated
diatoms (Brown et al., 2017b, 2018; Schmidt et al., 2018). In
contrast, sterols yield less specific dietary information, but can
be used to distinguish, to some extent, phytoplankton-produced
versus animal-produced carbon (Drazen et al., 2008; Ruess and
Müller-Navarra, 2019). Each of these biochemical methods has
strengths and weaknesses, but when applied in combination they
yield different facets to feeding and are a powerful approach to
study food webs (Leu et al., 2020).

Since the Barents Sea has rich fishery resources and is
considered a ‘climate change hotspot,’ it has been the focus of
a series of large-scale and long-term ecological surveys as a
basis for risk assessment and the prediction of future scenarios
(Johannesen et al., 2012; Eriksen et al., 2017; Prozorkevich
and Sunnanå, 2017; Eriksen et al., 2018b; Arneberg et al.,
2020). Elucidating the present-day variability in diets of the key
zooplankton species is crucial to gain a better understanding of
the impacts of climate change on the Barents Sea food-web. In
this context, the Nansen Legacy Project (arvenetternansen.com)
represents a Norwegian research effort to address the impact of
climate change on biological, chemical and physical processes in
the northern Barents Sea on a seasonal scale. As a contribution
to this project, we explored the dietary carbon sources, including
sea-ice algae, for Barents Sea zooplankton collected during late
summer 2019 to infer food-web interactions at the base of
the marine ecosystem during the late summer period. This
research question was approached comprehensively by sampling
at multiple stations along a south-north transect using a
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multi-trophic marker approach. The results are discussed in the
context of a reducing Arctic sea-ice cover.

MATERIALS AND METHODS

Sample Collection
Sampling was carried out as part of the Norwegian Nansen Legacy
project during the seasonal cruise Q3 (05–27 August 2019)
with RV Kronprins Haakon north of 76◦N in the Barents Sea
(Figure 1). During the sampling, areas represented by sampling
stations P1 and P2 were ice-free, P4 was located close to the ice
edge, and stations P5, P6, and P7 were ice-covered (Figure 1).
Additional information about individual sampling stations can
be found in Supplementary Table 1.

Samples of 24 zooplankton taxa including copepods, krill,
amphipods, pteropods and gelatinous species (Table 1) were
collected at six stations. We used MIK nets (1,200 µm with
500 µm cod end) and WP3 net (1,000 µm) for large taxa;
Macroplankton trawl for mostly Thysanoessa spp. (multiple mesh
sizes along the net, tapering to 8 mm at its end); Bongo net

(180 µm) and Multinet (180 µm) for copepods (all species);
and WP2 net (90 µm) for small copepods (Supplementary
Table 1). Samples were sorted into the lowest possible taxonomic
level, and/or stage/size groups (where possible) onboard the ship
and immediately frozen at −80◦C in 2 mL cryovials. The three
Calanus species were differentiated based on morphology and
prosome lengths according to Kwasniewski et al. (2003). Small
species/individuals were pooled by species (and by stage/size
group, if applicable) in order to obtain sufficient sample material
for analyses (Table 1).

Pelagic particulate organic matter (PPOM) was collected at
the chlorophyll a (Chl a) maximum with Niskin bottles attached
to a CTD rosette, which varied in depth from 14 to 73 m
at the six investigated stations. Volumes from 1.2 to 2.5 L of
seawater were filtered via a vacuum pump (−20 kPA) through
pre-combusted (3 h, 550◦C) 47 mm Whatman R© GF/F filters.
Ice-associated POM (IPOM) was collected at two stations by
sampling ice cores using an ice corer of 9 cm interior diameter
(Kovacs Enterprises, Inc., United States). The lowest 10 cm of the
ice cores were melted in the dark at 4 ◦C without the addition of
seawater, which was assumed to have a negligible effect on the

FIGURE 1 | Map showing the Nansen Legacy transect across the Barents Sea in August 2019. Sea-ice concentration (SIC%) along the sampling transect is shown
for 15 August 2019. SIC data was acquired from Bremen University (https://seaice.uni-bremen.de/sea-ice-concentration/amsre-amsr2/) (Spreen et al., 2008).
Maximum sea-extent occurred in March (black stippled line), minimum sea-ice extent in September 2019 (red stippled line) [acquired from National Snow and Ice
Data Center; Fetterer et al. (2017)].
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TABLE 1 | Overview of zooplankton taxa collected during Nansen Legacy cruise Q3 in August 2019 in the Barents Sea.

Taxonomic group Zooplankton taxa Stage/Length group (mm)* Ind. per sample Dry weight/ind. (mg)**

Copepods Calanus finmarchicus Gunnerus, 1770 CIV-AF 8–30 –

Calanus glacialis Jaschnov, 1955 CIV-AF 5–31 –

Calanus hyperboreus Krøyer, 1838 CIV-AF 4–22 3.7 (2.3–6.2)

Metridia longa Lubbock, 1854 CV-AF 8–35 –

Microcalanus spp. CIV-AF 50–100 –

Oithona similis Claus, 1866 CIII-AF 50–160 –

Paraeuchaeta glacialis Hansen, 1886 AF 2 16.7

Paraeuchaeta norvegica Boeck, 1972 CV-AF 4 4.9 (4.9 and 5.0)

Pseudocalanus spp. CIV-AF 18–50 –

Krill Meganyctiphanes norvegica M. Sars, 1857 30–40 1 72.5 (31.7–123.8)

Thysanoessa inermis Krøyer, 1846 15–20 to 25–30 3–5 36.0 (7.9–58.1)

Thysanoessa longicaudata Krøyer, 1846 10–15 2–10 5.3 (4.5–6.1)

Amphipods Themisto abyssorum Boeck, 1870 5–10 to 25–30 3–25 11.2 (0.7–17.1)

Themisto libellula Liechtenstein, 1822 5–10 to 10–20 2–8 3.5 (1.2–6.1)

Pteropods Clione limacina Phipps, 1774 5–10 to 50–60 1–5 62.6 (4.0–104.2)

Limacina helicina Phipps, 1774 10–15 4–10 5.9 (3.6–8.3)

Cnidarians Bougainvillia superciliaris L. Agassiz, 1849 5–10 8 0.7

Catablema vesicarium A. Agassiz, 1862 20–25 to 30–40 2 10.2 (6.2 and 14.2)

Ctenophores Beroë cucumis Fabricius, 1780 10–20 1–2 41.8 (8.9–101.8)

Mertensia ovum Fabricius, 1780 10–20 1 or bulk 12.4 (9.6 and 15.1)

Chaetognaths Eukrohnia hamata Möbius, 1875 20–30 to 30–40 10–15 5.0 (3.7–6.7)

Parasagitta elegans Verrill, 1873 30–40 5–20 5.3 (2.4–8.3)

Sagitta maxima Conant, 1896 70–80 1 59.8 (48.8 and 70.8)

Appendicularians Oikopleura vanhoeffeni Lohmann, 1896 10–20 10–>20 2.6 (2.5 and 2.8)

AF, adult female; CIII-CV, copepodid stages III–V.
*Copepods measured from rostrum to the tip of the last prosome segment (not including rostrum); krill and amphipods measured from base of rostrum to end of urosome;
other species measured as total length or widest diameter.
**Individuals used for lipid class and fatty acid analyses. For some samples, a bulk of individuals has been pooled, and no information on dry weight/ind. is available for
these samples. For n see Supplementary Table 3.

bulk biochemical properties of IPOM (Roukaerts et al., 2019).
Samples for taxonomic analysis were melted with the addition
of filtered seawater to conserve the more delicate algae, such
as flagellates, during the melting process (Garrison and Buck,
1986). For each sample, 600 mL of melted ice sample was filtered
through pre-combusted GF/F filters. All filters were stored at
−80◦C until further processing.

Lipid Classes and Fatty Acids (FAs)
Lipid classes and FAs were analyzed at the Alfred Wegener
Institute, Bremerhaven, Germany. Detailed information
on analytical procedure and lab equipment can be found
in Kohlbach et al. (2016). Samples were freeze-dried and
zooplankton dry weights were determined gravimetrically
(Table 1; no dry weights were available for C. finmarchicus,
C. glacialis and small copepods). Briefly, an internal
standard (C23:0) was added and total lipids were extracted
using a modified procedure from Folch et al. (1957) with
dichloromethane/methanol (2:1, v/v). Lipid class analysis was
performed directly on the extracted lipids (Graeve and Janssen,
2009) via high performance liquid chromatography. Lipid classes
were distinguished into neutral (i.e., storage) lipids and polar
(i.e., membrane) lipids (Supplementary Table 2). Lipid class
analysis was not performed on Metridia longa, Microcalanus spp.,
Oithona similis, and Pseudocalanus spp. due to lack of sufficient

sample material. In these taxa, the relative proportions of wax
esters were estimated from the relation of FAs to fatty alcohols.

The extracted lipids were converted into fatty acid methyl
esters (FAMEs) and free fatty alcohols derived from wax esters
by transesterification in methanol, containing 3% concentrated
sulfuric acid. After a subsequent hexane extraction, the FAMEs
and alcohols were separated by gas chromatography. PPOM
samples were analyzed in triplicates per station (total n = 18) and
IPOM samples in duplicates per station (total n = 4).

Fatty acids were expressed by the nomenclature A:B(n−X);
where A represents the number of carbon atoms, B the amount
of double bonds, and X is the position of the first double
bond starting from the methyl end of the carbon chain. The
proportions of individual FAs were expressed as mass percentage
of the total FA content.

In this study, we focus on trophic marker FAs that can be used
to trace food-source preferences through the food web. The FAs
16:1(n−7), 16:4(n−1), and 20:5(n−3) are mostly produced by
diatoms (i.e., diatom-associated FAs), and the FAs 18:4(n−3) and
22:6(n−3) (i.e., dinoflagellate-associated FAs) are predominantly
produced by dinoflagellates and the prymnesiophyte Phaeocystis
(Falk-Petersen et al., 1998; Reuss and Poulsen, 2002; Dalsgaard
et al., 2003). Trophic marker ratios of the FAs 16:1(n−7)/16:0, the
sum of C16 FAs (produced in high amounts by diatoms) versus
the sum of C18 FAs (produced in high amounts by dinoflagellates;
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hereafter referred to as 6C16/6C18), and the FA ratio 20:5(n-
3)/22:6(n-3) > 1 can indicate a dominance of diatom-produced
versus dinoflagellate-produced carbon in an algal community
or carbon pool of a consumer. The monounsaturated long-
chained FAs 20:1 and 22:1, which are isomers synthesized de
novo by copepods, typically indicate the importance of copepods,
such as Calanus spp., as a food source for a consumer (Sargent
and Falk-Petersen, 1988; Falk-Petersen et al., 1990). The relative
proportion of polyunsaturated FAs (PUFAs) can be used as
an indicator of food quality of an algal community or as a
herbivore index for a consumer based on the assumption that
algae are the main producers of PUFAs (Stevens et al., 2004).
Additionally, high ratios of 18:1(n−9)/18:1(n−7) indicate an
omnivorous/carnivorous/detritivorous rather than herbivorous
feeding mode (Graeve et al., 1997; Falk-Petersen et al., 2000;
Auel et al., 2002).

Highly Branched Isoprenoids (HBIs) and
Sterols
Highly branched isoprenoids and sterols were analyzed at the
University of Plymouth, United Kingdom. Detailed information
about analytical procedure and lab equipment can be found in
Brown and Belt (2012) and Schmidt et al. (2018).

Briefly, samples were freeze-dried and homogenized. Two
standards, 9-octyl-8-heptadecene and 7-hexylnonadecane, were
added for subsequent trophic marker quantification. Total lipids
were extracted with chloroform/methanol (2:1, v/v). Thereafter,
samples were saponified with 20% potassium hydroxide in
water/methanol. Non-saponifiable lipids were extracted with
hexane and purified by open column chromatography filled
with SiO2 and HBIs were analyzed by gas chromatography-mass
spectrometry (GC-MS). Quantification of HBIs was achieved by
integrating individual ion responses in single-ion monitoring
mode, and normalizing these to the corresponding peak area
of the internal standard and an instrumental response factor
obtained from purified standards (Belt et al., 2012). The GC-
MS-derived masses of the HBIs were converted to concentrations
in body fractions of the zooplankton using the lipid mass of
the extracted sample. The two tri-unsaturated HBIs, hereafter
referred to as HBIs III and IV (m/z 346.3), can indicate the
consumption of pelagic algal material, including that from the
marginal ice zone (MIZ) (Brown et al., 2014; Belt, 2018), while
the mono- and di-unsaturated HBIs IP25 (m/z 350.3) and IPSO25
(m/z 348.3) are assumed to be produced exclusively by certain
sea-ice diatoms, providing information on the origin of carbon
sources in a consumer (Brown et al., 2018; Schmidt et al., 2018).

Sterols were eluted from the same silica column using
hexane:methylacetate (4:1,v/v). Sterol fractions were derivatised
using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA)
and analyzed by GC-MS. Individual sterols were identified
by comparison of the mass spectra of their trimethylsilyl-
ethers with published data (Belt et al., 2018). The principal
identifiable sterols were the phytoplankton-produced
sterols (hereafter referred to as phytosterols) brassicasterol
(24-methylcholesta-5,22E-dien-3β–ol; m/z 470), sitosterol

(24-ethylcholest-5-en-3β–ol; m/z 396), chalinasterol (24-
methylcholesta-5,24(28)-dien-3β–ol; m/z 470) and campesterol
(24-methylcholest-5-en-3β–ol; m/z 382) and the phyto-
and-zooplankton-produced sterols (hereafter referred to
as zoosterols) cholesterol (Cholest-5-en-3β–ol; m/z 458),
desmosterol (Cholesta-5,24-dien-3β–ol; m/z 343) and
dehydrocholesterol (Cholesta-5,22E-dien-3β–ol; m/z 327).

Statistical Analyses
Spatial variability in PPOM and Calanus spp. FAs was tested
for statistical significance with 1-way ANOVAs followed by
Tukey’s HSD post hoc tests. Results with p ≤ 0.05 were
considered significant. All measures of statistical variation are
reported as means ± 1 SD. FA data were transformed by
applying an arcsine square root function to meet normality
requirements for parametric statistics (Legendre and Legendre,
2012). Variability in FA datasets of PPOM and IPOM, as well
as spatial variability in Calanus copepods, was visualized with
correspondence analysis (CA), which is suitable for analyzing
compositional data (Greenacre and Primicerio, 2014; Greenacre,
2017). Differences in FA composition between zooplankton taxa
were visualized with a principal component analysis (PCA)
and tested for statistical relevance with ANOSIM (dissimilarity
measure: Bray–Curtis). Correlation between total zoosterols/total
phytosterols and the FA ratio 18:1(n-9)/18:1(n-7) as well as
HBI concentrations versus the total abundance of phytosterols
and zoosterols was tested using Pearson’s correlation; data
have been LOG-transformed to appropriately present species-
specific distributions. To visually summarize the main results
of this study, a PCA was applied to show zooplankton-specific
differences in marker FA ratios, HBI concentrations and degree
of carnivory. All statistical analyses were run in R v.3.4.3 (R
Core Team, 2017) using the vegan (Oksanen et al., 2019) and
ggplot2 packages (Wickham, 2016), the map was produced with
QGIS version 3.16.1.

RESULTS

FA Composition of Pelagic and
Ice-Associated Particulate Organic
Matter (PPOM and IPOM)
Our CA explained ∼84% of the variability in the FA dataset,
showing that the FA composition in PPOM (P1-P7) differed
from that in IPOM (P6_ice, P7_ice; Figure 2). While PPOM
was associated with higher mean proportional contributions of
the dinoflagellate-associated FAs 18:4(n−3) and 22:6(n−3), the
mean relative proportion of the diatom-associated FA 16:1(n−7)
was more than four times higher in IPOM than in PPOM. In
IPOM, all three trophic marker FA ratios indicated a dominance
of diatoms over dinoflagellates (Table 2). In PPOM, both diatom-
and dinoflagellate-associated FA contributed largely to the FA
composition, and contributions were more equally distributed
compared to IPOM.

There was large variability in PPOM FA proportions along
the sampling transect. PPOM from samples collected at stations
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FIGURE 2 | Contribution biplot of correspondence analysis (CA) of fatty acids
(≥1% to the total FA content) in pelagic particulate organic matter (PPOM;
black symbols) and ice-associated POM (IPOM; gray symbols) collected
during Nansen Legacy cruise Q3 in August 2019 in the Barents Sea. Shapes
represent sampling locations with different sea-ice concentrations (P1 and P2:
ice-free; P4: close to ice edge; P5, P6, and P7: ice-covered).

TABLE 2 | Relative proportions of trophic marker fatty acids (FAs; mean ± SD%)
and FA ratios (mean ± SD) in pelagic particulate organic matter (PPOM) and
ice-associated POM (IPOM) collected during Nansen Legacy cruise Q3 in August
2019 in the Barents Sea.

Descriptor Trophic marker FA
proportions (%)

PPOM (n = 6) IPOM (n = 2)

Diatom-associated FA 16:1(n−7) 8.0 ± 3.2 35.9 ± 6.0

16:4(n−1) 1.0 ± 1.2 1.0 ± 0.1

20:5(n−3) 8.9 ± 3.7 5.9 ± 0.9

Dinoflagellate- 18:4(n−3) 9.9 ± 5.5 1.7 ± 0.7

associated FA 22:6(n−3) 7.4 ± 3.9 1.8 ± 0.2

Food quality 6PUFA 32.1 ± 10.2 16.0 ± 5.1

16:1(n−7)/16:0 0.5 ± 0.2 1.9 ± 0.2

Diatoms/ dinoflagellates 6C16/ 6C18 1.1 ± 0.6 2.5 ± 0.7

20:5(n−3)/22:6(n−3) 1.4 ± 0.5 3.4 ± 0.1

n, number of samples analyzed across the sampling area: PPOM was analyzed in
triplicates, IPOM in duplicates.

P1 and P4 were clearly separated from the other stations in the
CA plot with significantly higher mean relative contributions
of FA 18:1(n−9) (10 and 24%, respectively) compared to most
of the other stations (3–5%, respectively, Figure 2; ANOVA,
F5,12 = 55.1, p < 0.001, Tukey HSD p < 0.05). Additionally,
PPOM from samples collected at station P4 had significantly
higher relative proportions of 18:0 (mean 22%) compared to
most other stations (mean 4–14%; F5,12 = 7.9, p = 0.002, Tukey
HSD p < 0.05). In contrast, the relative proportions of the
diatom-associated FAs 16:1(n−7) (F5,12 = 12.3, p < 0.001, Tukey
HSD p < 0.05) and 20:5(n−3) (F5,12 = 21.4, p < 0.001, Tukey

HSD p < 0.001), and the dinoflagellate-associated FAs 18:4(n−3)
(F5,12 = 14.7, p < 0.001, Tukey HSD p < 0.05) and 22:6(n−3)
(F5,12 = 9.9, p < 0.001, Tukey HSD p < 0.05) were lower at P4
compared to most of the other stations. At station P1, relative
proportions of 16:1(n−7) in PPOM were also lower compared to
stations P5 and P6, and relative proportions of 20:5(n−3) were
lower compared to stations P5, P6, and P7.

Lipid Class and FA Composition of
Barents Sea Zooplankton
In all copepod taxa as well as krill, amphipods and the
pteropod Clione limacina, the cnidarians, the chaetognath
Eukrohnia hamata, and the ctenophore Mertensia ovum, mean
relative proportions of neutral (storage) lipids were higher
than those of polar (membrane) lipids. In contrast, the
pteropod Limacina helicina, the ctenophore Beroë cucumis, the
chaetognaths Parasagitta elegans and Sagitta maxima and the
appendicularian Oikopleura vanhoeffeni had the reverse. Levels
of wax esters (neutral lipids) were generally high in all copepod
species (mean > 90% in Paraeuchaeta spp.) and E. hamata
(mean 64%). Triacylglycerols (TAGs) dominated the neutral
lipid fraction in the amphipods, the krill Meganyctiphanes
norvegica and Thysanoessa longicaudata, and C. limacina (up to
76%). Among the polar lipids, phosphatidylethanolamine (PE)
and phosphatidylcholine (PC) were the most abundant lipid
classes, with up to 23% of the total lipids in O. vanhoeffeni
and up to 48% in Parasagitta/Sagitta spp., respectively.
Lipid class compositions of individual taxa are reported
in Supplementary Table 2.

In the PCA (explained ∼65% of the variance in the FA
dataset), all taxonomic groups (ANOSIM, R = 0.328, p = 0.001)
and most species (ANOSIM, R = 0.878, p < 0.001) could
be clearly distinguished from each other based on their FA
profiles (Figure 3). Except for the copepods Oithona similis and
Pseudocalanus spp. and the cnidarian Catablema vesicarium, FA
proportions were similar within a species/taxa.

Among all taxa, the copepod Metridia longa had the highest
mean relative proportion of the diatom-associated FA 16:1(n−7)
(26%), and B. cucumis had the lowest mean relative level of
this FA (2%). The diatom-associated FA 16:4(n−1) showed the
maximum mean proportion in the copepod Calanus hyperboreus
(3%), and the minimum in B. cucumis and C. limacina (both
0.1%). The proportions of the diatom-associated FA 20:5(n−3)
were lower in the copepods Microcalanus spp. (7%) and
Paraeuchaeta spp. (7%) compared to all other taxa (10–24%).
Calanus hyperboreus had a substantially higher mean relative
proportion of the dinoflagellate-associated FA 18:4(n−3) (11%)
than all other taxa. Amphipods (11 and 19%), pteropods (15
and 25%) and gelatinous zooplankton (8–24%) had distinctly
higher relative proportions of the dinoflagellate-associated FA
22:6(n−3) than most copepods (4–8%) and krill (4–7%). Only
in the amphipod T. libellula and the ctenophores were all
three diatom/dinoflagellate ratios ≤ 1. Clione limacina was the
only species with a mean ratio of 18:1(n−9)/18:1(n−7) < 1
(Table 3). Fatty acid compositions of individual taxa are reported
in Supplementary Table 3.
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FIGURE 3 | Principal component analysis (PCA) of fatty acids (FAs; ≥1% to the total FA content) in the zooplankton collected during Nansen Legacy cruise Q3 in
August 2019 in the Barents Sea. Relative proportions of individual FAs are shown in Supplementary Table 3.

In all three Calanus species, the FA composition varied
along the sampling transect (Figures 4A–C). In all three
species, individuals from stations with low proportions of
16:1(n−7), i.e., station P7 for C. finmarchicus (Figure 4A) and
C. hyperboreus (Figure 4C) and station P1 for C. glacialis
(Figure 4C), were associated with a higher degree of carnivory,
i.e., higher ratios of 18:1(n−9)/18:1(n−7). Relative proportions
of the diatom-associated FA 20:5(n−3) were high in all species
from station P7. Overall, C. glacialis from station P1 had the
lowest diatom signal, i.e., low relative proportions of the diatom-
associated FAs 16:1(n−7), 16:4(n−1), and 20:5(n−3) [low ratios
of 16:1(n−7)/16:0, 6C16/6C18 and 20:5(n−3)/22:6(n−3)], but
the strongest dinoflagellate signal, i.e., high proportions of
the dinoflagellate-associated FAs 18:4(n−3) and 22:6(n−3),
among the four sampled stations (Figure 4B). Additionally, in
C. finmarchicus and C. hyperboreus, individuals from station
P6 were different in their FA composition from that of the
other stations (Figures 4A,C). They were associated with higher
levels of the diatom-associated FAs 16:4(n−1) and also 20:5(n−3)
compared to the other stations. Furthermore, C. hyperboreus
from station P6 had a low dinoflagellate signal, i.e., low levels
of 18:4(n−3) and 22:6(n−3). Statistical output is reported in
Supplementary Table 4.

HBIs and Sterols
None of the pelagic/MIZ and sea ice algae-associated HBIs
were detected in PPOM. The pelagic/MIZ HBIs were found
in all zooplankton taxa, except for the small copepod species
Microcalanus spp., O. similis, Pseudocalanus spp., the pteropod

C. limacina, the chaetognath S. maxima and the appendicularian
O. vanhoeffeni. Maximum concentrations of both HBIs III
and IV were found in the cnidarian C. vesicarium. The sea
ice algae-associated HBI IP25 was detected in the amphipod
Themisto abyssorum, the pteropod L. helicina and O. vanhoeffeni
(Figure 5A). The other sea ice algae-associated HBI IPSO25
was found in the krill M. norvegica and Thysanoessa inermis,
the amphipods T. abyssorum and T. libellula, C. limacina and
L. helicina as well as O. vanhoeffeni. Limacina helicina had the
highest concentrations of both sea ice algae-associated HBIs. In
all taxa, species-specific variability in HBI concentrations was
high. Mean ratios of sea ice algae-associated to pelagic/MIZ
HBIs were >1 in T. abyssorum, the two pteropod species and
O. vanhoeffeni. HBI concentrations of individual taxa/species are
reported in Supplementary Table 5.

In most zooplankton, the most abundant phytosterols were
brassicasterol (up to 90% of total phytosterols) and campesterol
(up to 69% of total phytosterols). In most taxa, desmosterol had
the highest relative contribution to the total zoosterol content
(up to 90%), while in krill, cholesterol had the highest relative
contributions (up to 93% of total zoosterols). Ratios of the four
phytosterols versus cholesterol were generally the highest in
O. vanhoeffeni and the pteropods and the lowest in P. norvegica
and krill (Supplementary Figure 1).

The relationship of the FA carnivory ratio
18:1(n−9)/18:1(n−7) versus total zoosterols/total phytosterols
was positively correlated (Figure 5B). For both ratios,
P. norvegica had the highest values. The pteropods and
O. vanhoeffeni showed lower values than most of the other taxa.
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TABLE 3 | Ratios of fatty acids (FAs; mean ± SD) in zooplankton collected during
Nansen Legacy cruise Q3 in August 2019 in the Barents Sea.

Zooplankton taxa n 16:1(n−7)/16:0 6C16/6C18 20:5(n−3)/22:6(n−3)

Calanus
finmarchicus

12 1.4 ± 0.4 2.4 ± 0.7 3.3 ± 0.7

Calanus glacialis 14 2.4 ± 0.6 1.9 ± 0.5 3.4 ± 1.0

Calanus
hyperboreus

16 4.6 ± 1.8 1.3 ± 0.7 2.7 ± 1.2

Metridia longa 4 4.0 ± 1.1 1.1 ± 0.3 1.4 ± 0.3

Microcalanus spp. 4 2.2 ± 0.8 0.8 ± 0.3 1.3 ± 0.2

Oithona similis 5 0.4 ± 0.4 1.3 ± 0.7 1.6 ± 1.2

Paraeuchaeta spp. 3 12.1 ± 1.0 0.7 ± 0.1 0.9 ± 0.2

Pseudocalanus
spp.

5 1.4 ± 0.6 1.0 ± 0.8 2.2 ± 0.7

Meganyctiphanes
norvegica

4 0.5 ± 0.1 1.2 ± 0.1 1.3 ± 0.3

Thysanoessa
inermis

8 0.9 ± 0.3 1.2 ± 0.2 3.6 ± 0.9

Thysanoessa
longicaudata

5 0.4 ± 0.1 1.5 ± 0.2 2.5 ± 0.5

Themisto
abyssorum

4 0.9 ± 0.3 0.8 ± 0.1 1.7 ± 0.5

Themisto libellula 6 0.5 ± 0.1 0.9 ± 0.1 0.9 ± 0.1

Clione limacina 6 0.7 ± 0.4 2.1 ± 0.9 0.9 ± 0.1

Limacina helicina 4 0.3 ± 0.3 1.9 ± 0.1 1.0 ± 0.2

Bougainvillia
superciliaris

2 2.1 ± 0.1 1.4 ± 0.1 1.8 ± 0.2

Catablema
vesicarium

2 0.8 ± 0.8 0.8 ± 0.2 1.4 ± 0.1

Beroë cucumis 4 0.2 ± 0.1 0.9 ± 0.2 0.8 ± 0.1

Mertensia ovum 4 0.4 ± 0.3 1.0 ± 0.1 1.0 ± 0.3

Eukrohnia hamata 6 2.0 ± 0.3 1.3 ± 0.1 1.8 ± 0.5

Parasagitta elegans 6 1.1 ± 0.5 1.4 ± 0.1 1.2 ± 0.4

Sagitta maxima 2 0.8 ± 0.1 1.2 ± 0.2 0.8 ± 0.1

Oikopleura
vanhoeffeni

3 0.5 ± 0.4 0.9 ± 0.6 1.2 ± 0.4

n, number of samples analyzed across the sampling area. Ratios > 1 indicate
the dominance of diatom-associated over dinoflagellate-associated FAs in
the zooplankton.

In the zooplankton, the total abundance of phytosterols had
a strong positive correlation with the total HBI concentrations
(Figure 5C), and this significant correlation was found for all
four phytosterols. The correlation between phytosterols and total
HBIs was stronger than the correlation between zoosterols and
total HBIs (Supplementary Figure 2).

Carbon Sources of Barents Sea
Zooplankton: Summary
Fatty acid ratios indicating the dominance of diatom-associated
carbon versus dinoflagellate-associated carbon were the highest
in the copepods Paraeuchaeta spp. and Calanus spp., and the
lowest in the ctenophores B. cucumis and M. ovum as well as the
amphipod T. libellula (Figure 6A).

Pelagic/MIZ HBIs were found in all taxa, except for
small copepods, with highest concentrations in the cnidarian
C. vesicarium. Sea ice algae-associated HBIs were found in
the pteropod L. helicina in highest concentrations, and further

FIGURE 4 | Contribution biplot of correspondence analysis (CA) of fatty acids
(≥1% to the total FA content) representing spatial variability in (A) Calanus
finmarchicus, (B) C. glacialis and (C) C. hyperboreus collected during Nansen
Legacy cruise Q3 in August 2019 in the Barents Sea. Shapes represent
sampling locations with different sea ice concentrations (P1 and P2: ice-free;
P4: close to ice edge; P6 and P7: ice-covered).
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FIGURE 5 | (A) Concentrations of the pelagic/MIZ HBIs III and IV versus the
sea ice algae-associated HBIs IP25 and IPSO25 in the zooplankton collected
during Nansen Legacy cruise Q3 in August 2019 in the Barents Sea.
Considered are only samples that contained either pelagic/MIZ or sea ice
algae-associated HBIs or both. Datapoints represent individual samples. All
data can be found in Supplementary Table 5. (B) Pearson’s correlation of
the mean ratio of zoosterols/phytosterols versus the mean carnivory index
18:1(n–9)/18:1(n–7) in the zooplankton. (C) Pearson’s correlation of total
phytosterols versus total HBIs in the zooplankton. Considered are only
samples that either contained pelagic/MIZ or sea ice algae-associated HBIs or
both. Datapoints represent individual samples.

in the pteropod C. limacina, the krill M. norvegica and
T. inermis, the amphipods Themisto spp. and the appendicularian
O. vanhoeffeni (Figure 6B).

Fatty acid- and sterol-based carnivory ratios were the
highest in the copepod P. norvegica and other copepods
and the lowest in O. vanhoeffeni. The highest proportions of

FIGURE 6 | Summary of results representing principal component analysis
(PCA) of (A) the carbon source composition based on diatom- versus
dinoflagellate-associated fatty acids (FAs; trophic marker FA ratios are shown
in Table 3), (B) the origin of these carbon sources based on concentrations of
pelagic/MIZ highly branched isoprenoids (HBIs III and IV) and sea ice
algae-associated HBIs (IP25, IPSO25; HBI concentrations are shown in
Figure 5A and Supplementary Table 5) and (C) the degree of carnivory
versus herbivory in the zooplankton taxa based on concentrations of
zoosterols/phytosterols, and relative proportions of the carnivory FA 18:1(n–9)
versus the algal-produced FA 18:1(n–7), and calanoid copepod-associated
FAs 20:1 and 22:1 (FA proportions are shown in Supplementary Table 3).

copepod-associated FAs were found in M. norvegica, and the
lowest proportions in the krill Thysanoessa spp., the pteropods
and O. vanhoeffeni (Figure 6C).
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DISCUSSION

Composition of PPOM and IPOM
During our sampling period, pelagic and sea ice-associated algal
communities, referred to as PPOM and IPOM, respectively,
differed in their FA composition (Figure 2). The diatom-
associated FA 16:1(n−7) has frequently been found to be strongly
associated with Arctic sea-ice diatoms (Henderson et al., 1998;
Budge et al., 2008; Kohlbach et al., 2016), suggesting a diatom-
dominated sea-ice community in the current study, in agreement
with microscopic analysis which revealed high abundances of
typical sea ice-associated pennate diatoms, such as Nitzschia spp.
However, diatom-produced marker FAs accounted for almost
20% of the PPOM FAs, suggesting that diatoms also played
an important part in structuring the pelagic algal community
(Ratkova and Wassmann, 2002). Furthermore, elevated levels
of the FAs 18:4(n−3) and 22:6(n−3) in PPOM indicated the
presence of flagellates/prymnesiophytes in the water column,
typical for European Arctic protistan plankton during summer
(Wassmann et al., 2005, 2006). Taxonomic analysis confirmed the
importance of diatoms, including Thalassiosira and Fragilariopsis
genera, and dinoflagellates, e.g., Gymnodinium spp. and taxa
of the order Peridiniales, for the phytoplankton community
composition. The prymnesiophyte Phaeocystis was found in high
abundances at stations P4, P6, and P7.

Carbon Sources of Barents Sea
Zooplankton During Late Summer
In this study, all of the diatom- and dinoflagellate-associated
trophic marker FAs were found in all investigated zooplankton.
Thus, all taxa are capable of utilizing carbon of different origin,
directly obtained and/or, more likely based on the generally high
carnivory indices in this study (presence of copepod-associated
FAs, high 18:1(n−9)/18:1(n−7) ratios, presence of zoosterols),
indirectly by feeding on other organisms. The overall high degree
of carnivory among the zooplankton agrees with findings that
dominant species prefer microzooplankton (if abundant) over
phytoplankton (Campbell et al., 2009; Stoecker and Pierson,
2019). Additionally, it could reflect a high abundance of
heterotrophic protists in the sampling region (Wassmann et al.,
2005), and it is noteworthy that heterotrophic or mixotrophic
dinoflagellates of the genus Gymnodinium were a key component
of the phytoplankton community in this and other studies in the
Arctic (Kubiszyn and Wiktor, 2016; Hardge et al., 2017).

Copepods, Krill and Amphipods
Overall, the diverse taxonomic group of copepods showed the
strongest diatom signal in their FA pool among the different
zooplankton groups (Table 3 and Figure 6A). Diatoms have been
identified as major food items for Calanus spp. (Søreide et al.,
2008; Cleary et al., 2017), and most of the other copepods have
also been reported to utilize diatom-derived carbon (Atkinson,
1996; Cleary et al., 2016). Calanus hyperboreus was more likely
to graze directly on autotrophic algae according to its lower
degree of carnivory [lower 18:1(n−9)/18:1(n−7), higher levels of
PUFAs] and its high proportions of the short-term FA 18:4(n−3)

compared to all other copepods (Stevens et al., 2004), suggesting
also the ingestion of fresh flagellate material and/or Phaeocystis
(Hansen et al., 1994; Søreide et al., 2008).

Variability in FA composition in all three Calanus species
along the transect (Figures 4A–C) showed high species-
specific consistency, and likely reflects spatial and temporal
variations in carbon and food sources, i.e., composition of algal
communities and prey species. Variability in FA composition
was also pronounced in PPOM (Figure 2) and suggested
differences in community structure, which was likely the result
of varying environmental factors, e.g., Atlantic versus Arctic
water masses and water-mass characteristics (temperature and
salinity), mixing processes, sea-ice concentrations and nutrient
availability (Engelsen et al., 2002; Ardyna et al., 2011). In all
three Calanus species, stations with higher 18:1(n−9)/18:1(n−7)
ratios were also linked to a lower diatom signal: in C. glacialis
at station P1 and in the other two Calanus species at station P7,
where a high proportion of unidentified (possibly heterotrophic
or mixotrophic) eukaryotic species contributed to the pelagic
protist composition. This might mirror an increased availability
of preferred heterotrophic prey at these sampling locations other
than diatoms, resulting in a higher degree of carnivory in these
species (Søreide et al., 2008).

In comparison to our study, samples from the central Arctic
Ocean (CAO) in August/September (Kohlbach et al., 2016) had
a considerably higher contribution of the diatom-associated FA
16:1(n−7) in both IPOM (mean over 50% versus mean 36% in
this study) and Calanus copepods (e.g., mean 26% in C. glacialis
versus mean 16% in this study). Based on FA-specific stable
isotope mixing models, ice-associated carbon contributed up to
48% of the copepods’ carbon budget in the CAO (Kohlbach
et al., 2016), and was similar to what was reported for the
Bering Sea during summer ice-free conditions with up to 54%
(Wang et al., 2015). However, the lack of sea ice algae-associated
HBIs in all of the investigated copepod taxa indicates that
carbon was mainly obtained from phytoplankton and pelagic
prey during our study representative of the late summer season.
In contrast to the Barents Sea, ice algal primary production in
the CAO can constitute over half of the total primary production
during August/September due to the extensive sea-ice coverage,
somewhat counteracting the relatively poor pelagic primary
production in the CAO (Fernández Méndez, 2014; Fernández-
Méndez et al., 2015). Consequently, the generally high availability
of sea-ice algae in a sea ice-dominated ecosystem such as the
CAO likely promotes and necessitates an increased dependency
on ice-associated carbon sources, which could rapidly change
with further reduction in sea ice and longer open-water season.
However, it needs to be noted that one of the dominant sea-
ice diatoms during the above-mentioned studies from the CAO,
Melosira arctica, is not known to produce HBIs and is therefore
not captured by our biomarker approach.

HBIs produced by algae in open waters or the MIZ (HBIs
III and IV) were found in all sampled taxa except for the small
copepods Microcalanus spp., O. similis and Pseudocalanus spp.
(Figure 5A). Along with their high ratios of 18:1(n−9)/18:1(n−7)
and elevated levels of zoosterols, this suggests further that
these small copepod species were feeding to a greater extent
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as omnivores, carnivores or detritivores (Norrbin et al., 1990;
Lischka and Hagen, 2007). Oithona similis has been described
as an ambush feeder (Svensen and Kiørboe, 2000), preferring
mobile prey such as ciliates, and is only rarely found to feed
on diatoms (Zamora-Terol et al., 2013), in line with the lower
diatom FA signal compared to the other copepods in our study.
Furthermore, phytoplankton assemblages containing smaller
protist taxa might have hampered efficient grazing by copepods
with a different prey-size preference, such as O. similis (10–
40 µm; Zamora-Terol et al., 2013).

Despite the common co-occurrence of the two sea ice algae-
associated HBIs IP25 and IPSO25 in Arctic sea-ice diatoms (Belt
and Müller, 2013; Brown et al., 2014; Belt et al., 2016), only
IPSO25 was detected, for example in the krill species, whereas
IP25 was absent. This could have many reasons, such as lack
or unavailability of source taxa, differing nutrient availability
affecting metabolite production (Brown et al., 2020), or selective
feeding of these zooplankton taxa. It could also point to different
metabolic turnover rates or concentrations of the two HBIs
in the consumer, retaining IPSO25 in the animal’s tissue while
concentrations of IP25 were already below the detection limit
as IPSO25 can be several times more abundant than IP25
in Arctic animals (Brown et al., 2015). Pelagic HBIs were
found in substantially higher concentrations in M. norvegica in
comparison to Thysanoessa spp., and its stronger pelagic signal
was supported by the FA compositions.

Based on all three diatom/dinoflagellate ratios being <1, low
levels of the diatom-associated FA 16:1(n−7), but high levels
of the dinoflagellate-associated FA 22:6(n−3), the amphipod
T. libellula and the ctenophores B. cucumis and M. ovum had
the highest dinoflagellate, i.e., pelagic signal, in their FA pool
(Figure 6A and Supplementary Table 3). In previous studies,
the link between the predominantly carnivorous T. libellula and
sea-ice primary production varied during summer in the Bering
Sea (mean contribution of ice-associated carbon between 38 and
79%, depending on stable isotope model parameters; Wang et al.,
2015) and the CAO (mean contribution of ice-associated carbon
between 23 and 55%, depending on stable isotope parameters;
Kohlbach et al., 2016). In this study, sea ice algae-associated
and pelagic/MIZ HBIs were detected in both Themisto species,
showing that they utilized carbon of different origin, likely by
preying on Calanus spp., based on their high proportions of
copepod-associated FAs and elevated wax ester levels (Scott
et al., 1999; Auel et al., 2002) and/or possibly also on krill and
pteropods (Marion et al., 2008) based on the presence of HBIs
in these taxa. Differences in lipid class, FA composition and HBI
concentrations between T. abyssorum and T. libellula, however,
reflect differences in energy storage mode and their highly diverse
feeding behavior (Auel et al., 2002; Havermans et al., 2019). HBI
concentrations in T. abyssorum were only analyzed for samples
from the ice-covered stations P6 and P7, so that a strictly pelagic
feeding style of this species in the more southern Barents Sea
cannot be excluded.

Pteropods and Gelatinous Zooplankton
Based on high amounts of phytosterols and a ratio of
18:1(n−9)/18:1(n−7) < 1, the pteropod C. limacina was

characterized by a herbivorous rather than carnivorous feeding
strategy, challenging the idea that C. limacina is exclusively
feeding on L. helicina (Conover and Lalli, 1972; Böer et al.,
2005), at least during the summer period when phytoplankton
should be abundant. Correspondingly, the lipid class and FA
composition were distinctly different between the two pteropods
(e.g., more TAGs in C. limacina, more polar lipids in L. helicina),
suggesting that L. helicina was not a major food item for
C. limacina in our study. The significantly higher proportions
of the PUFAs 20:5(n−3) and 22:6(n−3) in L. helicina were at
least partly the result of the large proportion of polar lipids
in L. helicina compared to C. limacina, since these long-chain
FAs are mainly incorporated into cell membranes (Stübing
et al., 2003). Furthermore, L. helicina had substantially higher
proportions of free FAs (average 19%) than all other taxa (mean
0.2 to 10.7%), except for C. vesicarium, which could indicate
gonad maturation during summer (Gannefors et al., 2005).

Interestingly, C. limacina is assumed to be a true pelagic
species, with relatively low (trophic) interaction with the sea-
ice system (mean contribution of ice-associated carbon between
14 and 30% during summer in the CAO, depending on stable
isotope model parameters; Kohlbach et al., 2016). Yet, in this
study, C. limacina alongside six other species out of 24, including
L. limacina and the appendicularian O. vanhoeffeni, were the
only species containing sea ice algae-associated HBIs. In both
pteropod species, sea ice algae-associated HBIs were determined
in individuals collected at station P2, where sea ice was absent
during the sampling period. This might reflect the great mobility
of these species, able to cover large distances with varying sea-
ice coverage, or a low turnover rate of HBIs in these species if it
is assumed that sea ice-associated material was ingested prior to
sampling when sea ice was still present at this station.

In the ctenophores B. cucumis and M. ovum, the strong
pelagic signal in their FA compositions as well as the absence
of sea ice algae-associated HBIs likely reflects that they fed
on pelagic prey, probably copepods, but also amphipods and
krill, as reported previously (Swanberg and Båmstedt, 1991).
The two cnidarian species were largely different in their lipid
class and FA composition with an overall stronger diatom
signal in Bougainvillia superciliaris compared to Catablema
vesicarium. In accordance with previous studies, both species
were likely feeding as omnivores/carnivores, and phytoplankton-
derived carbon contributed largely to their diets (Hansson
et al., 2005; Prudkovsky and Neretina, 2016). Among the
chaetognaths, E. hamata had a stronger diatom signal compared
to Parasagitta/Sagitta spp., likely as a result of its higher trophic
dependency on Calanus spp. (Connelly et al., 2014) or other
copepods, corresponding to its higher relative proportions of wax
esters and somewhat higher proportions of copepod-associated
FAs, while Parasagitta and Sagitta have been found to rather rely
on smaller copepods (Pseudocalanus and Oithona) (Falkenhaug,
1991; Alvarez-Cadena, 1993). In Parasagitta elegans, the presence
of the diatom-derived HBI III suggests that this species also
utilized food sources other than small copepods.

The failure to detect IP25 and IPSO25 in PPOM suggests that
zooplankton containing HBIs received these lipid components
by feeding on sea ice-derived material. This does not necessarily
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mean that these species were actively grazing on sea-ice biota
(where sea ice was present) but rather that the animals fed
on ice algae that had sunk to deeper water or the seabed,
possibly as marine snow (Olli et al., 2002; Tamelander et al.,
2006; Tamelander et al., 2009; Schmidt et al., 2018). In ice-
covered regions, the phytoplankton community is strongly
influenced by water stratification due to ice melt, while more
porous ice conditions during summer could have triggered
the release and vertical export of ice algal material, thus
contributing to the PPOM community composition (Hegseth,
1998; Tamelander et al., 2009). Limacina helicina is described
as a flux-feeder with the ability to consume fast-sinking food
particles (Stukel et al., 2019), such as ice algal aggregates
dominated by pennate diatoms (Assmy et al., 2013), which have
been shown to contain HBI-producing diatoms albeit in low
abundances (Brown et al., 2017a), providing an explanation
for the highest concentrations of sea ice algae-associated HBIs
in L. helicina in this study. The absence of sea ice algae-
associated HBIs does not exclude the possibility of the other
taxa to feed on sea ice-derived carbon. The so far identified
ice-associated HBIs are specific for certain sea-ice diatoms (Belt
et al., 2007; Brown et al., 2014) and these diatom species
have usually a relatively low contribution to the ice algal
community (Volkman et al., 1994; Brown et al., 2014). Thus,
the lack of these trophic markers could simply indicate that
the organisms were feeding on ice-associated algae that did not
produce these HBIs.

Suitability of Trophic Marker Methods for
Tracing Food-Web Relationships
By combining dietary information derived from different
biochemical approaches, we gained insights on (a) differences
in energy storage modes between the zooplankton taxa based
on lipid class composition (wax esters versus TAGs), (b) the
taxonomic composition of carbon sources in zooplankton based
on FA compositions (diatoms versus dinoflagellates), (c) the
origin of these carbon sources based on HBI compositions
(sea ice versus water column), and (d) tendencies regarding
herbivory versus carnivory based on sterol compositions, FA
carnivory indices and the presence of copepod-associated FAs
(Figures 6A–C). To reveal food-web relationships, FAs have
been traced from producer to consumer in numerous food-web
studies in both the Arctic (Falk-Petersen et al., 1987; Graeve
et al., 1994; Kohlbach et al., 2016) and the Antarctic (Schmidt
et al., 2006; Kohlbach et al., 2018). Recent literature, however,
suggests that marine invertebrates have the potential to de
novo synthesize certain PUFAs (Kabeya et al., 2018), which is
somewhat contradictory to the general assumption that these FAs
are exclusively produced by marine algae and thus essentially
obtained as dietary components in the marine environment.
Kabeya et al. (2018) reported that numerous zooplankton possess
the respective genes for PUFA biosynthesis, however, actual
concentrations of zooplankton-produced PUFAs and the relation
of zooplankton-produced versus algal-produced PUFAs in the
FA composition of a consumer are unknown and are likely to
vary greatly from species to species. Since the ability of herein

investigated species to biosynthesize their own PUFAs is unclear
at this point, we assume that their trophic marker PUFAs were
primarily obtained from dietary sources.

Compared to lipid class and FA compositions, the use of HBI
and sterol lipid data in Arctic food-web studies is relatively new
(e.g., Brown et al., 2018; Schmidt et al., 2018; Kohlbach et al.,
2019), and likely benefits from a multidimensional application
as employed here. The recent literature on HBIs and their role
in Arctic marine processes (e.g., Brown and Belt, 2012; Brown
et al., 2015, 2017a) strongly suggests their potential, and crucially
these markers are highly stable; if a polar bear or a paleo-sediment
sample contains ice marker, we can be fairly sure that some of
the organic carbon was indeed originally sourced from sea-ice
algae. All the trophic marker approaches have their strengths
and weaknesses, and our study highlights the value of combining
them into a multi-biomarker approach, whereby independent
approaches provide both alternative insights and complementary
information (Schmidt et al., 2018).

One key methodological issue for HBIs concerns their
specificity to particular diatom species. The number of HBIs
found to be produced by Arctic algae is continuously growing
(Belt, 2018; Belt et al., 2019; Brown et al., 2020), but while the
presence of the ice markers IP25 and IPSO25 is believed to provide
unequivocal sourcing from ice algae, their absence is not so
straightforward to interpret (Belt, 2018). Also, species-specific
turnover rates of HBIs in the consumers are still unknown. It
might be assumed, however, that turnover times of these lipids
lengthen with increasing trophic level (c.f. FAs), reaching up to
several weeks in polar zooplankton (Boissonnot et al., 2016, 2019;
Graeve et al., 2020). The failure to detect pelagic/MIZ HBIs in
PPOM suggests that either HBI-producing algae were not present
at the depth of the Chl a maximum, where the PPOM samples
were collected, or that HBI concentrations were below the
detection limit, both of which might be related to the seasonality
of some HBI production. The presence of pelagic/MIZ HBIs
in most of the zooplankton species could reflect the animals’
vertical mobility (e.g., Fortier et al., 2001) to encounter differing
algal assemblages consisting of different algal taxa throughout
the water column.

Even though phytosterols can potentially be metabolically
changed by herbivorous consumers (Ruess and Müller-Navarra,
2019), they can support biomarker studies by informing about
plant-derived food intake in comparison to a rather animal-
based diet (Nichols et al., 1993). In this study, PPOM and
zooplankton clustered according to their sterol composition,
with the overall pattern being robust across taxa and sampling
locations (Supplementary Figure 2). Moreover, we found an
internal consistency and strong positive correlation between
the animals’ HBI content and phytosterols (Figure 5C), further
suggesting the suitability of phytosterols as an indicator for algal
ingestion. The most abundant phytosterols found in Arctic sea
ice are brassicasterol, chalinasterol, and sitosterol (Belt et al.,
2013), and brassicasterol is also produced by pelagic algae
(Müller et al., 2011). However, cholesterol can also be abundant
in algal assemblages (Brown et al., 2011; Belt et al., 2018),
offering an explanation for the presence of zoosterols in, e.g.,
C. limacina and O. vanhoeffeni that indicated the overall lowest
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degree of carnivory in this study. Sterols have been found to
be predominantly produced by, but not restricted to diatoms
(Volkman et al., 1998; Rampen et al., 2010). The importance
of diatoms in both sea-ice and pelagic protist communities was
apparent from microscopic analysis and their FA compositions,
suggesting that algae from both the sea ice and the pelagic
habitat could have contributed to the overall sterol content in
the zooplankton.

Conclusion
Tracing FAs, stable isotopes and/or HBIs, previous studies have
indicated the role of sea ice-derived organic matter for Arctic
ice-associated invertebrates (Tamelander et al., 2006; Kohlbach
et al., 2016), pelagic animals in Arctic (Budge et al., 2008;
Tamelander et al., 2008; Wang et al., 2015) and Antarctic
marine environments (Schmidt et al., 2018), and Arctic benthic
consumers (Brown and Belt, 2012; Kohlbach et al., 2019)
across multiple trophic levels during spring and summer. In
the present study, we found sea ice algae-specific metabolites
(i.e., HBIs IP25 and IPSO25) in filter-feeders of the mid-
water column (pteropods, appendicularians) and in mobile
omnivorous crustaceans (krill, pelagic amphipods), extending
present knowledge about the role of ice algae as a food source for
pelagic consumers in the Barents Sea during summer. Despite the
‘heavy’ sea-ice conditions in the Barents Sea during summer 2019
compared to previous years, the investigated pelagic food web
showed a taxon-specific but relatively weak trophic relation to sea
ice-derived carbon. During the time of the sampling, most of the
sea-ice algae had already sloughed off and the remaining ice algae
material seemed decayed. This corresponds to the lower PUFA
levels in IPOM (average 16%) compared to PPOM (average 32%).
Thus, not surprisingly, ice algae were providing a less abundant
and attractive carbon source, in terms of lower food quality, than
food of pelagic origin for the zooplankton grazers during the late
summer melting season.

Until now, little information is available about direct
consequences of declining sea ice on food-web interactions
in the Arctic (e.g., Wassmann et al., 2011; Stige et al.,
2019; Dalpadado et al., 2020). Overall, ice-associated species
are expected to be more susceptible to sea-ice decline than
pelagic ones (Dalpadado et al., 2020) and might be forced
to a stronger association with the pelagic environment (Hop
and Gjøsæter, 2013), with consequences for associated pelagic
and benthic food webs and trophic interactions (Michalsen
et al., 2013; Blanchard, 2015). With the change in primary
production, i.e., the composition and availability of carbon
sources, species with opportunistic feeding behavior, such as
O. similis and Pseudocalanus spp. (Castellani et al., 2005;
Lischka and Hagen, 2007; Cornwell et al., 2020) might further
have a higher tolerance to more variable environmental
conditions and an advantage over highly specialized (ice-
associated) species.

Due to great uncertainties of consequences for individual
species, it is crucial to continuously monitor and assess climate
vulnerability on a species level during the transition to a warmer
Arctic Ocean to reliably inform about changes in food-web
structure and functioning (Eamer et al., 2013; Poloczanska, 2020).

Ultimately, the understanding of present food-web processes
through the seasons will be the requisite for meaningful
projections of winners and losers in the future Barents Sea with
less sea ice and changing sea-ice properties.
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