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Passive acoustic monitoring is a well-established tool for researching the occurrence,
movements, and ecology of a wide variety of marine mammal species. Advances in
hardware and data collection have exponentially increased the volumes of passive
acoustic data collected, such that discoveries are now limited by the time required
to analyze rather than collect the data. In order to address this limitation, we trained
a deep convolutional neural network (CNN) to identify humpback whale song in over
187,000 h of acoustic data collected at 13 different monitoring sites in the North
Pacific over a 14-year period. The model successfully detected 75 s audio segments
containing humpback song with an average precision of 0.97 and average area under
the receiver operating characteristic curve (AUC-ROC) of 0.992. The model output
was used to analyze spatial and temporal patterns of humpback song, corroborating
known seasonal patterns in the Hawaiian and Mariana Islands, including occurrence at
remote monitoring sites beyond well-studied aggregations, as well as novel discovery of
humpback whale song at Kingman Reef, at 5◦ North latitude. This study demonstrates
the ability of a CNN trained on a small dataset to generalize well to a highly variable signal
type across a diverse range of recording and noise conditions. We demonstrate the utility
of active learning approaches for creating high-quality models in specialized domains
where annotations are rare. These results validate the feasibility of applying deep learning
models to identify highly variable signals across broad spatial and temporal scales,
enabling new discoveries through combining large datasets with cutting edge tools.

Keywords: deep machine learning, convolutional neural network, humpback whale (Megaptera novaeangliae),
seasonal occurrence, Hawaii, Mariana Islands, Kingman Reef, passive acoustic monitoring

INTRODUCTION

In the marine environment, where limited light transmission restricts visual cues, cetaceans utilize
sound for every aspect of their day-to-day lives, with all species of whales and dolphins making
some sort of vocalization. Many cetacean vocalizations are identifiable to the species or even
population level, enabling use of passive acoustic recorders to examine species occurrence and
seasonality (e.g., Clark et al., 2002; Širović et al., 2003; Munger et al., 2008), population movements
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(e.g., Stafford et al., 1999; Burtenshaw et al., 2004), seasonality of
call types (e.g., Winn and Winn, 1978; Oleson et al., 2007), and
abundance (e.g., McDonald and Fox, 1999; Marques et al., 2013;
Küsel et al., 2016). In particular, autonomous acoustic recorders
can monitor remote or logistically difficult-to-reach ocean
regions without the costly need for direct human observation.
Long-term recording sites can also provide insights into historical
changes in population occurrence and movement patterns (e.g.,
Davis et al., 2017), which is particularly important in light of
increasing human impacts on the marine environment.

Improvements in passive acoustic recording technologies and
reduction in equipment costs have resulted in exponentially
increasing volumes of high-resolution acoustic data. New
discoveries are now often limited by the time it takes to analyze
the data rather than by the data collection itself. To address
this challenge, scientists have been working to speed acoustic
data analysis by automating cetacean call identification (Bittle
and Duncan, 2013). For some species with stereotyped, repetitive
calls, energy-based or statistical methods for detection and
classification work quite well (Mellinger and Clark, 2000; Širović
et al., 2003). However, many species have highly variable call
types that require significant manual input to correctly classify
(Bittle and Duncan, 2013), and automated detection of these
vocalizations still often requires either initial fine tuning of the
detector or post-processing of the detections in order to remove
a high number of incorrectly identified calls.

Humpback whale (Megaptera novaeangliae) song presents
a particularly challenging classification task. Male humpback
whales sing long, complex songs (Payne and McVay, 1971;
Winn and Winn, 1978). These songs are typically unique to
each breeding population and year, with all males singing a
similar song within each year at each breeding site (Winn
et al., 1981; Payne, 1983; Garland et al., 2017). The complex
nature of humpback song and its temporal population-level
variability makes designing a generalized automated detector
that can identify song across years, breeding sites, and different
recording equipment and conditions extremely difficult. For this
reason, evaluation of long term trends in humpback whale song
presence is often conducted using coarse time scale manual
assessment (e.g., Munger et al., 2012), power spectral density
computation combined with manual annotation (e.g., Au et al.,
2000; Ryan et al., 2019), frequency contour algorithms (e.g.,
Magnúsdóttir et al., 2014), or spectrogram cross-correlation (e.g.,
Vu et al., 2012). However, each method has drawbacks, including
significant user input, high false positive rates, or low resolution.
Helble et al. (2012) designed a generalized power-law (GPL)
algorithm that addresses many of these limitations but which
has limited classification ability when other biological signals are
present in overlapping spectral bands.

Machine learning techniques have recently begun to
provide improved detection and classification methods
for a large variety of fields that were previously limited by
challenges similar to those found in marine mammal acoustic
monitoring. Deep learning (DL) is a recent advancement
that combines feature extraction and selection, which was
performed manually in conventional machine learning, and
detection or classification into a single end-to-end model

(LeCun et al., 2015). Convolutional neural networks (CNNs)
rival human performance in some cases (LeCun et al., 2015), with
residual networks (ResNets) providing marked improvements
(He et al., 2016). These developments have led to significant
advances across all sectors, with a growing number of ecological
studies beginning to utilize CNNs (Weinstein, 2018). DL
techniques have recently been applied to passive acoustic
monitoring of marine mammals (Harvey, 2018), with models
trained for classification of vocalizations of killer whales (Bergler
et al., 2019), belugas (Zhong et al., 2020), sperm whales (Bermant
et al., 2019), and right whales (Kirsebom et al., 2020; Shiu et al.,
2020). However, one limitation of DL is the large number of
human-annotated examples required to train a robust classifier
that generalizes well to new data.

To date, marine mammal DL classifiers have focused on
a single call type or region or were deployed on a relatively
small dataset (a few hundred to a few thousand hours). We
present here the development of a deep machine learning CNN
model, using a process called active learning to increase the
size and focus of the training data, to classify humpback whale
vocalizations in an acoustic dataset of unprecedented temporal
and spatial scale. The dataset (187,000 h of recordings) was
collected across a diverse set of recording locations throughout
the central and western Pacific over a long time scale (2005 to
2019). This is a particularly challenging classification task given
the inter-population variability in humpback song type, as well
as intra-population variability across years. Humpback whales
within this region include at least two separate populations,
though migratory movements are complex and detections within
this network may also include whales from other populations.
Efficient processing of our long-term dataset using DL provided
a detailed view of the seasonal and long-term occurrence
of whales within both known breeding areas and in regions
where visual surveys are not feasible, and contributed to new
insights into population movements and new hypotheses about
population structure.

MATERIALS AND METHODS

Acoustic recordings were collected at 13 sites in the North Pacific
(Figure 1) using bottom-mounted High Frequency Acoustic
Recording Packages (HARPs; Wiggins and Hildebrand, 2007).
HARPs are equipped with an omni-directional hydrophone, with
a flat (±2 dB) hydrophone sensitivity from 10 Hz to 100 kHz of
−200 dB re V/µPa. Recording effort began in 2005 with long-
term monitoring (>6 years) at 5 of the 13 sites. Monitoring
duration at an individual site varied from just over a month
to 13 years, with recording schedules ranging from continuous
to 5 min of recording every 40 min. Recording files consisted
of a sequence of 75 s blocks of audio, hereafter referred to as
segments, with start times prescribed by the duty cycle. HARPs
were deployed at depths between 111 and 1,266 m with an average
deployment depth of 730 m. The raw data were typically sampled
at 200 kHz but were low-pass filtered and decimated to 10 kHz,
resulting in an effective bandwidth of 10 Hz to 5 kHz. In total,
across all 13 recording sites, over 187,000 h (12 TB at 10 kHz) of
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FIGURE 1 | Map of the 13 acoustic recording locations.

continuous recordings have been collected since 2005. We refer
to the entire unlabeled dataset as the corpus.

CNN Model
Broadly, the model we developed transforms audio to
spectrograms in a phase called the “front end” and then feeds
the spectrograms into a neural network architecture originally
developed for image classification. The problem is then framed as
binary image classification according to whether the spectrogram
contained humpback song, but with no attempt to predict the
number of calls or the number of animals. We experimented
with front end settings including time scale, frequency range,
and compression. To correct error types not covered by the
initial batch of labels, we used active learning, which uses the
output of candidate models to guide further rounds of human
annotation. We then evaluated model metrics, iterated on model
configuration to improve performance, and finally compared the
final model to energy-based detectors as a baseline.

Treating audio event detection as spectrogram classification is
a well-known high-level approach, so the following subsections
focus on ways of tuning for our dataset. Two aspects in
particular were responsible for most of the quality improvement:
primarily, active learning, and secondarily, per-channel
energy normalization applied to the spectrograms (PCEN;
Wang et al., 2017).

Acoustic Front End
The transformation from audio to a spectrogram is performed by
a system component referred to as the acoustic front end, since
it sits in front of the neural network. Our front end first applies
to the input waveform a standard short-time Fourier transform
(STFT) with a Hann window of length 1,024 samples (∼100 ms
for our 10 kHz audio). With the output size fixed at 128×96 (time,
frequency) bins, we experimented with stride lengths of 10, 30,

and 50 ms – equivalent to context window lengths of 1.28, 3.84,
and 6.4 s. (The term context window refers to the duration of
audio the model required for a single instance of input). Along
the frequency axis, all trials were binned using a triangular mel
filterbank over squared FFT magnitudes.

We explored three different amplitude compression functions:
log, root, and PCEN (Wang et al., 2017). The log and
root compression were applied componentwise to each STFT
bin. The specific form of log compression we used is
f (x) = min[ln(x),−30]. The specific form of root compression
we used is f (x) = x0.2.

Per-channel energy normalization first normalizes by
componentwise dividing the STFT with a temporally
smoothed version of the same STFT and then applies a
stabilized root compression. The smoothing is done for each
channel (frequency bin) independently, and the compression
parameters can also vary per-channel. We used a non-trainable
smoothing constant s = 0.04. The rest of the parameters were
trainable per-channel variables initialized as: gain normalization
ln(α) ∼ N(0.9, ln(0.95/0.9)), offset ln(δ) ∼ N(2.0, ln(2.5/2.0)),
and exponent ln(1/r) ∼ N(2.0, ln(2.5/2.0)). (The choice of log
domain forces the parameters to be positive).

We also experimented with mel filterbank bounds of 0 Hz–
5 kHz, 100 Hz–1 kHz, and 50 Hz–2 kHz and the addition of fixed-
amplitude time-domain Gaussian noise.

The compression experiment was done with STFT stride fixed
at 30 ms and frequency range fixed at 0 Hz–5 kHz. The remaining
experiments fixed the compression method as PCEN and applied
grid search across frequency bounds and STFT stride durations.

Neural Network Architecture
The spectrogram classification component of the model was
the architecture that Hershey et al. (2017) found best at
detecting hundreds of audio event classes in YouTube videos.
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Specifically, we used a ResNet-50 convolutional neural network
(He et al., 2016), modified by reducing the stride of the
initial 7×7 convolution layer (conv1) from 2 to 1, since our
spectrograms are lower-resolution than the ImageNet images
considered in He et al. (2016).

Residual network architectures have proven to produce
state-of-the-art results on general-purpose audio classification
benchmarks (Hershey et al., 2017; Kong et al., 2020). This
makes them a solid default choice for our retrospective
analysis where computational budget is not limited. However,
lighter-weight alternatives have been recently proposed that
can maintain similar classification performance in resource
constrained settings, e.g., on-device processing (Sandler et al.,
2018; Tan and Le, 2019). Model distillation (Hinton et al.,
2015) is also a standard strategy for reducing computational
complexity, which in many cases outperforms training a
lightweight architecture from scratch.

On-the-Fly Data Augmentation
The input pipeline read entire segments at once and sliced them
into context windows. For data augmentation and time shift-
invariance, the context window starts were perturbed by ±16
spectrogram time bins relative to a non-overlapping grid. This
slicing was done dynamically during model training (on-the-
fly), so the perturbations in different epochs were independent.
The slicing came after the front end and before the input
layer of the CNN. PCEN, when used, was applied to the entire
segment before the context windows were extracted. This avoids
edge effects from the smoothing filter. A 2,048-context-window
shuffle buffer followed the slicing stage to avoid mini batches
consisting of context windows from only a few audio segments.
Mixture augmentation was not used. Time-domain Gaussian
noise augmentation was tried but had no impact and was not used
in the final model.

Audit Efforts and Active Learning
An initial uniform sample of hour-long ranges was manually
audited by expert annotators to train and evaluate the first model
candidate. Inference on the entire dataset revealed out-of-sample
error modes such as vessel noise, platform self-noise, and minke
whale calls. To correct these, we turned to active learning, a
standard iterative strategy that improves an existing classifier
by using it to select the most valuable examples for additional
human annotation and subsequent retraining. In each round, our
model-dependent samples were taken from per-site score ranges
chosen to make each sample contain about 50% false positives.
The rounds of annotation are summarized in Table 1. Details on
annotations, broken down by site, effort, and total duration can
be found in Supplementary Tables 1, 2.

Context windows from time intervals with no annotations in
these efforts were inferred to contain no humpback song and are
called implicit negatives. The model-dependent samples selected
isolated high-scoring context windows, which were individually
annotated as positive or negative. Positive annotations confirmed
the model’s correctness; negative annotations provided hard
negatives for the next round of training. (Hard negatives are
highly confusable false alarms that receive high scores under the
candidate model).

TABLE 1 | Audit efforts and their sampling strategies.

Effort Sampling strategy Implicit negatives

Initial Each individual call annotated in
random hour-long intervals

Yes

Model-
dependent 1

Uniform subsample from corpus-wide
top scoring context windows under first
candidate model

No

Model-
dependent 2

Top-scoring context windows under the
second candidate model, with three
different score thresholds (lower for the
sites with less audio or lower average
prevalence)

No

Segments Visual scanning of spectrograms of
75 s segments with the highest
mean-pooled score under the second
candidate model

Yes

Model-
dependent 3

Uniform subsample from corpus-wide
top scoring context windows under the
third candidate model

No

Model-
dependent 4

Site-stratified sample taken to make
point estimates of precision at fixed
thresholds for sites where the third
candidate model underperformed

No

Validation Stratified sample with three hundred
75 s segments uniformly sampled from
each site

Yes

Expansion of Test
Set

Uniform sample of segments from peak
season, from sites with few positives in
validation, and from new data collected
after the final model was trained

Yes

The training set for the final model consisted of the union of all
the audit efforts, excluding any overlap with the validation or test
sets. The validation set was a stratified sample of 300 segments
from each site, for a total of 6.25 h of audio. All humpback
calls were annotated, but many segments were seen to contain
no calls and were therefore a source of implicit negatives. Since
the sampling for the initial effort skewed toward just a few sites
and toward encounters where the singing whale was distant, site-
stratified sampling was an important design consideration for the
validation set. It also compensated for the uneven distribution of
total recording time across sites. The test set used to produce the
site-specific performance metrics consisted of the union of the
validation set and an additional annotation effort referred to as
Expansion of Test Set in Table 1.

Combined, the training, validation, and test datasets totaled
291.8 h of audited data. Though a significant effort, this still only
comprised 0.12% of the corpus (Supplementary Table 2). Almost
25% of annotated data came from the recording site at Kona,
from which almost 30% of the total recordings were collected
(Supplementary Table 1).

Evaluation Metrics
Overall performance was evaluated using area under the receiver
operating characteristic curve (AUC-ROC) and average precision
(or area under the precision/recall curve). All metrics were
computed at the segment level by averaging (mean pooling) the
scores of non-overlapping context windows covering the segment
and considering any segment with at least one humpback
annotation to be positive.
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Baselines
To provide context for the model performance, we computed
metrics on the same test set using two other detection algorithms:
first, our own reimplementation of the generalized power-law
detection algorithm for humpback vocalizations (GPL) (Helble
et al., 2012), and second, a simple band-limited energy detector.

For the GPL algorithm, we used the powers ν1 = 2.0 and
ν2 = 0.5, the thresholds ηthresh = 0.0794 and ηnoise = 0.00501,
and the iterative rethresholding algorithm described in Section
IV of Helble et al. (2012). We applied mean pooling after
assigning a score of zero to all of the non-call snapshots. Iterative
rethresholding outperformed fixed thresholds, and mean pooling
outperformed max pooling.

For the band-limited energy detector, we applied a
Butterworth band pass filter of order 8 with critical frequencies
at 150 and 1,800 Hz to entire segments and framed the output
into 200 ms frames with 50% overlap. For frame scores we
used the mean squared amplitude of the in-frame signal.
For segment scores we max pooled the frame scores which
outperformed mean pooling.

Humpback Occurrence
Site-specific detection thresholds were chosen from the validation
set precision-threshold curves, targeting roughly 90% precision
(Table 2). The segments scoring above these thresholds were
then presumed positive for song and analyzed for patterns of
occurrence throughout the recording sites. In order to account
for differences in duty cycles and recording durations, occurrence
was calculated as the percentage of the total recording time that
was positive for humpback song, on a weekly scale. For those sites
with seasonal humpback song present, the start and end of the
season were taken to be the dates that the percentage of time with
humpback song first and last crossed the 1% threshold. For those
sites with consistently low detection levels, manual spot checking
of positives was used to evaluate whether there was any low level,
previously unknown occurrence of humpback song.

TABLE 2 | Site-specific performance metrics for our model at sites containing
humpback song.

Site Number of
segments

Average
precision

AUC-
ROC

Threshold Precision Recall

Kona 588 0.99 1.00 0.19 0.97 0.93

Kauai 455 0.99 1.00 0.19 0.99 0.95

Cross SM 470 0.95 0.98 0.11 0.91 0.82

Pearl and
Hermes Reef

906 0.97 0.99 0.13 0.95 0.80

Saipan 781 0.95 0.99 0.17 0.92 0.82

Tinian 755 0.95 0.99 0.15 0.88 0.72

Pagan 349 1.00 1.00 0.06 0.98 0.95

Wake Island 740 0.93 0.99 0.12 0.93 0.82

Ladd SM 683 0.93 1.00 0.08 0.85 0.85

Average precision (or area under the precision recall curve) and Area Under
the Curve of Receiver Operating Characteristics (AUC-ROC) characterize overall
performance independent of threshold. The columns with point threshold,
precision, and recall report performance at the site-specific operating points used
in Humpback Occurrence.

One of the significant strengths of combining our long-term
historical dataset with ML algorithms is the ability to evaluate
changes and trends in humpback occurrence over time. Annual
visual surveys of humpback whales at well-known Hawaiian
aggregation sites noted a significant decline in humpback
presence beginning in winter 2014–2015 (Gabriele et al., 2017;
Cartwright et al., 2019). Our dataset in the Hawaiian Archipelago
overlaps with this period of change, and therefore allows for
evaluation of long-term trends in occurrence for over a decade.
We examined the detection rate at Kona before and after May
2015 to assess whether a similar decline could be found within the
acoustic data. We conducted a mixed effects logistic regression
analysis on all segments from Kona, with random effects for the
recording hour and day to adjust for the correlation between
frames within the same time periods.

RESULTS

CNN Model
Model Performance
Model performance varied between sites, but the model
generalized well across most locations, with overall average
precision of 97% (Table 2 and Figure 2). Performance metrics
could not be calculated for those sites where few (<20) to no
positive examples were found (Equator, Palmyra Atoll, Kingman
Reef, Howland Island). The lowest average precision was at Ladd
Seamount, which had only 20 positive test examples.

The CNN outperformed both the GPL and energy detector
on the segment-level detection problem. The fraction of positive
segments in the test set, or equivalently the baseline average
precision of random scores, was 0.20. The energy detector did
not do much better than this, with an average precision of
0.22 and an AUC-ROC of 0.48 (worse than random). The GPL
algorithm achieved an average precision of 0.74 and AUC-ROC
of 0.91. Our model achieved an average precision of 0.97 and
AUC-ROC of 0.992.

Front End Experiments
We found that PCEN outperformed both log and root
compression, providing an increase in both average precision
and AUC-ROC. The outperformance of PCEN is likely largely
due to the automatic gain control that it provides; in particular,
it removed stationary, band-limited noise that was present in
some but not all of the corpus. Context window duration also
impacted model performance, with a 3.84 s window performing
best, but there were not large differences in the performance
of the shorter or longer context window. We found no effect
from limiting the mel filterbank frequency range or adding time-
domain Gaussian noise. Validation set metrics for front end
experiments are reported in Supplementary Table 3.

Humpback Occurrence
Across the 13 recording sites, there was a clear seasonal
occurrence pattern corresponding to the typical North Pacific
humpback breeding season at seven of the recording sites: Kona,
Kauai, Pearl and Hermes Reef (PHR), and Cross Seamount
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FIGURE 2 | Precision/recall curves for each site with humpback song.

(CSM) (Figure 3 and Table 3); and Saipan, Tinian, and Pagan
(Figure 4 and Table 3).

Within the main Hawaiian Islands (MHI), CSM had only
a single year of winter recordings available (2005/2006) but
exhibited a season duration similar to Kona and Kauai, although
the data ended (May 11, 2006) before song levels dropped below
1% (Figure 3 and Table 3). Kauai had the longest song season
with 199 days of singing on average and song presence reaching
100% of recording time in both years of data. In the Northwestern
Hawaiian Islands (NWHI), song started at PHR on average 3 to
4 weeks later than in the MHI, with a shorter average season
length than the MHI (Table 3). There were only brief periods
of humpback song found at Ladd Seamount, likely because
the recording period had only brief overlap with the winter
humpback season.

There was a marked decrease in the percentage of time with
humpback song at Kona beginning in the 2015/2016 season. The
maximum song presence declined from an average of 90% for
the period from 2007/2008 to 2014/2015 to 64% starting in the
2015/2016 season, and the average season length was reduced
by 26 days from 160 to 134 days. The mixed effects logistic
regression analysis found that data recorded at Kona prior to
May 2015 were approximately twice as likely to contain calls than
frames recorded after May 2015 [adjusted odds ratio = 2.02; 95%
CI: (1.75, 2.33)].

The timing of humpback whale song occurrence in the
Mariana Archipelago was consistent with other northern
hemisphere breeding grounds, although the season length was
shorter than in the Hawaiian Archipelago (Figure 4 and Table 3).
Saipan exhibited the longest season of the sites in the Mariana

Islands an average of 108 days of singing, with an average
peak of 47% of recording time with song. The full winter and
spring periods were sampled for only four seasons at Tinian.
In those years, humpback whale song was heard only in the
last three (2014/2015; 2015/2016; 2018/2019), with peak song
occurrence quite low, with a maximum of 10% in 2015/2016.
At Pagan, humpback song began in late December/early January
and continued through early- to mid-April with peaks in weekly
occurrence of 41 and 9%, respectively (Figure 4).

The remaining six recording sites did not have consistent
seasonal humpback song presence (Supplementary
Figures 1–4). Humpback whale song was recorded at Wake
Island for brief periods during the winter season, though
occurrence was far less consistent than at sites in Hawaii and
the Marianas. When examined on the daily scale, there were
brief (1–2 days) periods of song occurrence, consistent with the
passage of an individual whale (Supplementary Figure 1).

The CNN identified a small number of positives at Equator,
Howland, Kingman Reef, and Palmyra. All were within the
expected false positive rate of the model (1–5%). Manual
evaluation of these time periods at Equator, Howland, and
Palmyra revealed most to contain fish sounds and ship noise.
However, at Kingman Reef all of the positives between December
8, 2011 and March 5, 2012 contained faint humpback song.
There was a total of 18 days with song, several of which
contained multiple singing bouts scattered throughout the day.
In total, 0.19% of the audio from Kingman Reef was positive for
humpback song. To compare detectors, an additional Kingman
Reef-only audit effort was conducted, sampling from segments
in a single season with the highest scores under our final model.
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FIGURE 3 | Bottom panel: Percentage of recording time with humpback song per week for the for Hawaiian archipelago sites (Ladd Seamount, Pearl and Hermes
Reef (PHR), Kauai, Cross Seamount, Kona). Top panel: Shaded boxes represent the time periods with recordings for each site, with outer color corresponding to the
recording site, and shading indicating duty cycle which ranged from 12.5% recording time (light gray) to continuous (black).

It found 706 positive segments; the remaining 100,164 segments
from the season were considered explicit negatives. For the CNN,
GPL detector, and energy detector, the areas under the ROC
curve were 0.973, 0.946, and 0.279, respectively, while the average
precision scores were 0.456, 0.221, and 0.004, respectively.

DISCUSSION

This study represents the largest scale application of deep
learning to recognize marine mammal bioacoustics signals to

TABLE 3 | Summarized season data for the recording sites with seasonal
humpback song.

Site Season
start

Season
end

Max song
presence

Season peak
date

Season
duration

(days)

Kona 19-Nov 23-Apr 79% 12-Feb 155

CSM *19-Nov — *62% *5-Feb —

Kauai 10-Nov *28-May 100% 16-Mar 199

PHR 10-Dec 3-May 48% 4-Feb 144

Saipan 19-Dec 6-Apr 47% 24-Jan 108

Tinian 12-Jan 24-Mar 6% 12-Feb 71

Pagan 31-Dec 16-Mar 25% 5-Feb 75

*Taken from only one data point.
All metrics are averaged across all years of data for a given site.

date, as measured by dataset size and variability. This public-
private partnership brought industrial cloud computing capacity
to bear on a large scientific dataset, enabling parallel inference
on terabyte-scale unlabeled audio within hours, a timescale
unmatchable by historical analysis methods.

CNN Model
We demonstrate here the effective application of a CNN for
identifying complex acoustic signals in an extremely large and
heterogeneous passive acoustic dataset. The model was trained
on a relatively small set of labels, biased toward signals from
only a few recording sites. Yet, after a few active learning
loops it generalized well to other recordings despite the large
spatial and temporal scale of the data and the associated
variation in humpback whale song structure, as well as number
and loudness of singers, and large variations in background
soundscape, including differing recorder depth, propagation
conditions, and ambient noise presence. Active learning methods
are a common approach to focus human annotation resources on
the most impactful regions of large unlabeled datasets. In this
way, common false positives are more quickly labeled as hard
negatives, reducing the rate of misfires on error modes of early
model candidates. Additionally, inclusion of implicit negatives
greatly sped and simplified the annotation effort, allowing for
entire segments of the dataset to be labeled as negative, providing
many more training examples than if every negative needed to
be hand annotated.
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FIGURE 4 | Bottom panel: Percentage of recording time with humpback song per week for the Mariana Islands. Top panel: Shaded boxes represent the time
periods that have recordings, with outer color corresponding to the recording site, and shading indicating duty cycle that ranged from 12.5% recording time (light
gray) to continuous (black).

Marine passive acoustic monitoring datasets often contain
a large range of signal-to-noise ratios and absolute noise
levels. The wide variety of locations and time periods in this
study means that each recording site has a unique noise field,
recorder depth, propagation conditions, and different types
and levels of interfering anthropogenic, biological, and physical
noises. Fluctuating noise fields often hinder performance of an
automated detector/classifier, and they certainly impacted the
performance of this CNN, but PCEN – originally conceived for
far-field speech processing – appeared to partially compensate
for this variation, and the model performed well across all
soundscapes in the corpus.

Model performance varied by site, likely due to several
contributing factors including the amount of training data
from that site and the site-specific soundscape and propagation
conditions. Although active learning helped correct the most
common types of false positives, some error modes still remain,
including passing boat traffic and chorusing fish species, and
the model performs better at sites without the presence of
these interfering sounds. Additionally, while there was some
variation in recorder depth (∼100 to 1300 m), there were
no recordings from very shallow regions, which often contain
greater overall ambient noise levels and significantly different
propagation conditions. However, there was significant enough
variation in propagation conditions that we cannot assume
that humpback song was detectable at similar ranges between
different recording sites.

Overall, the model generalized well across the differing
soundscapes, song types, and number of singers present in the
recordings, providing a high average precision and AUC-ROC
and outperforming both GPL and band-limited energy detectors.
However, the GPL algorithm does not require any training
data and is less computationally intensive while still providing
reasonably good average precision. This tradeoff is an important
consideration when weighing analysis time versus the required
precision needed for a particular study.

Humpback Occurrence
Seasonal and Geographic Trends in Humpback
Whale Song Occurrence
Humpback whales in Hawaii are primarily known from well-
studied aggregations in the MHI, particularly on shallow banks
off Maui and Kauai (Shallenberger, 1977; Au et al., 2000). Animals
typically start arriving in November, peak in February, and depart
by May (Shallenberger, 1977; Cerchio, 1998; Au et al., 2000). Our
acoustic data from the MHI match this pattern well.

Although we have only a single year of acoustic data from
Cross Seamount, the timing and magnitude of song detections
match well with those observed nearshore in the MHI. The
proximity of this seamount to the island chain (270 km southeast
of Hawaii Island), suggests that the area is an extension of
the Hawaiian breeding grounds rather than a transit corridor.
A previous passive acoustic glider survey among the seamounts
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south and west of the MHI revealed near constant detection of
humpback whales in the region (Klinck et al., 2015), though the
proximity of the whales to these seamounts is not known. Our
data, together with the glider data, indicate that whales have
been using the offshore waters west of the archipelago during the
breeding season for at least a decade. The extent of use cannot be
readily examined here but is worth further study.

Additionally, relatively little is known about humpback
presence in the NWHI. The Hawaiian Archipelago extends over
1,800 km to the northwest of the MHI and includes similar
habitat to well-known breeding grounds in the MHI (Johnston
et al., 2007). A springtime line transect visual and acoustic survey
for humpback whales (Johnston et al., 2007) and a year of acoustic
recordings at eight sites along the archipelago (Lammers et al.,
2011) represent the only recent published records of humpback
whale presence in the NWHI. In their survey, Johnston et al.
(2007) found humpbacks present in shallow water habitat,
with the northernmost encounters at Lisianski Island, 270 km
southeast of PHR. Humpback whales were not seen at PHR or
Ladd Seamount. Lammers et al. (2011) found strong seasonal
humpback song at their recording sites as far north as Lisianski
Island, with greatly reduced levels of detection at and to the north
of PHR. In contrast, we found a consistent seasonal presence of
humpback song at PHR. This difference is possibly due to the
shallow, nearshore location of the recorders in Lammers et al.
(2011). PHR was one of the longer datasets in the current study,
with recordings between 2009 and 2019. The season duration at
PHR is shorter, mostly driven by a later start, and the magnitude
of song occurrence is lower than that found in the MHI. This
shorter seasonal presence, in combination with the decreasing
occurrence with increasing distance to the north was found in
Johnston et al. (2007), Lammers et al. (2011), and here. Photo ID
matches between the NWHI and MHI (K.M. Yano, Unpublished
Data) indicate that these animals may arrive at the MHI first and
then move northward up the archipelago.

Recordings from Wake Island indicate that humpback whales
are not common there, with only a few instances of humpback
song during the months of January to April, likely from
transiting whales enroute to Hawaiian or other North Pacific
breeding locations. Singing generally persisted for 1–2 days, a
reasonable detection period for a transiting animal. There is
evidence of movement between western Pacific and Hawaiian
breeding grounds (Darling and Cerchio, 1993) and also of
migration between western Pacific breeding grounds and Bering
Sea or western Gulf of Alaska feeding grounds (Calambokidis
et al., 2008) that could bring singing whales within detection
range of Wake Island.

Of particular note is the discovery of humpback song at
Kingman Reef, an event that would likely not have been possible
without the CNN approach. This discovery demonstrates the
benefit of using DL to find extremely rare signals within large
datasets. Only 0.19% of the total audio from Kingman Reef
was positive for humpback song, and all detections were very
faint, making it likely that previous annotation methods, both
automatic and manual, would have missed these instances of
song. The discovery of song at Kingman Reef is unprecedented,
as no historical records indicate humpback presence in this

region of the world. The nearest known breeding area is the
Hawaiian Islands, 1,500 km away. No song was detected at any
other equatorial sites, including Palmyra Atoll located just 60 km
away. Song at Kingman Reef is sporadic but occurs repeatedly
throughout the recording period with timing corresponding to
the North Pacific breeding season, suggesting a link to one of
these populations. We cannot conclude from a single year of
data if these animals are a returning breeding population, or
an isolated instance of one or several wandering animals, as
hypothesized to explain song detections between Hawaii and
Mexico (Darling et al., 2019).

There are several known breeding grounds for humpback
whales in the western Pacific, with photo ID and genetic
evidence suggesting two populations may use this broader
region (Bettridge et al., 2015). Limited anecdotal and whaling
data suggested possible humpback presence in the Mariana
Archipelago (Fulling et al., 2011). Hill et al. (2020) found
consistent seasonal humpback presence on shallow banks west
and north of Saipan. Genetic and photo ID evidence suggests
that these whales are part of a second “unknown” western Pacific
breeding population (Hill et al., 2020). Our data provide further
evidence of consistent seasonal humpback occurrence in the
Marianas Archipelago, including previously unreported presence
at Pagan Island. The season durations at all three Mariana sites
were shorter than in the Hawaiian Islands. The Western Pacific
humpback population is notably smaller than that in Hawaii
(Bettridge et al., 2015), such that this shorter season may reflect
consolidated migratory movements to and from northern feeding
grounds in winter and spring or may reflect the specific use of the
Mariana Islands by a portion of the broader population.

Long Term Temporal Humpback Trends
In addition to providing insights for remote and hard-to-
monitor sites, one benefit of long-term acoustic recordings is
the ability to identify long-term trends in animal presence.
Starting in 2014, scientists in Hawaii and Alaska noticed a
significant decrease in humpback whale sightings in several
areas of known high abundance, coinciding with the Pacific
decadal oscillation, Northeast Pacific heatwave, and an El Niño
event in 2016 (Gabriele et al., 2017; Cartwright et al., 2019).
An acoustic study from Maui showed a decline in daily song
levels starting in the 2015/2016 season and persisting through
2018/2019 when levels increased again at some sites (Kügler
et al., 2020). Our data show a similar decline in humpback
song presence at Kona, beginning in the 2015/2016 season
and persisting until the end of the data in 2019, with a
concurrent reduction in season length. The reduction in song
presence lags the reduced presence of whales noted by visual
surveys (Cartwright et al., 2019). This may reflect the specific
distribution of whales within MHI breeding grounds, as acoustic
measurements are taken at a single location and are averaged over
longer time scales than visual surveys. Additionally, our CNN
model only predicts whether humpback song is present in a data
segment and does not differentiate between a single song unit or
many, such that the number of singers would need to decline
sharply before we would observe a decline in the percentage of
recording time with song.
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Conclusion
We demonstrate here the power of applying state-of-the-art deep
machine learning to quantitatively and comprehensively analyze
a diverse, long-term passive acoustic dataset with a high level
of precision. This study is unique in the scale of application of
a CNN to a large marine acoustic dataset and demonstrates the
ability of a CNN trained on a relatively small dataset to generalize
well to a highly variable call type across a varied range of
recording and noise conditions. By leveraging machine learning,
we gained insights into the seasonal and long-term occurrence
of whales both within known breeding areas and in regions
where visual surveys are not feasible. Notably, machine learning
facilitated the discovery of humpback song at a novel location,
found at a considerable distance from any known humpback
aggregations, which would not have been possible with previous
manual or automatic acoustic annotation methods.

Our current method is limited by its ability to only classify a
time segment as either positive or negative for humpback song.
Future models that could distinguish between individual song
units or transcribe entire songs could provide further information
on population linkages between some of the remote recording
sites and known breeding areas. However, when examining data
over such a large time and space including very remote locations,
acoustic whale call presence/absence adds discerning power and
longevity to visual and other survey methods beyond what is
possible when human presence is needed for data collection.
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