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Although diverse fungi have been found in the deep-sea habitats, the space distribution
of fungi has not been well characterized. In this study, the fungal horizontal and vertical
distribution of the deep-sea sediments, four locations, three depths each, in the South
China Sea, were compared using ITS2 high-throughput sequencing. It was revealed that
the South China Sea deep-sea sediments harbor diverse marine fungi, including 82.39%
Ascomycota, 8.10% Basidiomycota, 0.55% Zygomycota and 8.96% unknown fungi.
The results indicate that fungal community structure is not uniform among the different
sediment habitats. Though surface sediments have similar fungal diversity across the 4
locations, the fungal abundance and diversity increase with the depth of the sediments
from 0 to 2 m, and 1 and 2 m deep sediments show obvious location-dependent
fungal community structure. This is the first time to compare the horizontal and vertical
distribution of fungal community among different deep-sea sediments in the South China
Sea by high-throughput sequencing, providing novel insights into the space distribution
characteristics of deep-sea sediments fungi.
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INTRODUCTION

The deep-sea fungal diversity was first explored by the isolation of deep-sea fungi from the Atlantic
Ocean at a depth of 4,450 m in 1964 (Roth et al., 1964). Traditionally, studies on the deep-sea
fungal diversity are based on cultivation strategy (Zhang et al., 2013). However, few fungi could be
cultured from deep-sea sediments, and most of the culturable fungi were identified as facultative
marine fungi, few fungi were identified as marine obligates, such as Dendriphiella (Khudyakova
et al., 2000). With the development of high-throughput sequencing, molecular methods enable the
detection of difficult-to-culture species and rare species, e.g., LKM11 clade (Bass et al., 2007), KD14
clade (Nagahama et al., 2011). To date, the diversity of fungi from various deep-sea habitats such as
South China Sea sediments (Lai et al., 2007; Zhang et al., 2013), Pacific Ocean sediments (Burgaud
et al., 2009; Xu et al., 2014), Indian Ocean sediments (Damare et al., 2006; Singh et al., 2010, 2011;
Zhang et al., 2014a), Arctic sediments (Zhang et al., 2015) and Mediterranean Sea (Barone et al.,
2018), has been explored using either culture-dependent or cultured-independent methods.

It is known that both 18S rRNA gene and ITS region can be used to reveal the fungal community
structure. However, the 18S rRNA gene is problematic because the identification is commonly
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limited to genus or family. The ITS regions of fungi have
been used as discriminative targets for molecular analysis of
fungal community using high-throughput sequencing (Ihrmark
et al., 2012; Lindahl et al., 2013; Gweon et al., 2015; Morgado
et al., 2015), their high sequence variability relative to the
flanking sequences makes them valuable for genus and species
level identification.

Though increasing attention has been paid to deep-sea fungi,
compared with deep-sea bacteria and archaea, little is known
about the deep-sea fungal space distribution. In this study, the
deep-sea (897–1,434 m) fungal communities in the sediments of
the South China Sea, four locations and three depths each, were
investigated using high-throughput sequencing, with the aim to
describe the fungal horizontal and vertical distribution in the
deep-sea sediments in the South China Sea.

MATERIALS AND METHODS

Sample Information
Deep-sea sediment cores (10 cm in diameter, 2 m in length)
samples were collected (three replicates for each site) at four
different locations: A (1,138 m), B (897 m), C (1,000 m), and
D (1,434 m) in the South China Sea (Supplementary Figure 1).
0.25 g (wet weight) of sediments were collected from the
0.05 m depth (surface), 1 m depth, and 2 m depth of each
sediment core, respectively. These samples were frozen at−20◦C
before DNA extraction.

DNA Extraction, ITS2 Sequence
Amplification and High-Throughput
Sequencing and PCoA Analysis
DNA was extracted using a Power Soil DNA Isolation Kit
(MO BIO) according to the manufacturer’s instructions
(Ihrmark et al., 2012; Thaler et al., 2012). They ITS2
region was amplified using fungal-specific primers fITS7
(5′- GTGARTCATCGAATCTTTG-3′) and universal ITS4
(5′-TCCTCCGCTTATTGATATGC-3′) (Wang et al., 2012).
Approximately 100 ng of template DNA was used for PCR in a
total volume of 25 ml reaction system. PCR was conducted using
the following program: denaturation 5 min at 95◦C, followed
by 30 cycles of 1 min at 95◦C, 30 s at 56◦C and 1 min at 72◦C.
A final step of 10 min at 72◦C was included to complete any
partial polymerizations.

The PCR amplicons were sequenced using Illumina
Platform at Genewiz Co., Ltd., Suzhou, China. First, software
Trimmomatic was used to filter the raw data, and then the
chimera was removed to get the final valid data (The raw
data have been submitted to NCBI with BioProject number
PRJNA637466). The operational taxonomic unit (OTU) was
assigned using a BLAST-based method (Altschul et al., 1997)
against the Greengenes database (v13_8) (McDonald et al., 2012).
OTU cluster was defined by a 97% identity threshold using
Quantitative Insights Into Microbial Ecology (QIIME v1.9.1)
(Caporaso et al., 2010). Venn diagram showing the unique and
shared OTUs among all the sediment samples was performed

with the VennDiagram package (Chen and Boutros, 2011). To
present the distribution feature of fungal communities among
different locations, a Bray-Curtis dissimilarity-based principal
coordinates analysis (PCoA) was performed with the vegan
package (Oksanen et al., 2016). Both Venn and PCoA were
finished in the R software environment.

RESULTS

A total of 6,104,436 sequences were obtained by ITS sequencing.
5,188,297 sequences were obtained after quality trimming.
The saturated rarefaction curves of these samples indicated
that the sequencing could meet the requirement of fungal
diversity analysis (Supplementary Figure 2). Fungal diversity
and richness estimator were used to compare the difference
among the different sediment samples (Supplementary Table 1).
A total of 1,272 OTUs were obtained with 97% similarity.
The most OTU number was found at location D, followed by
location A, locations B and C, particularly 2 m deep sediments
exhibited higher fungal diversity than the 1 m deep and surface
layer sediments.

The 1,272 OTUs were divided into 3 phyla including
1,048 Ascomycota, 103 Basidiomycota, 7 Zygomycota.
Meanwhile, there were a total of 387 unidentified OTUs
(Figures 1, 2). Ascomycota sequences were grouped into
8 known classes, i.e., Xylonomycetes, Taphrinomycetes,
Sordariomycetes, Saccharomycetes, Pezizomycetes,
Leotiomycetes, Eurotiomycetes, and Dothideomycetes,
among which Dothideomycetes was the most abundant,
especially at locations C and D, followed by Sordariomycetes
at location A, and Eurotiomycetes at location B. Sequences
matching Basidiomycota were grouped into 9 known classes,
i.e. Wallemiomycetes, Ustilaginomycetes, Tremelicomycetes,
Microbotryomycetes, Maiasseziomycetes, Exobasidiomycetes,
Entorrhizomycetes, Cystobasidiomycetes, and Agaricomycetes,
among which Tremellomycetes was dominant (Figure 1).
Locations A and C have much more diverse Basidomycota
fungi than B and D. Zygomycota including Mucoromycotina
and Mortierellomycotina was the rare fungal component in
all the sediments.

The detected fungal OTUs were grouped as 187 known genera
(Supplementary Table 2), the dominant genera were Alternaria,
Exophiala, Cladosporium, Plectosphaerella, Stemphylium,
Sarocladium, and Fusarium (Figure 2). As shown in Figure 2,
the sediments at different locations and depths show obvious
different fungal community structures at genus level. For
example Aureobasidium (A-0), Sarocladium (A-0, A-1 and A2)
and Fusarium (A-2) at location A, Alternaria (B-0), Exophiala
(B-1, B-2) at location B, Plectosphaerella (C-0), Alternaria
(C-1), Paraphaeosphaeria and Fusarium (C-2) at location
C, Cladosporium (D-0, D-1) at location D. Totally, B-1 B-2
sediments host different fungal diversity from others.

To gain further insights into the difference of fungal
communities among the 4 sites and 3 depths, we applied Venn
and PCoA analyses of the 1,272 OTUs to compare their space
distribution difference (Figures 3, 4). Among locations B, C, and
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FIGURE 1 | The taxonomic diversity of fungi at class level. (A): 12 depths at 4 locations (B): 4 locations. A, B, C, D: location; 0: 0.05 m depth sediment (surface); 1:
1 m depth sediment; 2: 2 m depth sediment.

FIGURE 2 | The taxonomic diversity of fungi at genus level 4 locations. A, B, C, D: location; 0: 0.05 m depth sediment (surface); 1: 1 m depth sediment; 2: 2 m
depth sediment.

D, most OTUs were detected in the 2 m deep sediments (B-
2, C-2, and D-2) (Figure 3), while most OTUs were detected
in 1 m deep sediment A-1 at site A. Some OTUs were found
to be specific with the location or the depth of the deep-
sea sediments, while some OTUs were shared among different
samples. But, totally, the number of the common OTUs is less
than location or depth-specific OTUs number. According to
Figure 4, 1 m and 2 m deep sediments host location-dependent

fungal community, while the surface sediments have similar
fungal diversity.

DISCUSSION

Despite the extreme deep-sea environment, diverse fungi, e.g.,
187 known genera, were detected in the deep-sea (897–1,434 m)
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FIGURE 3 | Venn diagram showing the unique and shared OTUs among all the sediment samples. (A) location A; (B) location B; (C) location C; (D) location D; A, B,
C, D: location; 0: 0.05 m depth sediment (surface); 1: 1 m depth sediment; 2: 2 m depth sediment.

FIGURE 4 | PCoA analysis of the fungal community variation among all sediment samples. A, B, C, D: location; 0: 0.05 m depth sediment (surface); 1: 1 m depth
sediment; 2: 2 m depth sediment.
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sediments in this study. Some genera detected here have
been reported in other deep-sea environments (Supplementary
Table 3; Lai et al., 2007; Burgaud et al., 2009; Chen et al., 2011;
Singh et al., 2011; Singh et al., 2012a,b; Li et al., 2013; Zhang
et al., 2013; Rédou et al., 2014, 2015; Xu et al., 2014; Zhang et al.,
2014a,b; Zhang et al., 2016), indicating their wide distribution in
the deep-sea sediments.

Though some of the fungi are not marine obligate or generally
grouped as terrestrial species, they probably have adapted to
the deep-sea environments (Damare et al., 2006; Nagano et al.,
2010; Rédou et al., 2014, 2015; Zhang et al., 2014a, 2015).
For instance, antifreeze protein found in the yeast Rhodotorula
mucilaginosa may play role in its adaptation to the deep-sea
environments (Singh et al., 2012b; Rédou et al., 2015; Zhang
et al., 2015). Penicillium-related and Hortaea-related phylotypes
are haloduric (Khudyakova et al., 2000), and Cryptococcus-related
phylotypes are cold tolerant (Orsi et al., 2013). Some fungi
detected here maybe present in an inactive state e.g., spores
(Lai et al., 2007; Rédou et al., 2015), because spores can survive
at elevated hydrostatic pressure and low temperature i.e. deep-
sea habitats.

The results of high-throughput sequencing show that most
of the OTUs belong to Ascomycota (82.39%) followed by
Basidomycota (8.10%). Ascomycota and Basidomycota may be
the real dominant phyla in the deep-sea sediments, which is
consistent with the results from the South China Sea sediments
(Lai et al., 2007; Nagano and Nagahama, 2012; Zhang et al.,
2013) and the Mediterranean Sea (Barone et al., 2018). Similar
with the results from Barone et al. (2018), unknown fungi
amount to ca. 8.96% in the deep-sea sediments of the South
China Sea, suggesting that deep-sea sediments harbor novel
fungal lineages. We have used the same sediment samples in
this study to isolate fungi, only Ascomycota and Basidomycota
fungi e.g., Cladosporium sp., Alternaria sp., Rhodotorula sp.,
Exophiala sp., Aspergillus sp., Stemphylium sp., Penicillium sp.,
and Sarocladium sp. were isolated successfully (Feng et al., 2017).
So far, there is no report on the successful isolation of fungi
belonging to other phylum e.g., Zygomycota from the deep-
sea sediments. But Zygomycota which account to 0.55% of
the OTUs was detected in this study, suggesting the necessity
to seek new ways to isolate novel deep-sea fungi which is
difficult to cultivate.

Marine fungi have been suggested to play roles in the nitrogen
cycling, e.g., Aspergillus, Fusarium are probably involved in
the denitrification of the deep sea (Cathrine and Raghukumar,
2009). Another emphasis of deep-sea fungal function is on the
secondary metabolic products and their biological activities such
as antimicrobial, antifouling, cytotoxic activities (Khudyakova
et al., 2000; Wang et al., 2012; Li et al., 2013; Sun et al.,
2013; Zhang et al., 2014b; Feng et al., 2017). On the
whole, compared with the knowledge of fungal diversity, our
understanding of the deep-sea fungal function is very limited.
Thus, fungal function presents a frontier hot of deep-sea
fungal research.

In summary, diverse fungi including some unknown species
were detected in the deep-sea sediments in the South China
Sea using high-throughput sequencing in this study. The results

suggested that the sediment fungal community structures were
not uniform across the different locations and depths. The
fungal abundance and diversity were found to increase with
the depth of the sediments from 0 to 2 m. Though the
surface sediments exhibited similar fungal diversity, location and
depth dependent fungal community structures were detected
in 1 and 2 m deep sediments, which might be related to
the various environments of the different deep-sea sediments.
Barone et al. (2018) found that fungal biomass, abundance
and diversity increased with increasing concentrations of
carbohydrates. Thus, the detailed environment factors will
provide more evidence for the location-dependent fungal
communities in the future.
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