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Worldwide, seagrass meadows are under threat. Consequently, there is a strong need
for seagrass restoration to guarantee the provision of related ecosystem services
such as nutrient cycling, carbon sequestration and habitat provision. Seagrass often
grows in vast meadows in which the presence of seagrass itself leads to a reduction
of hydrodynamic energy. By modifying the environment, seagrass thus serves as
foundation species and ecosystem engineer improving habitat quality for itself and
other species as well as positively affecting its own fitness. On the downside, this
positive feedback mechanism can render natural recovery of vanished and destroyed
seagrass meadows impossible. An innovative approach to promote positive feedback
mechanisms in seagrass restoration is to create an artificial seagrass (ASG) that
mimics the facilitation function of natural seagrass. ASG could provide a window of
opportunity with respect to suitable hydrodynamic and light conditions as well as
sediment stabilization to allow natural seagrass to re-establish. Here, we give an
overview of challenges and open questions for the application of ASG to promote
seagrass restoration based on experimental studies and restoration trials and we
propose a general approach for the design of an ASG produced from biodegradable
materials. Considering positive feedback mechanisms is crucial to support restoration
attempts. ASG provides promising benefits when habitat conditions are too harsh for
seagrass meadows to re-establish themselves.

Keywords: artificial seagrass, ecosystem restoration, seagrass sediment light feedback, positive feedback
mechanisms, biodegradable

INTRODUCTION

Seagrass meadows provide important ecosystem services (Waycott et al., 2009; Reynolds et al.,
2016) such as nutrient cycling (McGlathery et al., 2007), carbon sequestration (Duarte et al., 2004),
habitat provision (Orth et al., 2006) and the resulting support of biodiversity (Hemminga and
Duarte, 2000) and fisheries (Beck et al., 2001). By modifying the environment, seagrass serves as
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foundation species and ecosystem engineer improving habitat
quality for other species as well as positively affecting its
own fitness (van der Heide et al., 2011). Moreover, seagrass
plays an indirect, but important role in coastal protection by
the absorption of wave energy (Paul and Amos, 2011) and
the stabilization of sediment (Christianen et al., 2013). Even
though the services of seagrass meadows have been widely
recognized, these ecosystems are under threat and a global
decline has been observed over the last decades (Lotze et al.,
2006; Short et al., 2011). Since the 1980s, seagrass decrease in
many European areas has slowed and even reversed thanks to
changes in management and regulations allowing for natural
(re)colonization (de los Santos et al., 2019). However, with a
decline of 7% per year toward the end of the twentieth century
(Waycott et al., 2009), seagrass beds still rank among the most
threatened ecosystems on Earth.

Threats for Seagrass Meadows
The reasons for the worldwide decline of seagrass meadows
are manifold and include diseases, natural and anthropogenic
disturbances as well as eutrophication (Orth et al., 2006). A major
driver of seagrass loss was a pandemic caused by the slime-mold
Labyrinthula zosterae, commonly known as the wasting disease
that dramatically reduced Zostera marina stands in the 1930s
(Cotton, 1933) and totally wiped out the subtidal Z. marina in
the North Atlantic (Dolch et al., 2013). Natural disturbances
can lead to reduced seagrass growth or even a total loss of
seagrass ecosystems (van Katwijk et al., 2016). Erosion, for
instance, can lead to scouring around shoots and result in their
dislodgment by hydrodynamic forces (Infantes et al., 2011).
Erosion processes also result in highly turbid water reducing light
availability for photosynthesis. Small or short term reductions
in light availability may cause reversible stress (Collier et al.,
2012), but minimum light requirements are often not met after
vegetation cover has been lost. Another natural disturbance
in seagrass meadows can be the burial of young plants as it
has a significant impact on growth and survivorship. Burial
can be caused by natural dune migration and bioturbation,
but also by the settlement of suspended material as a result
of reduced flow velocities (Cabaço et al., 2008). In addition to
natural threats, seagrass is exposed to anthropogenic impacts
that can lead to the destruction and loss of seagrass meadows.
These disturbances include mechanical destruction by anchoring
vessels that can uproot seagrass in large areas (Abadie et al.,
2016) as well as stress and damage by underwater construction
works like dredging or shore nourishment campaigns that lead
to enhanced turbidity. Another major anthropogenic impact
on coastal waters is the intake of nutrients and chemicals
(e.g., herbicides) through input by rivers or sewage (Vitousek
et al., 1997) directly affecting seagrass health due to ammonium
toxicity and nitrate inhibition through internal carbon limitation
(Burkholder et al., 2007). Eutrophication also indirectly affects
seagrass health as higher nutrient levels promote growth of
phytoplankton, epiphytes, and macroalgae leading to increased
turbidity and shading of seagrass plants (Burkholder et al., 2007).
These anthropogenic impacts are considered the major drivers
of global seagrass loss (Duarte et al., 2004) and as long as

they persist, seagrass restoration will continue to be deemed
unsuccessful (van Katwijk et al., 2009).

Recovery of Seagrass Meadows
By reducing hydrodynamic energy, seagrass meadows promote
the settling of suspended sediment particles (Bouma et al.,
2005), improving water clarity and quality (Short et al., 2007).
Moreover, the root and rhizome system stabilizes the trapped
sediment even when aboveground biomass is low (Barbier et al.,
2011). This positive feedback between seagrass and sediment
suspension/deposition is called the seagrass sediment-light (SSL)
feedback (Adams et al., 2016). While this feedback has a self-
facilitative effect in intact seagrass meadows, it can also lead
to bistability (Wilson and Agnew, 1992; Scheffer et al., 2009)
with two alternative stable states: (i) a seagrass meadow with
relatively clear water, and (ii) bare sediment beds with turbid
water (van der Heide et al., 2007). Non-linearities in the
response to environmental drivers can lead such bistable systems
to abruptly shift from one state into another by only small
environmental changes (Carr et al., 2016). The resilience of
bistable systems is low, meaning that after a disturbance with a
consequential system shift, the systems cannot return easily into
their previous state due to hysteresis even if the disturbance has
been eliminated (Scheffer et al., 2001). In exposed locations, the
SSL feedback-induced bistability (Carr et al., 2010) can render the
natural recovery of seagrass meadows impossible. Prolonged high
turbidity, for example, prevented the recovery of Z. marina in
the Greifswalder Bodden in the Baltic Sea despite reductions in
nutrient inputs over 15 years (Munkes, 2005).

Around the globe, many restoration projects try to re-establish
seagrass meadows, and many research projects have been
dedicated to this aim (Paling et al., 2009; van Katwijk et al., 2016).
A range of restoration guidelines combine the lessons learned
from past restoration efforts (e.g., Campbell, 2002; Ganassin and
Gibbs, 2008; Moksnes et al., 2016; van Katwijk et al., 2016). They
all identify a variety of reasons for the failure of the numerous
restoration activities in the past, one of the main being that the
selected site does not provide the required conditions for seagrass
establishment (van Katwijk et al., 2016). For example, high water
and sediment movement at exposed sites are acknowledged to
be impedimental to transplant survival (Campbell, 2000). Hence,
low-energy areas are recommended for restoration schemes to
improve restoration success rates (Orth et al., 1994). However,
providing the right shelter, restored seagrass can thrive in
high-energy environments. Established beds of seagrass in high
velocity environments probably developed in adjacent low-
energy areas or during calm periods and expanded once they were
well established (Koch, 2001). At sites with high hydrodynamic
energy, habitat enhancement strategies that promote positive
feedback mechanisms can thus increase restoration success.
Therefore, we propose creating an artificial seagrass (ASG) that
mimics the SSL function of natural seagrass. Such ASG provides
a window of opportunity with respect to suitable hydrodynamic
and light conditions as well as sediment stabilization to allow
natural seagrass to either grow from seeds, take root after
transplantation or expand existing meadows more easily. Here,
we provide an overview of challenges and open questions when
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it comes to the application of ASG for promoting seagrass
restoration. We first summarize existing restoration programs
that deal with the challenges in seagrass restoration by promoting
positive feedback mechanisms (section 2) and subsequently
outline the open questions associated with the planning and
application of artificial seagrass for restoration purposes (section
“Proposed Approaches for Seagrass Restoration With ASG”).

State-of-the-Art in Seagrass Restoration
Restoration efforts provide a conceivable way to support
the recolonization process and promote seagrass regrowth.
A decisive role in seagrass restoration is played by the self-
facilitative effect resulting from the seagrass sediment-light
(SSL) feedback (Maxwell et al., 2017). Crossing a minimum
threshold of reintroduced individuals and a minimum size of
the transplantation area seem to be necessary to reduce turbidity
from adjacent bare areas (van der Heide et al., 2007) and thus
increase survival and population growth rate of transplanted
seagrass plants or seeds (van Katwijk et al., 2016). However,
large-scale transplantations are in most cases not feasible, so that
restoration may only be possible if clarity of the water column in
a dedicated area is provided by other means, e.g., by the shelter of
other species such as mussel beds (Bos and van Katwijk, 2007).

Promoting Positive Feedback
Mechanisms by the Use of Artificial
Structures
If natural protection structures are not present and cannot be
introduced at the selected restoration site, alternative solutions
and innovative approaches such as enclosures or ASG become
necessary (van der Heide et al., 2007; Table 1). Artificial
structures promoting positive feedback mechanisms provide
promising benefits for the restoration of natural seagrass by
preventing transplants to be dislodged by waves, currents
and foraging fauna (Campbell and Paling, 2003). They can
either directly anchor the transplanted seedlings or stabilize the
sediment surrounding the transplantation (e.g., Short et al., 2002;
Park and Lee, 2007; Leschen et al., 2010).

Numerous laboratory studies utilizing ASG to investigate the
impact of submerged vegetation on the hydrodynamic regime
(e.g., Nepf and Vivoni, 2000; Bouma et al., 2005) show that,
by providing the sheltering capacity that is typically attributed
to natural seagrass meadows, ASG mats, consisting of several
leaves fixed to a base layer and thus mimicking a meadow
section are an innovative approach to promote positive feedback
mechanisms. Villanueva et al. (2021) tested the extent of shelter
behind ASG patches of different lengths and found that even with
a highly flexible ASG, a length of 1 m parallel to flow direction
provides shelter. ASG mats could thus potentially help to restore
seagrass even under harsh conditions (high flow velocities and
turbidity), where natural protection structures such as mussel
beds are not feasible or where other restoration techniques
have previously failed (Talbot and Wilkinson, 2000). Ideally,
this concept could substitute current state-of-the-art labor and
cost intensive measures such as anchors on single shoots or
weighted frames.

Seagrass-like artificial structures have the advantage that they
integrate into the environment and use the well documented
natural feedback mechanisms to provide shelter (Adams et al.,
2016). So far, ASG has mainly been used in other contexts,
e.g., in offshore engineering, where it has found a commercial
application in scour protection around pipelines, monopiles,
and jackets, as it can significantly reduce flow and stabilize the
sediment (Byers et al., 2006).

In a restoration context, artificial seagrass was applied
to increase the long-term survivorship of Cymodocea nodosa
seedlings by decreasing herbivory-induced mortality (Tuya et al.,
2017). For this purpose, green plastic raffia “leaves” were attached
around seagrass restoration plots. Although this was not the
main interest of their research, the authors stated that the ASG
probably modified small-scale hydrodynamics around the plots
and thus reduced sediment transport. In a restoration experiment
in Australia, ASG mats stabilized the sediment composition
for transplants with significantly higher transplant survival and
larger rhizome extension (Campbell and Paling, 2003). In another
restoration test with ASG, Zostera muelleri cover in intertidal
plots with seagrass transplanted into ASG mats decreased after
24 months, presumably because of the strong shading caused
by the ASG leaves (Matheson et al., 2017). A flume experiment
showed that the use of ASG can significantly reduce wave height,
as well as current velocity (Carus et al., 2020) and thereby raise the
input current velocity threshold which transplanted Z. marina
shoots are able to withstand. In the past, the material used
for the construction of ASG was always conventional plastic
constituting an additional source of contamination (Andrady,
2011). Plastic gets brittle and transforms into microplastic, which
may in turn absorb organic pollutants and be consumed by
marine organisms (Cole et al., 2011). The ASG mats described
above were produced from durable materials intended to stay in
place long-term, which makes them unsuitable for restoration
efforts that seek to re-establish natural vegetated ecosystems.
The aim of all habitat enhancement should be to improve
environmental conditions during the establishment only to
the point where the seagrass meadow itself can provide these
ecosystem-engineering functions.

PROPOSED APPROACHES FOR
SEAGRASS RESTORATION WITH
ARTIFICIAL SEAGRASS (ASG)

Prototype Design
The biggest challenge in seagrass restoration with ASG is to
design a prototype that helps to overcome existing natural
disturbances by providing the necessary shelter for re-growing
seagrass while at the same time not causing any negative impact
on the environment. Prototype design should comprise the
design of the ASG leaves (e.g., material, buoyancy, stiffness,
geometry) for the optimal reduction of hydrodynamic forces
(Vogel, 1981). While it is certainly appealing to design the
ASG to mimic the exact properties of natural seagrass, it is
of high importance to optimize the design to more effectively
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TABLE 1 | Overview of existing restoration trials using artificial structures.

Species Facilitation structure Plant
material

Success
(yes/no)

Probable reason for
failure

Drawback References

Potamogeton
perfoliatus Stuckenia
pectinata

Natural beds of Ruppia
maritima

Shoots Depending
on scale of
restoration

Shading effect Not universally present Hengst et al.,
2010

Zostera marina Natural mussel beds
(Mytilus edulis)

Seedlings Yes – Not universally present Bos and van
Katwijk, 2007

Amphibolis griffithii
Posidonia sinuosa

Plastic garden mesh Plugs Yes – Plastic introduction van Keulen et al.,
2003

Amphibolis Antarctica Sand filled hessian bags None * Yes – Species-specific Irving et al., 2010

Zostera marina Sand filled hessian bags Seeds Yes – Low germination rate of
seeds

Unsworth et al.,
2019

Zostera marina Planting frames Shoots Yes – High losses if not
thoroughly anchored,
disturbance caused by the
removal of the frames

Short et al.,
2002; Leschen
et al., 2010;
Park and Lee,
2007

Zostera marina Biodegradable grids Shoots Yes – High losses if not
thoroughly anchored

Kidder et al.,
2013

Zostera marina Holes drilled into shells Shoots Yes – Relatively time-consuming Lee and Park,
2008

Phyllospadix japonicas Underwater structure built
of cement, sand and water

Shoots Yes – Underwater structure stays
in place

Park and Lee,
2010

Cymodocea nodosa ASG to decrease
herbivory-induced
mortality

Seedlings Yes – Plastic introduction Tuya et al., 2017

Posidonia australis ASG with plastic leaves Plugs No Storm damage Plastic introduction Campbell and
Paling, 2003

Zostera muelleri ASG with plastic leaves Shoots No Shading effect, damage
by wavering ASG leaves

Plastic introduction
colonization of ASG with
epifauna and flora

Matheson et al.,
2017

*Recruitment of existing seedlings.

provide shelter without shading the regrowing seagrass too much
(by e.g., modifications on the material mechanical properties
or the geometry).

The selection of a suitable material for ASG is affected
by the required intrinsic characteristics (i.e., degradability)
as well as technical characteristics (i.e., tensile strength).
Moreover, the ASG material should ideally integrate into the
natural environment without any harmful consequences. Thus,
introducing persistent plastics into marine environments has
to be seen critically, and biodegradable materials should be
considered for the construction of ASG. Apart from reducing
the source of contamination, using a biodegradable material
also prevents the disturbance of newly established seagrass
because the structure does not need to be removed after the
natural seagrass has re-established. The biodegradable ASG can
be made of several potential materials, such as natural fibers,
biodegradable plastic or a combination of both, depending
on how long the artificial structure is needed. Pure cellulosic
fibers, in the form of woven fabrics or filaments, degrade very
fast: for cotton and linen fabric, a degradation time of 3–10
weeks was recorded (Dorée, 1920). Some compostable plastics,
such as Polyhydroxyalkanoate (PHA), Polyhydroxybutyrate-
valerate (PHBV) and Polycaprolactone (PCL), have been shown
to degrade under marine conditions (Narancic et al., 2018).

The material being used for restoration purposes needs to be
thoroughly tested beforehand under the conditions prevailing
at the restoration site to assure that it does not harm the
environment. We suggest tests investigating degradability under
marine conditions are carried out at different temperatures and
at three levels (flask, aquaria, field), including ecotoxicity-tests.
While the flask-test is important to prove and evaluate the
mineralization of the material to CO2, the two other levels serve
to test under more realistic conditions and to analyze mechanical
changes during degradation.

The ASG patch should be large enough to provide the shelter
needed against hydrodynamic energy and erosion, but small
enough to (a) be economically feasible; (b) not greatly disturb the
natural environment (e.g., covering other habitats and reducing
nutrient exchange between adjacent areas); and (c) provide
enough space and light for seagrass to establish, grow and expand
within and beyond the ASG boundaries. The dimensions of
the ASG providing this facilitation can be explored in physical
experiments in a hydraulic laboratory facility (e.g., a wave flume
or basin) with systematic variation of specific parameters (e.g.,
wave height/length, distance between mats) (Paul and Gillis,
2015; Villanueva et al., 2021). The prototype meadow can vary
in canopy height, leaf density and meadow length as well as
geometry and mechanical properties of individual stems, in order
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to control sedimentation and reduction of hydrodynamic energy
(e.g., Taphorn et al., 2021). When dimensioning an ASG mat to
support seagrass restoration, it is important to consider that a
trade-off appears when modifying the flow field by an artificial
structure since every structure exposed to flowing water will
lead to both scouring (i.e., erosion) and deposition (i.e., burial)
processes. Furthermore, it is important to carefully consider the
role of stem density, as light availability plays a major role on
seagrass survival (van der Heide et al., 2011; Adams et al., 2016).

The spatial configuration of the ASG mats should consider
the location of the re-establishing natural seagrass relative to
the position of the ASG (i.e., the envisaged area for natural
restoration) and provide an effective spacing in the design.
Potential arrangements include an integrated approach, where
seagrass restoration takes place inside the ASG mats. However,
a possible shortcoming could be the shading of the areas for
seagrass recovery by the ASG (Hengst et al., 2010). The ASG
meadow can also give shelter to adjacent areas where the seagrass
recovery is supposed to take place. Therefore, for sites that are
mainly exposed to intertidal currents or unidirectional wave
action, a stripe-like design could fulfill the task of sheltering
the restoration areas without shading upcoming natural seagrass,
whereas more complex hydrodynamic conditions could require a
checkerboard-like configuration.

Restoration efforts were generally more successful when using
some kind of anchoring (van Katwijk et al., 2016), which keeps
the transplanted natural seagrass in place. The ASG method is
supposed to reduce the hydrodynamic energy at the bottom and
could thus reduce the anchoring efforts. We recommend that
special attention is paid when designing the base-layer of an ASG
system. A grid-like structure for example permits water to flow
through and thus requires less anchoring than a closed structure.
Studies accompanying seagrass restoration should investigate the
anchoring forces (in relation to flow velocity) in order to be able
to design appropriate anchors.

Performance Tests
We recommend that once a prototype has been developed,
it should be tested in a laboratory flume to evaluate if it
provides the sheltering capacity needed at the restoration site.
Measurements should comprise wave and current attenuation,
sedimentation/erosion rate and light intensity inside the ASG.
We encourage the realization of pilot projects in the field for the
establishment of improved restoration guidelines before large-
scale application in a restoration attempt to account for the highly
diverse natural impacts, which cannot be tested under laboratory

conditions (e.g., impact of microbial growth, sunlight, grazing,
varying turbidity, etc.).

CONCLUSION

Artificial seagrass (ASG) provides promising benefits for
seagrass restoration by creating suitable hydrodynamic and
light conditions as well as sediment stabilization for seagrass
establishment when habitat conditions are too harsh for seagrass
meadows to re-establish themselves. While the general facilitating
effect of ASG has been proven in laboratory studies, past
field applications have been limited to small-scale patches. To
effectively test the potential of ASG in habitat restoration, large-
scale field trials are required to minimize the negative effects
induced by small plot sizes. We suggest that ASG should only
be applied if hydrodynamic energy is too high for natural
recolonization and if it is impossible to introduce natural
protection structures at the selected restoration site. If applied, we
recommend the use of ASG only to create a self-supporting and
self-maintaining ecosystem. To facilitate the application of ASG
for restoration purposes, we propose to use an ASG produced
from biodegradable materials. We encourage more studies, which
are urgently needed to overcome the uncertainties associated with
this promising approach.
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