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INTRODUCTION

Members of the cyanobacterium genus Prochlorococcus are the most abundant photosynthetic
organisms in global oceans (Chisholm et al., 1992; Partensky et al., 1999), and contributes ∼10%
of ocean primary productivity (Flombaum et al., 2013). Prochlorococcus clades (ecotypes) are
generally divided into viz. high-light-adapted (HL) clades and low-light-adapted clades based on
the physiological characteristics, ecological distribution, and phylogeny (Moore and Chisholm,
1999; Rocap et al., 2002; Johnson et al., 2006). With diversified ecotypes, Prochlorococcusmaintains
a high genomic diversity, and has evolved continuously during the process of adapting to the
marine environment (Biller et al., 2015). At least Fifty-two genomes of the Prochlorococcus genus
were published (Biller et al., 2014; Yan et al., 2018a,b; Becker et al., 2019).

To date the Prochlorococcus HL clade II (HLII) is regarded as the dominant ecotype in global
oceans and accounts for more than 90% of all Prochlorococcus in the upper layer of tropical waters
(Johnson et al., 2006), exhibiting a fairly large repertoire of genomic and functional diversity
(Partensky and Garczarek, 2010; Kashtan et al., 2014; Biller et al., 2015). HLII has gained significant
research interests due to its streamlined genome, making it a model to study genome reduction
(Kettler et al., 2007; Partensky and Garczarek, 2010; Biller et al., 2015). The western Pacific Ocean,
having both a local and global climate impact (McPhaden et al., 2006), is well-known for low
nutrient levels, low primary production, and strong light radiation (Schneider and Zhu, 1998). In
addition, as part of the warmest ocean waters, the western Pacific Ocean represents an ideal site
to study the effect of rising temperatures on the marine ecosystem (Rowe et al., 2012). However,
only five Prochlorococcus genomes are reported in this region to date (Biller et al., 2014; Yan et al.,
2018a,b). The present study reports 15 HLII Prochlorococcus and 101 co-cultured heterotrophic
bacterial genomes in the western Pacific Ocean and the South China Sea. The genomes discussed
here have been deposited in theNational Center for Biotechnology Information, and require further
analysis to explore the fine-scale diversity of Prochlorococcus and their future applications inmarine
microbiology and ecology.

MATERIALS AND METHODS

Isolation of the Prochlorococcus HLII Strains
The Prochlorococcus HLII strains discussed in the present study were isolated from a depth of
50–150m at seven different stations in the western Pacific Ocean and the South China Sea in 2014
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(Supplementary Figure 1; Table 1). The isolation process was
performed as previously described (Yan et al., 2021). Briefly,
seawater collected by a Niskin bottle was subjected to gravity
filtration through double polycarbonate filters (Millipore, USA)
with a pore size of 0.6µm (Chisholm et al., 1992). Then, a Pro2
medium nutrient stock solution was added to the filtrate (Moore
et al., 2007). The filtrate was placed in an incubator onboard
for initial enrichment for 4–8 weeks. After confirmation by a
flow cytometer, the Prochlorococcus strains were maintained at
a constant temperature of 22◦C and a continuous light intensity
of 10–20 µmol photons m−2s−1.

DNA Isolation, Library Preparation, and
DNA Sequencing
DNA isolation, library preparation, and DNA sequencing
were performed as previously described (Yan et al., 2021).
Briefly, genomic DNA was collected from 25ml laboratory
cultures by centrifugation (10,000×g for 30min) and extracted
using a QIAamp DNA mini kit (Qiagen, Germany). One
µg of extracted DNA was fragmented by a Covaris ME220
Focused-ultrasonicator (Covaris, USA). DNA library was
constructed using a NEBNext R© UltraTM DNA Library Prep
Kit for Illumina R© in accordance with the manufacturer’s
instructions (NEB, USA). Ten ng of library DNA was taken
and subjected to bidirectional sequencing using an Illumina
NovaSeq 6000 instrument with a read length of 150 bp.
All library construction and sequencing were performed
at Shanghai Majorbio Bio-pharm Technology Co., Ltd
(Shanghai, China).

Assembly and Annotation
To recover Prochlorococcus and heterotrophic bacterial genomes
from non-axenic cultures, genome assembly was performed
using the MetaWRAP v1.2.1 pipeline on a Linux cluster
with 96 cores and 512 GB of RAM (Uritskiy et al., 2018).
Briefly, the reads from all samples were trimmed using the
metaWRAP-Read_qc module and then individually assembled
with the metaWRAP assembly module using MEGAHIT
as a metagenomic assembler (Li et al., 2015). Bins were
calculated using three binning modules, including CONCOCT
(Alneberg et al., 2014), MetaBat (Kang et al., 2015), and
MaxBin2 (Wu et al., 2016). Then, the bin_refinement module
was used to combine and improve the results generated by
the three binners. Finally, the reassemble_bins module was
used to attain better bins. The quality cutoffs of all steps
were set as: completeness > 90% and contamination < 5%
using CheckM (Parks et al., 2015). The assembled genomes
were annotated using the Rapid Annotation using Subsystem
Technology online server (FIGfam version Release 70) (Aziz
et al., 2008).

Phylogenomic Analysis
Phylogenetic relationships of HLII Prochlorococcus strains
were reconstructed by using concatenated protein sequences.
Briefly, protein sequences of 1102 core genes defined at 70%
similarity level were aligned with MUSCLE (Edgar, 2004)
and concatenated using Bacterial Pangenome Analysis Pipeline T
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FIGURE 1 | Phylogenetic tree of the Prochlorococcus strains sequenced in the present study. A neighbor joining phylogenetic tree was reconstructed using the

protein sequences of 1102 core genes of 46 high-light-adapted clade II strains, with a high-light-adapted clade I strain (MED4) as an outgroup. Bootstrap values for

1,000 resamplings are indicated by numbers at the nodes (at least 50% support).

v1.3.0 (Chaudhari et al., 2016). Gblocks software v0.91b
was used for degaping in the divergent regions (Castresana,
2000). The neighbor joining phylogenetic tree with 1000

bootstraps was constructed using MEGA X (Kumar et al.,
2018), and visualized using iTOL version 4 (Letunic and Bork,
2019).
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FIGURE 2 | Phylogenetic tree of 101 co-cultured heterotrophic bacteria genomes, with the Synechococcus WH5701 strain as an outgroup. A maximum likelihood

phylogenetic tree was reconstructed using the concatenated amino acid sequences of 120 bacterial ortholog genes. Bootstrap values for 1,000 resamplings are

indicated by numbers at the nodes (at least 50% support).
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Evolutionary relationships and taxonomic classification of
co-cultured heterotrophic bacteria were reconstructed based on
concatenated amino acid sequences of 120 bacterial ortholog
genes using GTDB-tk v1.3.0 (Chaumeil et al., 2019). Briefly, the
120 ortholog genes were identified and aligned with HMMER
(Finn et al., 2011), concatenated into a single multiple sequence
alignment, and trimmed with the 5,000-column bacterial mask
(Chaumeil et al., 2019). The maximum likelihood phylogenetic
tree was constructed using FastTree v2.1.10 (Price et al.,
2009). The phylogenetic tree presented in the present study
was visualized using iTOL version 4 (Letunic and Bork,
2019).

Pan-Genome Analysis
Gene-based pan-genome analysis of the HLII Prochlorococcus
strains was conducted using the Bacterial Pangenome Analysis
Pipeline v1.3.0 (Chaudhari et al., 2016), which uses the
USEARCH algorithms to identify core genes. The similarity
cutoff for amino acid sequences of the core gene was set as 50%.

INTERPRETATION OF THE DATA

Genomic Data of the Prochlorococcus HLII
Strains
In the present study, The DNA of 15 Prochlorococcus HLII
cultures were sequenced, and the raw data were quilty
controlled and assemblied. Genome sizes of the 15 HLII
isolates ranged from 1,631,569 bp to 1,721,994 bp, with
an average GC content of 31.26% (s.d. = 0.11) and an
average of 1,976 coding sequences per genome (s.d. = 28)
(Table 1). Their phylogenetic position was confirmed through
phylogenomic tree construction using core genome amino
acid sequences at a similarity cutoff of 70% (Figure 1). In
this study, 101 co-cultured heterotrophic bacterial genomes
were obtained from the non-axenic HLII cultures using
the binning method. The completeness of these genomes
ranged from 90.2 to 100%, with an average of 97.7%. The
completeness, contamination, genome size, GC content, and
number of coding sequences of each genome are shown
in Supplementary Table 1. Their phylogenetic positions
were confirmed through phylogenetic trees using 120
bacterial orthologous genes (Figure 2). The phylogenetic tree
comprised four bacterial clades, including Alphaproteobacteria,
Rhodothermia, Gammaproteobacteria, and Bacteroidia, and

was further sperated into six classes, 22 families, and 37 genera
(Figure 2; Supplementary Table 1).

REUSE POTENTIAL

The genomes of the Prochlorococcus HLII strains and their co-
cultured heterotrophic bacteria discussed here warrant further
analysis to explore the fine-scale diversity of Prochlorococcus and
co-cultured heterotrophic bacteria, and their future applications
in marine microbiology and ecology.
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