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Global climate change is a key driver of change in coastal waters with clear effects on
biological communities and marine ecosystems. Human activities in combination with
climate change exert a tremendous pressure on marine ecosystems and threaten their
integrity, structure, and functioning. The protection of these ecosystems is a major target
of the 14th United Nations sustainable development goal “Conserve and sustainably use
the oceans, seas and marine resources for sustainable development.” However, due to
the complexity of processes and interactions of stressors, the status assessment of
ecosystems remains a challenge. Holistic food web models, including biological and
environmental data, could provide a suitable basis to assess ecosystem health. Here,
we review climate change impacts on different trophic levels of coastal ecosystems
ranging from plankton to ecologically and economically important fish and shellfish
species. Furthermore, we show different food web model approaches, their advantages
and limitations. To effectively manage coastal ecosystems, we need both a detailed
knowledge base of each trophic level and a holistic modeling approach for assessment
and prediction of future scenarios on food web-scales. A new model approach with
a seamless coupling of physical ocean models and food web models could provide a
future tool for guiding ecosystem-based management.

Keywords: global warming, ecosystem effects, species interactions, marine, food webs, ecosystem models

INTRODUCTION

The complexity of the direct and indirect effects of global climate change on marine ecosystems
and the immense diversity of scales call for novel multifaceted views and the combination
of different types of analyses via models. Without this we will not be able to make
management decisions and protect ecosystem services in a meaningful and sustainable manner.
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Global climate change is a key driver of change in coastal
marine ecosystems (Gissi et al., 2020). It is caused by increasing
anthropogenic greenhouse gas emissions and is responsible
for the rapid alteration of abiotic environmental factors in
marine systems, such as water temperature, pH, hydrography,
and salinity. These changes manifest with clear effects on
biological communities and the structure and function of marine
ecosystems (IPCC, 2014). Temperature has been suggested to
be one of the most important physical drivers of aquatic
environments and biological community structure (Richardson,
2008; IPCC, 2014). Rising temperatures are globally significant
and result in reduced sea-ice in the Arctic and Antarctic. Glacier
runoff and precipitation patterns have changed considerably with
resultant redistribution of annual river discharge rates. Such
shifts result in more evident changes in pelagic salinity and
particulate matter loadings in coastal areas (IPCC, 2014). Climate
change also alters ocean evaporation and current flows, which are
likely to result in changes in the ocean circulation (Toggweiler
and Russell, 2008; Greene et al., 2013; IPCC, 2014) with as
yet unquantifiable and largely unknown effects for marine life
and biodiversity.

Ocean waters take up CO2 from the atmosphere (Sabine
et al., 2004). Since the beginning of the industrial era, ocean
waters have absorbed about 30% of the atmospheric CO2 (IPCC,
2014). The resulting acidification alters the physical environment,
the carbon cycle and it impacts marine communities, for
instance by affecting larval development and calcification
processes of ecologically and economically important shellfish
species (Waldbusser and Salisbury, 2014; Wallace et al., 2014)
or calcifying plankton (Riebesell, 2004). Also, the increasing
trend of extreme weather events associated with climate
change (IPCC, 2014) affects marine communities. Extreme
hot summers, more frequently occurring hypoxia events and
harmful algal blooms can lead to a higher mortality rate in
fish stocks and shellfish populations (Rijnsdorp et al., 2009;
Wendling and Wegner, 2013).

In addition to the effects of global climate change, marine
ecosystems are also affected by local anthropogenic pressures,
such as eutrophication (e.g., van Beusekom, 2005), fishing (e.g.,
Lindeboom and De Groot, 1998) or seabed degradation (e.g.,
Airoldi et al., 2008). The exploitation and the destruction of
marine, inshore and catchment habitats strongly impact coastal
ecosystems, in their complex buffer-like position between land
and ocean (He and Silliman, 2019). The scales of impact are
highly variable, ranging from the impact of stressors on a global
to a local geographic scale. For instance, ocean warming and
acidification are global phenomena with large-scale impacts on
the entire marine environment, but these can also induce further
local effects, such as hypoxia events or melting sea-ice (IPCC,
2014). In addition, stressors interact with each other resulting
in potentially unpredictable changes and immensely complex
impacts on the marine environment (He and Silliman, 2019;
Gissi et al., 2020).

In short, direct human activities in combination with climate
change exert a tremendous pressure on marine ecosystems
and threaten their integrity, structure and functioning.
The human population heavily relies on healthy coastal

ecosystems, and the negative feedback on ecosystem services
(ES) from anthropogenic pressures reduces the chance for
sustainable resource use. Coasts provide a wide range
of ES from which humans benefit directly or indirectly
(Barbier et al., 2011; Liquete et al., 2013). ES are classified
as supporting, provisioning, regulating or cultural services
(Millennium Assessment Board, 2005) which include, for
instance, the increase of water quality by filtration (regulating
ES) or the provision of food (provisioning ES). Global and local
stressors impact different trophic levels of coastal food webs,
such as plankton, fish and shellfish, and thus, jeopardize the
provision of ES (Poloczanska et al., 2013; He and Silliman, 2019).

Given the magnitude of the pressures exerted on coastal
environments, their protection is a major target of the
14th United Nations sustainable development goal “Conserve
and sustainably use the oceans, seas and marine resources
for sustainable development”. Several guidelines, such as
the European Marine Strategy Framework Directive (MSFD)
(European Commission, 2008), have been established to achieve
a “good environmental status” in coastal waters (Pogoda et al.,
2020). However, due to the complexity of processes and
interactions of stressors, the status assessment of ecosystems
remains a challenge. Holistic food web models, including
biological and environmental data, could provide a suitable
basis to assess ecosystem health (de la Vega et al., 2018; Fath
et al., 2019; Safi et al., 2019). These model approaches have
significantly improved over the last decade (Coll et al., 2015;
Geary et al., 2020), but their capacities to evaluate multiple-
stressor impacts on different trophic levels are still limited
(Coll et al., 2015).

Here, we focus on the following aims: (1) summarize current
knowledge on climate change impact on different trophic levels
of coastal food webs and their ES, (2) review current food web
model approaches and their limitations, and (3) discuss a novel
suggestion for a future high-resolution food web model approach,
to assess climate change impacts in a holistic approach.

IMPACT OF GLOBAL CLIMATE CHANGE
ON COASTAL FOOD WEBS AND
CONSEQUENCES FOR ES

Climate change alters organisms’ abundance, distribution,
physiology and phenology (IPCC, 2014). These changes are not
restricted to one trophic level or one local region, but affect the
entire ecosystem on a global scale. This highlights the challenge
of assessing ecosystem status and climate change impacts to guide
conservation and management.

Coastal waters are highly productive areas and supply
approximately 80% of the global wild-captured seafood (Capuzzo
et al., 2018). This production relies on planktonic organisms at
the basis of coastal food webs. Plankton supports ecologically and
economically important species, which structure and stabilize
pelagic and benthic communities (e.g., in their role as key
predators) and provide habitats (e.g., as ecosystem engineers).
Based on their importance for food web functioning and the
provision of ES (Atkins et al., 2015; Turner et al., 2015), we focus
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on climate induced changes of plankton communities, and of
ecologically and economically important fish and shellfish species
and their trophic interactions.

Phytoplankton
Phytoplankton provide half of the global net primary production
despite their comparably low biomass (Field et al., 1998).
Biogeochemical cycles, such as the carbon or nitrogen cycles
(Falkowski, 1994), and energy transfer to higher trophic levels
depend on phytoplankton diversity and community composition.
Phytoplankton affect fluxes of elements in the ecosystem by
the uptake and storage of nutrients (Falkowski et al., 1998).
Phytoplankton can also serve as a major source of trace
gases, such as dimethyl sulfide, which can in turn also affect
atmospheric chemistry and thus influence climate (Charlson
et al., 1987; Andreae and Crutzen, 1997). Phytoplankton can
photosynthetically fix atmospheric CO2 into organic matter
(Sunda, 2012), which is sequestered in the deep ocean through
the biological pump (Tedesco and Thunell, 2003; Muller-
Karger et al., 2005). Climate change induced alterations of
the phytoplankton community are therefore likely to affect the
regulating ES of marine phytoplankton.

Trends in phytoplankton responses to changing
environmental conditions strongly vary across regional and
temporal scales. Thus, very long and well understood database
are required to link climate-related shifts to phytoplankton
productivity. In addition, the fundamental controlling factors of
plankton growth should be determined based on multi-decadal
data (Wiltshire et al., 2015). For example, the continuous
plankton recorder (CPR) operating in the North Atlantic
and the North Sea provides one of the longest time series of
plankton species composition and density in the world (Reid,
1975; Richardson et al., 2006). The CPR methodology was
expanded to the North Pacific in 2000 with sister surveys in
Narragansett, United States and Tasmania, Australia (Reid
et al., 2003). Furthermore, several local but long-term plankton
monitoring stations were established, for instance the German
Helgoland Roads Time Series (HRTS) (Wiltshire et al., 2010),
Hawaii Ocean Time series (HOT) (Bingham and Lukas, 1996),
and Bermuda Atlantic Time Series (BATS) (Steinberg et al.,
2001). The long-term data sets enable us to study multi-decadal
patterns, and provide a unique basis to evaluate the influence of
climate change on plankton.

Planktonic communities are affected at different scales by
climate change (Figure 1). Analyses of CPR and HRTS data
revealed warming induced changes in phytoplankton abundance
(Richardson and Schoeman, 2004; Wiltshire et al., 2010).
Richardson and Schoeman (2004) also showed a phytoplankton
increase in cooler regions and a decrease in warmer regions.
Declines in phytoplankton abundance and biomass are often
linked to a nutrient depletion in surface waters since higher
water temperatures generally lead to more stable and stratified
water conditions resulting in less nutrient supply from deeper
waters (Richardson, 2008; Gittings et al., 2018). For instance,
this was shown for phytoplankton communities in the northern
Red Sea (Gittings et al., 2018). Moreover, warming also alters
the phenology of phytoplankton, such as growth and blooming

behavior (Winder and Sommer, 2012; Wiltshire et al., 2015;
Gittings et al., 2018; Scharfe and Wiltshire, 2019). Long-term
studies of the phytoplankton community in the North Sea
revealed that increasing temperatures change the timing of
growth in more than half of the studied phytoplankton species
(Scharfe and Wiltshire, 2019). Such phenological shifts can cause
severe alterations in the food web if phytoplankton blooms are
decoupled from zooplankton growth periods (Wiltshire et al.,
2010; Winder and Sommer, 2012). A mismatch in times of
peaking phytoplankton biomass and growth periods of their
consumers can decrease the survival of those herbivores due to
reduced food supply (Wiltshire and Manly, 2004; Richardson,
2008; Wiltshire et al., 2008). Because phytoplankton biomass
appears to be one of the key drivers of zooplankton communities
(Wiltshire et al., 2008; Capuzzo et al., 2018), changes at
phytoplankton level are likely to propagate through the food web
to higher trophic levels.

Under climate change, numerical models predict a severe
decline of phytoplankton production due to rising CO2 (Bopp
et al., 2004, 2005). Furthermore, numerical simulations and
observations suggested that increasing temperatures reduce
plankton biomass, change the turnover time and break the
stable coexistence of phytoplankton and zooplankton (Sarker
et al., 2018, 2020). Sekerci and Petrovskii (2015) found that
warming-induced oxygen depletion could cause plankton species
extinction. Their model outputs also suggested that warming-
induced stratification in tropical marine systems will reduce
surface nutrient concentrations, and favor smaller phytoplankton
cells at the expense of larger diatoms. An additional effect of
warming is the melting of ice, which could impact planktonic
communities. Reduced sea-ice cover results in an earlier
attenuation of light limitation and induces a stabilization of
stratification causing an earlier spring bloom in the Arctic
and high-latitude Southern Ocean (Henson et al., 2018). While
these models already predict climate change impacts on the
phytoplankton level, they do not consider any propagations to
higher trophic levels or feedback loops.

Zooplankton
Zooplankton are a key component of coastal food webs, which
link the energy generated by primary production to higher
trophic levels. Zooplankton are poikilothermic organisms and
may express changes in physiological responses to higher
temperatures, including higher ingestion and respiration rates
(Dam and Peterson, 1988; Vaquer-Sunyer et al., 2010; Chen
et al., 2012) as well as faster reproductive development (Heinle,
1969; Weydmann et al., 2018). This affects primary production
via increased grazing pressure and can lead to shifts in
phytoplankton size and species structure (Bergquist et al., 1985;
Granéli et al., 1993). Furthermore, climate change impacts
the community structure of zooplankton when environmental
conditions exceed the tolerance limits of certain species.
Richardson and Schoeman (2004) found a shift of various
herbivorous and carnivorous zooplankton species of the North
Sea and Atlantic toward cooler regions based on CPR data.
Changes in the environment can also allow the invasion of
new organisms. For instance, species such as Penilia spp. and
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FIGURE 1 | Graphical summary of climate change impacts on planktonic communities. Positive signs indicate an increase and negative signs indicate a decrease.
Information are based on literature cited in the text.

the introduced species Mnemiopsis leidyi have become more
abundant in the southern North Sea due to warmer water
temperatures (Johns et al., 2005; Boersma et al., 2007; Jaspers
et al., 2018). Similarly, investigations of zooplankton in the
Bering Sea revealed that warmer temperatures lead to changes in
community structure with negative impacts on large, lipid-rich
zooplankton and higher abundances of small zooplankton species
in warm years (Eisner et al., 2014). In coral reefs, acidification
results in changes in the zooplankton community structure and
leads to an overall decrease of zooplankton abundance (Smith
et al., 2016). Absorbed carbon from the atmosphere might also
decrease the food quality for zooplankton by changing the carbon
to nutrient ratio of the water (Van de Waal et al., 2010; Meunier
et al., 2016) and thus the nutrient composition of planktonic
primary producers (Sterner and Elser, 2002; Meunier et al., 2014).
Consumers need to find a way to get rid of the surplus carbon, for
instance by excreting carbon as dissolved organic carbon (DOC),
which is potentially available for microbes and bacteria and can
therefore influence the entire food web (Schoo et al., 2013).

To understand the impact of climate change on zooplankton
communities, a significant number of model-based studies
have been conducted. These studies include statistical models,
small scale numerical simulations and large-scale numerical
simulations. For example, Carter et al. (2017) used a statistical
multivariate autoregressive model to reveal that warming was
the dominant driver of change in the zooplankton community
in an Alaskan lake from 1963 to 2009. Warming-induced
oxygen depletion also caused a zooplankton biomass decrease
in non-linear mathematical models (Sekerci and Ozarslan,
2020). Coupled population and hydrodynamic models were
used to understand the impact of climate change on critical
copepod life-history processes (Speirs et al., 2005). Wakelin

et al. (2015) investigated the impact of climate change along
with anthropogenic drivers on the zooplankton communities
using a coupled hydrodynamic-ecosystem model. Their findings
suggested that climate change has a negative impact on the
zooplankton community. Model simulations in higher latitudes
revealed that melting sea ice decreases the salinity of the
surface layer causing an alteration in the timing of spring
increase in copepod abundance (Ding et al., 2019). These models
already successfully predict changes in zooplankton community
structure and biomass related to climate change, but they do
not provide effects on higher trophic levels or feedback loops
to phytoplankton.

Meroplankton
During their early life stages, larvae of fish and shellfish are
part of the zooplankton community (meroplankton). Elevated
temperatures influence the timing of gametogenesis, gonad and
embryonic development, spawning and hence, the abundance
of these larvae (Birchenough et al., 2015; Bayne, 2017). Shifts
in spawning time in relation to climate change have already
been described by Cushing (1969) who suggested the risk of a
potential de-coupling between fish larvae and the production
cycle of their prey. As pelagic fish larvae mainly feed on
zooplankton (Daan et al., 1990), the climate change associated
shifts in phytoplankton and zooplankton can result in a decrease
of food quality and quantity for these higher trophic levels.
Beaugrand et al. (2003) found a decline in cod recruitment
from the mid-1980s onward due to a mismatch between the
prey size and appearance of cod larvae. Zooplankton of the
genus Calanus belong to the most important prey of larvae
and juveniles of cod in the North Sea. The replacement
of C. finmarchicus by C. helgolandicus due to higher water
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temperatures had a direct effect on cod recruitment survival
because C. finmarchicus peaks in spring while C. helgolandicus
peaks in late summer/autumn resulting in insufficient prey
supply for cod recruitment (Beaugrand et al., 2003). Similarly,
there has been an entire regime shift in the Central Baltic Sea in
the late 1980s presumably due to a change in atmospheric forcing
causing a sudden increase in temperature (Möllmann et al.,
2009). However, effects of increased temperature are not negative
per se. In Lake Aleknagkik, Alaska, increasing temperatures led
to an earlier ice breakup in spring with positive effects on
sockeye salmon (Oncorhynchus nerka) larvae due to increased
zooplankton growth (Schindler et al., 2005).

Shellfish larvae pass through critical life-stages while
depending on phytoplankton as an exclusive food source.
Specific phytoplankton compositions within narrow time
windows induce successful development of long-adapted
populations and affect total recruitment by allowing or by
impeding metamorphosis and settlement (Birchenough et al.,
2015; Bayne, 2017). Furthermore, increased predation pressures,
caused by reduced winter migration of predators in warming
waters, raise mortality rates of early larval populations in spring
(Beukema and Dekker, 2005). Kirby et al. (2008) showed a
climate-induced decrease of bivalve larvae, but it is still unknown
how reduced abundances of larvae affect adult populations
(Birchenough et al., 2015). On community level, mismatch
effects of primary consumers are suggested to induce trophic
cascades and major changes in coastal ecosystems, confirming
the role of benthic shellfish as central components regulating
functioning of both pelagic and benthic systems (Jochum et al.,
2012; Lindegren et al., 2012).

Shellfish
Shellfish are well known for their provisional ES. Global annual
capture production of mollusk groups and crustaceans, as well
as aquaculture production, sum up to over 45 million tons.
Negative trends in bivalve fisheries are related to an increasing
aquaculture production, but in some areas also to pollution and
the degradation of marine environments (FAO, 2018; Wijsman
et al., 2019). In addition, bivalves regulate the water quality of
coastal waters by their filtration capacity (e.g., Cranford, 2019).
Most shellfish species are less mobile or even sessile and are thus
limited in their ability to actively move to other areas if habitat
conditions decrease due to climate change.

Among crustaceans, pandalid shrimps occupy a central
position in the food web because they prey upon zooplankton
and are the main food of different fish species. In the Gulf of
Alaska, different species of pandalid shrimps declined sharply in
relation to increasing water temperatures with critical impacts
on the fishing sector (Anderson, 2000). Pandalids also have
been shown to react with phenological changes to temperature
alterations. In the Gulf of Maine, the northern shrimp Pandalus
borealis exhibited an earlier hatch initiation with a later hatching
completion in relation to increasing temperature (Richards,
2012). Furthermore, temperature affects larval dispersal (Le
Corre et al., 2020) and recruitment survival (Ouellet et al., 2017)
of P. borealis.

Other shellfish taxa, such as bivalves, are commonly classified
as ecosystem engineers, as their numerical abundance creates
significant effects in benthic communities and they often
provide a relevant structuring component for their habitat
by creating biogenic reefs (Birchenough et al., 2015; Bayne,
2017). Bivalves are filter-feeding primary consumers and depend
on phytoplankton availability in quantity, quality and time.
Climate change induced shifts in phytoplankton availability
affects growth and reproductive output of bivalves (Birchenough
et al., 2015). Declines in bivalve abundance result in reduced
filtration capacity, which allows for increased phytoplankton
blooms, hypoxia events at the benthic-pelagic interface, sediment
instability and reduced marine vegetation (Schulte et al., 2009;
Cranford, 2019). The ecosystem is forced from benthic to
pelagic production and recruitment and reproductive output
of the benthic community will decrease (Birchenough et al.,
2015; Bayne, 2017). Furthermore, shellfish are often exposed
to climate related range and virulence extension of parasites
and pathogens. Rowley et al. (2014) reviewed the influence of
climate change on shellfish diseases in the Irish Sea and related
an increase of the range and prevalence of different parasite and
pathogen groups (e.g., Vibrio populations) to elevated summer
and winter temperatures. However, due to a lack of knowledge on
pathogen dispersal conclusions remain fragmentary. Also, ocean
acidification affects species depending on calcification, such as
bivalves (Gazeau et al., 2007) with unknown long-term effects for
species survival and benthic communities.

A recent integrated model approach addressed the evaluation
of climate change impact on fish and shellfish in Alaska, primarily
considering the potential consequences for socio-ecological
interactions under different fishing scenarios (Hollowed et al.,
2020). Guyondet et al. (2015) used a coupled hydrodynamic-
biogeochemical model to study the effects of warming and
nutrient loads on mussel aquaculture. They found a production
increase in mussels as long as the mussels can sustain summer
temperatures. Nevertheless, model predictions for shellfish
distribution, fitness and respective ecosystem service provision
under climate change are scarce.

Finfish
Fish play an important role in global nutrition (FAO, 2018) and
sustaining healthy fish populations in a changing world is one of
the key roles of global and local management strategies (ICSU,
2017). Fish are highly mobile and rising water temperatures cause
a general poleward shift in distribution of tropical, temperate
and subpolar fish species (Schindler et al., 2005). On a local
scale, fishes also move to cooler water depths to avoid high
water temperatures (Dulvy et al., 2008). The distribution of each
species is constrained by its thermal tolerance (Rijnsdorp et al.,
2009; Pörtner and Peck, 2010) and the shifting trend could affect
especially those species which currently have a more poleward
distribution since the suitable habitat decreases (Kleisner et al.,
2017). Preferences for and dependencies on a specific habitat can
complicate range adaptation to thermal changes for some fish
species. In the North Sea, sandeel populations (e.g., Ammodytes
marinus) are identified as highly threatened by climate change.
Sandeels are ecological key species as they link primary and
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secondary (zooplankton) production to top predators (seabirds,
fish, marine mammals) (Heath et al., 2012). But they are also of
significant economic importance, supporting a large fishery in
the North Sea (ICES, 2014). Sandeels are exclusively associated
to coarse sediments and therefore indicate only limited potential
for extending their distribution to the north (Heath et al., 2012).
Similarly, the cape anchovy (Engraulis capensis) is unable to shift
poleward lacking a refugium (Grant and Bowen, 2006). Most
anchovy stocks are coastal and the cape anchovy habitat in the
Benguela Current System is bounded by two warm currents: the
Angola Current to the north and the Agulhas Current to the east.
The cape anchovy off South Africa is unusually vulnerable to
ocean warming (Checkley et al., 2017) and at the same time highly
important for local fisheries. In addition to geographical range
shifts, changing abiotic conditions can alter the annual migration
of fishes to their feeding and spawning grounds (Rijnsdorp
et al., 2009). A relationship between water temperatures and
migration patterns have already been shown for fish species,
such as flounders Platichthys flesus (Sims et al., 2004). However,
alterations in fish migration with respect to climate change still
require further investigations (Lennox et al., 2019).

Several model studies focus on the impact of climate change
on fish stocks, especially due to their importance for fisheries
and human nutrition. The model approach of Kleisner et al.
(2017) supported the observed poleward shift of thermal fish
habitats. This was also shown in the ensemble model study of
Bryndum-Buchholz et al. (2020) with a fish biomass increase
in Arctic regions and a decrease in tropical regions. The fish
collapse in the Northwest Atlantic was explored with statistical
models, which revealed that the reason was a mixture of fishing
and environmental impacts (Dempsey et al., 2018). However,
while these model approaches successfully represent potential
responses to climate change, interactions with prey organisms are
often not included.

What Needs to Be Included in Ecosystem
Models to Assess and Project Climate
Change Impacts?
The complex interactions within coastal food webs and the
interactive effects of anthropogenic stressors such as fisheries
and climate change make it difficult to assess changes on
ecosystem scale (Gissi et al., 2020). However, this assessment
and the projection of future changes are essential to provide the
relevant knowledge to guide sustainable management of coastal
ecosystems supporting the robust provision of ES, such as marine
food supplies. Without such assessments, the regulation of ES
becomes almost impossible, with particular regard to optimal
spawning and recruitment conditions for stable populations of
relevant key species. To effectively manage coastal ecosystems,
both a detailed knowledge base of each trophic level and a holistic
modeling approach for assessment and prediction of future
scenarios on food web-scales are needed (Howell et al., 2021).

In order to achieve a realistic future simulation, such models
should be able to simulate the different effects and drivers of
climate change across trophic levels and on different scales.
On the abiotic scale, models need to be able to predict

future conditions under different climate change scenarios
with a high temporal and spatial resolution. The predicted
changes in the abiotic environment will then drive the
identified biological changes in distribution, physiology and
phenology of the different trophic levels and changes in food
web interactions.

EXISTING FOOD WEB MODEL
APPROACHES

A plethora of different models are available to test different
scenarios and hypotheses on different trophic levels and food
web-scales (Plagányi, 2007; Jørgensen, 2008; Fulton, 2010;
Tittensor et al., 2018). A detailed comparison of all available
model approaches is beyond the scope of this manuscript.
In contrast, we focus on those models representing trophic
interactions from low trophic levels to high trophic levels in
relation to climate change. These models are potential tools
to guide sustainable actions because they provide a holistic
representation of the ecosystem.

NPZD-Based Models
Many trophic models use the dispersion of nutrients as a basis
for food web interactions (Fulton, 2010). On a basic scale, this
includes the interaction between nutrients (N), phytoplankton
(P), zooplankton (Z) and detritus (D), represented in NPZ(D)
models (Wroblewski et al., 1988; Dadou et al., 1996). These
models can be three-dimensional and have the ability to describe
ecosystem structure and functions in detail. Thus, they are useful
tools to address questions focusing on plankton dynamics and
physical oceanography (Franks and Chen, 2001; Aumont et al.,
2015; Leles et al., 2016). NPZD models allow the combination
of species into functional groups (Fasham, 1993), and therefore,
these models can be used to investigate the impact of climate
change on these functional groups. Through advanced modeling
approaches complexity of ecosystems can be added in NPZD
models by splitting nutrients, phytoplankton and zooplankton
into subgroups (Allen et al., 2001).

In the context of climate change, Aumont et al. (2003)
considered four plankton functional groups under nutrient co-
limitation of phytoplankton growth as a function of N, P, Si
and Fe in NPZD models. Werner et al. (2007) and Aita et al.
(2007) performed simulations using NPZD models to understand
food web dynamics. Furthermore, there are approaches toward
ecosystem models by coupling NPZD models with hydrodynamic
modules, in order to assess the impact of environmental changes
(Chen et al., 2006; Schrum et al., 2006a,b; Aumont et al.,
2015). In proceeding attempts, components representing fish
and macrofauna have been added to these NPZD-hydrodynamic
models providing a model solution from nutrients to higher
trophic levels, such as NEMURO.FISH (Megrey et al., 2007; Rose
et al., 2008) or ECOSMO E2E (Daewel et al., 2008, 2019).

NPZD-based models provide a detailed representation of
plankton dynamics in relation to changes in the nutrient supply.
However, even advanced approaches focus on specific system
components and do not integrate the entire food web (Table 1).
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TABLE 1 | Overview of common trophodynamic model approaches and their major limitations.

Model Model base Spatially
explicit

Temporal-
dynamic

Inclusion of physical
environment

Provision of
management

indicators

Major limitation

NPZD Nutrients x x x Limited representation of higher trophic levels

ECOSMO E2E Nutrients x x x Incomplete representation of higher trophic levels

Atlantis Nutrients x x x x Offline coupling with physical parameters, coarse
spatial resolution

EwE Biomass x x x Inclusion of biotic and abiotic changes is difficult, only
few model parameters can be changed by
environmental drivers

ENA Biomass x Static model, no temporal or spatial resolution,
inclusion of biotic and abiotic changes is difficult

Atlantis
One of the most advanced marine trophic models with a
biogeochemical fundament is the hybrid model Atlantis, which
includes all ecosystem trophic levels and their interactions
(Fulton et al., 2004). In Atlantis, the nutrient flow through
the different biological groups is modeled, including non-
living detritus components. In addition to the biogeochemical
module, Atlantis includes a hydrographic submodel representing
physical processes, a fisheries submodel and a management
submodel, allowing for the test of different future scenarios
(Fulton et al., 2004).

Atlantis has been applied to different coastal ecosystems
worldwide (Fulton, 2010; Hansen et al., 2019), including studies
on climate change effects. Ortega-Cisneros et al. (2016) used
Atlantis in the Benguela upwelling system to assess impacts of
climate change and fishing. They found that warming had the
largest effects on species’ biomass, with mainly negative impacts.
Furthermore, Atlantis was used to predict future changes in coral
reef ecosystems (Weijerman et al., 2015). The study showed that
climate change will have severe impacts on coral reefs in the
near future, especially by interactions and cumulative effects with
other stressors, such as fishing and pollution. Thus, first studies
using Atlantis related to climate change appear promising.

The Atlantis framework includes all system components,
changes in the abiotic environment and anthropogenic impacts,
such as fisheries. These models could even provide suitable
indicators for assessing the ecosystem health (Fulton et al., 2005).
The management module allows for simulations of different
strategies. Thus, the Atlantis framework provides advanced tools
for exploring, e.g., climate change impacts on food web scales.
However, there are also some limitations. Atlantis does not use
the same grid coordinates as hydrodynamic models, but rather
irregular polygons (Fulton et al., 2005, 2007) with relatively
coarse resolution, which seems to represent a compromise
between the complexity and computational costs. Physical
parameters are coupled offline as time series data. They are
taken from observations or from ocean model simulations.
This means that important processes like vertical mixing or
intertidal processes are largely parametrized rather than resolved.
Parametrization leads to an averaging in space and time of
the impact of different dynamic processes, which sometimes
cannot be done in a consistent manner especially for relatively

large areas. For example, vertical mixing depends on buoyancy
and vertical shear stress, these terms are highly dynamic
in coastal areas in time and space due to the presence of
regions of the freshwater influence, shallowness of the area
and the large role of tides in coastal dynamics. Therefore,
biogeochemical and ecosystem processes become largely de-
coupled to the physical processes. Additionally, an exchange
between physical and biological modules assumes interpolation
due to different physical and ecosystem grid geometries (ocean
model grid/observation tracks versus polygons). Accordingly,
the resolution of early life history stages including pelagic
dispersal phases of organisms linked to coastal areas with
complex dynamics is rather coarse in Atlantis-based models
(Itoh et al., 2018).

EwE and ENA
In contrast to Atlantis and similar nutrient-based model
approaches, trophodynamic models can also be based on species
biomass data. Common biomass-based food web methodologies
are network models analyzed with Ecological Network Analysis
(ENA) (Kay et al., 1989; Ulanowicz, 2004) or the widely
used framework Ecopath with Ecosim and Ecospace (EwE)
(Christensen and Walters, 2004). Both approaches are based on
a similarly structured snap-shot model, representing the studied
trophodynamic system. ENA and Ecopath are based on the
biomass of system components, their energetic requirements
and the diet spectra. However, while ENA is a static model,
representing an averaged ecosystem during a specific time,
Ecopath also includes a temporal-dynamic component (Ecosim)
and a spatial-temporal-dynamic component (Ecospace).

Both approaches, ENA and EwE, have been used in a variety
of studies to describe the structure and functioning of coastal
food webs (e.g., Baird et al., 2004; Scharler and Baird, 2005;
Coll et al., 2011; Horn et al., 2019; Vilas et al., 2020), but few
studies focus on climate change. ENA has been applied in shallow
coastal areas of the south-eastern North Sea, the Wadden Sea,
to investigate the impact of increasing temperatures on the food
web (Baird et al., 2019). In this system, an increase in ambient
water temperature resulted in a higher detritivory and recycling
in the food web whereas the degree of organization, diversity
of flows and specialization of the food web structure decreased.
Furthermore, climate change caused alterations in the Wadden
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Sea food web due to long-term shifts in the species composition
according to ENA results (Schückel et al., 2015). Range shifts of
species are supposed to be a major driver in future food web
changes. A dynamic EwE modeling approach of the food web
in the Barents Sea focused on the impact of poleward migrating
fish species due to warmer water temperatures (Kortsch et al.,
2015). The study suggests a shift from the more modular,
specialized Arctic food web toward a system with increased
connectivity driven by boreal fish generalists. Further changes
of the Barents Sea food web due to warming were studied
in Bentley et al. (2017) who suggested a gradual shift toward
a system dominated by pelagic species and a reduction in
boreal species. On a multi-stressor level, the combined effects
of eutrophication and overfishing (Vasas et al., 2007) as well as
eutrophication and increased temperature (Binzer et al., 2016)
have been studied using EwE implying unexpected interactions
between the pressures. For the Baltic Sea, Niiranen et al. (2013)
tested the influence of management strategies for fisheries and
nutrient input under different IPCC climate change scenarios
until the end of this century with EwE. Results ranged from
a cod dominated food web with reduced nutrient levels and
phytoplankton biomass close to today in the best case, to a
sprat dominated, severely eutrophicated system in the worst
case highlighting the importance of management strategies with
regard to climate change.

Field data are included as model input (e.g., biomass data) in
ENA and EwE models. Thus, trends of the system components
are directly incorporated, if the models are based on regular
monitoring data. In terms of EwE, additional long-term data can
be used to parametrize the model over time. ENA and EwE are
particularly interesting for management purposes because both
methodologies provide a set of global system indices following
the theory of Ulanowicz (1986). Some of these indices are
potential candidate indicators for the MSFD to assess the health
status of coastal food webs (Fath et al., 2019; Safi et al., 2019).
However, changes of the candidate indicators provided by ENA
and EwE models in relation to climate change impacts are largely
unknown. The complexity of processes and a lack of data on
trophodynamic relationships and feedback are reflected in model
limitations. However, this fundamental gap can be attributed to
all ecosystem models with advanced representation of the food
web. Furthermore, dynamic shifts in the abiotic environment
are difficult to represent in EwE and ENA. In ENA, the static
model behavior permits a dynamic response over space and time.
In EwE, abiotic changes are usually used to alter specific model
parameters, such as primary production, consumption rates or
fish egg production (Niiranen et al., 2013; de Mutsert et al., 2016;
Serpetti et al., 2017), but not the entire food web (Table 1).

OCEAN MODELS IN RELATION TO
CLIMATE CHANGE PRESSURE

The evaluation of climate change impacts on coastal ecosystems
requires a deep understanding of the abiotic parameters based
on precise data (Wiltshire and Manly, 2004; Wiltshire et al.,
2010). Shelf zones are characterized by a complex morphology

and hydrography resulting from interactions of coastal currents
and currents formed in the deep ocean, riverine input, tidal and
atmospheric forcing (Gowen et al., 1995; Tett and Walne, 1995;
Schrum, 1997; Orvik et al., 2001; Sundby and Drinkwater, 2007;
Scharfe, 2013; Fofonova et al., 2019). Physical ocean models are
powerful tools for prediction and assessment of climate change
impacts on abiotic parameters. There is a rich diversity of models
available to conduct climate change projections in coastal areas,
such as GETM, FESOM-C, SCHISM/SELFE, NEMO, DELFT3D,
ROMS, FVCOM, and others (Burchard and Bolding, 2002;
Shchepetkin and McWilliams, 2005; Chen et al., 2006; Zhang and
Baptista, 2008; Zhang et al., 2016; Madec et al., 2017; Androsov
et al., 2019). The role of the physical models can be divided into
four pieces: (1) predictions of the abiotic parameters’ distribution
in space and time to supply the biogeochemical and food-web
models (Hofmeister et al., 2017; Kerimoglu et al., 2017; Lemmen
et al., 2018), (2) prediction of pathways of water parcels, passive
and active tracers (van der Molen et al., 2018; Ricker and Stanev,
2020; Sprong et al., 2020), (3) predictions of the future “hot-
spots” in a sense of largest changes in the abiotic parameters’
behavior (sensitivity studies) (Delworth et al., 2012; Yin, 2012;
Schrum et al., 2016), and (4) evaluation of the representativeness
of long-term observational stations for larger areas.

Making progress on identified roles requires an accurate
representation of the physical environment in a coupled
estuaries-shelf sea-deep ocean modeling system. The coupling of
regional and large-scale models presents a challenging task since
dynamics resolved by different models involve different temporal
and spatial scales, and the simulations use grids of different
types. Therefore, for example, upwelling events on the shelf, are
not well reproduced based on one numerical solution. However,
with increased computer power the larger range of process scales
can be dealt within one modeling platform. Indeed, currently
there are attempts to organize a seamless ocean modeling
system based on available deep ocean and coastal solutions, for
example, in frame of Earth System Modeling (ESM)1 or NEMO2

modeling frameworks.
Current physical ocean models extensively represent the

abiotic changes and dynamics of the pelagic system and are useful
for forecasting future abiotic scenarios. In contrast, food web
models focus on the biological interactions in an ecosystem and
possible effects of multiple stressors and management strategies.
A dynamic coupling between both model types appears to
be a challenging but essential step in order to achieve the
realistic combination of abiotic dynamics with biotic interactions
(Figure 2). The consideration of ecosystems dynamically related
to the physical and biogeochemical processes requires seamless
considerations of processes in a wide range of temporal and
spatial scales and fundamental understanding of the dynamic
response of ecosystems to the abiotic conditions. At the current
stage, an ambitious goal such as the seamless dynamic coupling
between food web models and physical and biogeochemical
models becomes more feasible.

1https://www.esm-project.net/
2https://www.nemo-ocean.eu/
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FIGURE 2 | Illustration of the coupled ocean-food-web-model. The ocean model contains the physical drivers while the food web model represents biological
interactions. The figure was inspired by https://www.gfdl.noaa.gov/ocean-mixing/ and https://intl.siyavula.com/read/science/grade-8/interactions-and-
interdependence-within-the-environment/02-interactions-and-interdependence-within-the-environment?id=toc-id-9.

One of the main social motivations for such a coupling is
deriving high quality predictions of coastal ecosystem stage and
of indicators for sustainable ES management.

DISCUSSION

Toward Seamless Coupling Between
Food Web and Physical Ocean Models
Holistic food web model studies focusing on the impacts
of climate change on the system’s structure and functioning
are still scarce. Our predictive capacities for a reliable future
assessment using food web models are restricted because
they consider the changes in the abiotic conditions only
in a limited way. However, available model approaches
trying to overcome this challenge have progressed significantly

over the last decade. For example, Atlantis and EwE were
used to explore possible management strategies under multi-
stressor scenarios (e.g., Niiranen et al., 2013; Ortega-Cisneros
et al., 2016). However, both frameworks have their limitations
considered in section “Existing Food Web Model Approaches”
(Table 1). These limitations underline the necessity of a seamless
coupling between ocean physical and biological food web
models in the future.

A major challenge is the great variability of temporal and
spatial scales, considering the multi-scale nature of ecosystem
dynamics as a simulated system, exacerbated by the additional
involvement of multi-scale physical processes, which should be
reproduced by a physical model. The simulated ecosystem and
physical processes should be in agreement. This problem is
relevant to both numeric and fundamental aspects and to the
general understanding of the processes.
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One example to highlight the challenge is the consideration
of population connectivity in coastal areas with intertidal
zones. Population connectivity is intricately linked to habitat
heterogeneity and trophic interactions, which are biologically
rich and complex in coastal areas compared to the open
ocean. In the ocean numerical solutions, the vertical and
spatial resolutions, the parametrization of vertical dynamics
and reproduction of intertidal dynamics (wetting/drying option)
are crucial to solve the connectivity task. The grid cell size is
essential due to the large role of non-linear processes (e.g., bottom
friction and advection of momentum) in coastal and shelf-sea
dynamics. With a reduction in grid cell size, the model output
can result in a completely different local circulation pattern.
Concomitantly, different possible connections may be predicted
between the considered positions (Sprong et al., 2020). Obviously,
there is no universal answer for the optimal horizontal and
vertical resolutions across all water bodies and coastal realms.
The numerical consideration of relatively large areas requires
an unstructured grid approach to maintain computational costs,
gain geometrical flexibility and provide seamless modeling across
the scales. In the case of structured grid approaches the necessity
of higher resolution in some sub-areas requires nesting. However,
the quality of the solution depends not only on the resolution
itself but also on numerical filling of the model. For example,
if the ocean model solution does not resolve the intertidal
dynamics (wetting/drying option), the dynamics of higher tidal
harmonics are presented incorrectly. This leads to significant
errors in the simulation of transport and mixing (Stanev et al.,
2016; Fofonova et al., 2019), which can play a major role in a
realistic solving of connectivity tasks and in simulating ecosystem
dynamics in general.

A further coupling between a chosen food web model and
a physical ocean model with an irregular grid is challenging
and reveals several gaps. We suggest using biomass-based
food web models, such as ENA or EwE because of the
empirical model input of all trophic levels. In a first step,
the biomass-based food web model needs to be transferred
into the unstructured grid-resolution of the ocean models.
Although it is hardly possible to provide empirical data of
biological components for each grid cell, approaches with the
spatial-dynamic routine Ecospace have been promising and
provide a suitable base for further coupling with ocean models.
Additional tracer equations organize the passive exchange of
materials (e.g., detritus, plankton) between the cells considering
the hydrodynamics of the studied system. The inclusion of
active tracers, such as fish or shrimps, remains challenging.
The determination of these components in the studied area
requires a formalization of their behavior (e.g., dispersal toward
the best forage site) depending on different abiotic conditions.
At this level, we identified a fundamental gap that requires
further studies.

The next step is the representation of abiotic dynamics over a
specified time and space influencing the biological components.
As discussed, changes in the abiotic environment are not directly
usable in most food web models but need a translation into
biological responses (e.g., changes in physiology). Usually,
physiological parameters are represented in the master equations

(1) and (2) after Crisp (1971):

Gross primary production=Net primary production+Respiration (1)

in autotrophs and

Consumption=Production+Respiration+Egestion/Excretion (2)

in heterotrophs. These master equations provide a crucial link to
abiotic dynamics (Figure 3). Species’ physiologies are dependent
on abiotic drivers such as temperature or salinity represented
in physical ocean models. There are diverse studies of changes
in species physiology in relation to abiotic parameters (Heinle,
1969; Pörtner and Knust, 2007; Marinov et al., 2010). One of
the key challenges here is developing a theory that explicitly
incorporates the separate components of climate change and
their potential interactions. Some steps in this direction have
been done, for example, Taherzadeh et al. (2019) proved an
ability to explain when impacts become additive or non-
additive based on a new size-based plankton model resolving
major dependencies of plankton growth and interaction rates.
Thus, each physiological parameter (i.e., production, respiration,
consumption, egestion) can be represented as a function of
abiotic conditions which can be implemented as a driver in
coupled food web and physical ocean models. This requires
combined work of ecologists, physiologists and mathematicians.
Studies based on Atlantis and EwE have already achieved
important steps in this direction, by altering specific parameters,
such fish egg production, consumption or primary production in
relation to abiotic changes. However, as discussed, climate change
impacts all these parameters simultaneously. In the suggested
coupled model, all physiological parameters can potentially be
represented dependent on the abiotic environment.

In the last step, additional information can be added
to the coupled model. For instance, the resolution of
lower trophic level dynamics can be improved by a
coupling with biogeochemical models. This was already
successfully done for EwE with the ECOTRAN model (Steele
and Ruzicka, 2011; Ruzicka et al., 2016). With this, the
information of nutrient dispersion can be included in the
new approach. Furthermore, temporal-dynamic predator
prey interactions need to be formalized and included
to provide a realistic simulation of food web changes
over space and time.

With snap-shot models, we can simulate scenarios by
constructing additional setups with altered data reflecting the
particular stress factor or driver. Like a film that represents
a dynamic sequence of different fixed-images, the new
type of coupled models should be a sequence of different
holistic model scenarios to show trends and developments
within total ecosystems. Multi-stressor scenarios should
be the leading topic that determines the direction of the
“film” and may lead to new possibilities of interpretations
of ecosystem functions and services under stress. Thus,
the coupled model would address the identified climate
change effects on physiology and phenology of the different
trophic levels. A high temporal resolution could even
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FIGURE 3 | Schematic coupling approach between ocean models driven by climate change and food web models via functions of physiological responses.

represent de-coupled shifts in prey availability and predator
requirements, and changes of migration patterns. Furthermore,
the spatial component allows for the inclusion of range shifts
if environmental factors exceed tolerance limits of specific
system components.

The large variety of approaches to study the
ecosystem dynamics stresses the complexity of the task
to investigate the impact of climate change on marine
coastal ecosystems. At this stage, the synergy between
approaches is intriguing, but the next step in this direction
requires intensive work on cross-roads of science, large
computer power and it brings numerical and fundamental
challenges, as briefly discussed above. However, this
step promises a more holistic and solid view on the
ecosystem dynamics.

Relevance for Ecosystem Management
The protection of coastal ecosystems is a major target of
politics and management to sustain ES. Against the background
of biodiversity loss, habitat degradation, decreasing ES and
climate change mitigation, there is a clear demand for precise
and efficient management tools to reverse these negative
trends in marine ecosystems. To achieve ecological and
economical goals, ecosystem-based management (EBM) is
the most relevant approach. EBM is supposed to consider
all trophic levels and ES to sustain healthy and resilient
ecosystems (O’Higgins et al., 2020). This becomes increasingly
challenging given the multiple stressors impacting ecosystems
and our limited knowledge of stressor interaction (Gissi et al.,

2020). While climate change has already impacted coastal
and shelf-sea ecosystems in diverse ways, local stressors
add another dimension to the problem. For instance,
commercial fisheries exert a constant pressure on the entire
fish community and on benthic communities (Lindeboom
and De Groot, 1998; Daan et al., 2005), including severe
destructive effects on biogenic habitats, such as shellfish reefs
(Pogoda, 2019). Effects of fishing, pollution and climate change
are likely to interact with each other (Gissi et al., 2020).
Accordingly, we need additional studies of stressor interactions
and potential cumulative effects for a better representation
in model studies.

To support EBM decisions, holistic, fine-scale and high-
resolution ecosystem models, which are able to address multiple
stressor effects on the entire food web are highly relevant. The
suggested coupling between biomass-based food web models and
physical ocean models with an unstructured grid will provide
such a tool. However, while we have highlighted some technical
challenges of the coupling, we also found several research gaps,
which need to be addressed, such as the incorporation of active
tracer behavior in models or defining the physiological responses
of species to the environmental changes. In addition, a regular
monitoring of the relevant ecosystem components is required to
provide a solid model base. Indeed, every model we construct is
just as good as the available data base. The more we know, the
better we can include the information into models. Thus, detailed
knowledge on climate change impacts on each trophic level, and
advanced model approaches incorporating available information
to provide a holistic representation are required.
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