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Sea turtles tend to accumulate high metal levels in their tissues and are considered
excellent pollution bioindicators. Studies concerning metal contamination in hatchlings,
however, are non-existent for one of the most abundant species in Brazil, green sea
turtles, while several other metal assessments in juvenile muscles are still scarce.
In this context, this study aimed to analyze the concentrations of 12 elements
in kidney and muscle samples from green sea turtles (Chelonia mydas; n = 24)
found stranded in Rio de Janeiro, southeastern Brazil. Elemental concentrations were
determined by inductively coupled plasma mass spectrometry (ICP-MS). The presence
of fibropapillomatosis, an increasingly common disease in sea turtles which has been
associated to metal contamination, was also evaluated. Most elements (Mn, Fe,
Co, Ni, Cu, Zn, Cd, Hg, and Pb) were significantly higher in liver, while Al and As
were significantly higher in muscle tissue, indicating bioaccumulation of the latter
two elements. No differences between juvenile male and female green turtles were
observed for either liver or kidney concerning the investigated elements. Literature
comparisons of studies conducted in other areas throughout the Brazilian coast
indicate higher concentrations of Cd, Mn, As, Hg, and Zn in kidneys, of probable
anthropogenic origin. Several statistically significant inter-elemental correlations were
observed between toxic elements, indicating similar sources for these environmental
contaminants. Significant correlations between Hg in muscle and kidney and As in the
same organs suggest bioaccumulation of both elements in muscle. Three individuals
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assessed herein exhibited fibropapillomatosis, and further assessments in this regard
and potential correlations to the detected metal concentrations are currently being
carried out. In addition, evaluations concerning other toxic compounds, as well as
deleterious cellular effects, are also underway, since total metal concentrations do not
reflect total elemental bioavailability.

Keywords: metal contamination, Chelonia mydas, fibropapillomatosis, environmental health, bioindicator

INTRODUCTION

Among environmental pollutants generated by anthropogenic
activities, metals are of significant concern due to their
environmental persistence and potential toxicity (Marins et al.,
1998; Marcovecchio, 2000; Baird, 2002; Miller et al., 2002;
Melo, 2003).

Long lived animals, such as sea turtles, tend to accumulate
higher levels of metals in their tissues compared to the water
column (De la Lanza-Espino et al., 2000; Aguilar et al., 2002),
and are, thus, considered competent chemical contamination
indicators (Caurant et al., 1999). Exposure to metals, in general,
has been associated with turtle enzyme inactivation and protein
denaturing, causing deleterious effects such as developmental
disorders, neurological damage, carcinogenic effects, and death
(Fossi and Marsili, 2003; Decataldo et al., 2004; De Jesus
and de Carvalho, 2008; Marijić et al., 2016). In addition to
deleterious biochemical effects, sea turtles have also been reported
to develop fibropapillomatosis due to contaminant exposure,
including metals (Keller et al., 2014; Da Silva et al., 2016), and
higher frequencies of fibropapillomatosis have been reported
in contaminated environments (Formia et al., 2007; Guimarães
et al., 2013), indicating a potential link between chemical
environmental contamination, oxidative stress, dysregulation of
metabolic functions and the consequent development of this
disease. This condition is caused by a herpesvirus and, in turtles,
is characterized by the appearance of tumor masses on different
parts of the body, such as the oral cavity, eyes, skin, carapace and,
in about 25–30% of affected individuals, internal organs (Herbst,
1994; Aguirre et al., 2002; Aguirre and Lutz, 2004).

Of the seven species of sea turtle found worldwide, five
are found throughout the Brazilian coast, constituting two
families, Cheloniidae, comprising Chelonia mydas (green turtles),
Eretmochelys imbricata (hawksbill turtles), Caretta caretta
(loggerhead turtles), and Lepidochelys olivacea (olive ridley
turtles), and Dermochelyidae, comprising Dermochelys coriacea
(leatherback turtles) (Marcovaldi and Dei Marcovaldi, 1999). All
are classified as vulnerable, threatened or critically endangered,
according to the International Union for Conservation of Nature
(IUCN, 2020). The most frequent and abundant species in Brazil
are green sea turtles (Bezerra et al., 2012). Green sea turtle
hatchlings exhibit a pelagic phase lasting for about 5–10 years,
during which they remain associated with pelagic currents
(Musick and Limpus, 1997), while juveniles generally recruit to
developmental habitats prior to moving to adult feeding grounds
(Arthur et al., 2008). Unfortunately, many sea turtle nesting
and feeding areas in Southeastern Brazil are located in highly
urbanized areas (De Macêdo et al., 2015), exposing these animals

to contaminants originated from anthropogenic activities during
all development stages. Studies concerning metal contamination
during different turtle development stages, however, are scarce
in general. Furthermore, assessments concerning metal levels
in kidney and muscle samples from green sea turtle hatchlings
are extremely infrequent in Brazil, while a scarcity of metal
assessments for juvenile muscle tissue in general is noted. In this
context, this study aimed to analyze the concentrations of 12
metals and metalloids in kidney and muscle samples of male and
female hatchling and juvenile green sea turtle individuals found
stranded in the state of Rio de Janeiro, southeastern Brazil and
perform preliminary associations between the presence of these
contaminants and the development of fibropapillomatosis.

METHODOLOGY

Study Area
The study area is located in the state of Rio de Janeiro, 200
southeastern Brazil, in the Região dos Lagos region, which 201
comprises the municipalities of Maricá, Saquarema, Araruama,
202 São Pedro da Aldeia, Cabo Frio, Arraial do Cabo, Iguaba
Grande, 203 Armação dos Búzios, Casimiro de Abreu, and
Rio das Ostras (Figure 1). This region suffers the influence of
ports and oil platforms in adjacent areas, as well as increasing
urbanization in recent years. In addition, during certain periods
of the year, the Região dos Lagos receives a high number of
tourists, significantly impacting the marine environment, as
high volumes sewage, solid waste and contaminants are directly
discharged into local water bodies (Da Silva et al., 2018).

Sea Turtle Sampling and Processing
Green sea turtles were found stranded during regular beach
monitoring, carried out twice a day from January to December
2019 at Região dos Lagos. Geographic coordinates, time,
and carcass conditions were recorded. Carcass weight, curved
carapace length (CCL), and curved carapace width (CCW)
were determined (Frazer and Ehrhart, 1985). Juveniles were
categorized as those displaying over 20 cm CCL and less than
90–100 cm, when sexual maturity is reached (Heppell et al.,
2003; Reich et al., 2007). Fibropapillomatosis was detected
through visual inspection of external masses by experienced
veterinarians (presence or absence of external tumor masses).
Sex was determined through visual macroinspection of the
gonads during necropsies, according to Wyneken (2001). After
the biometric analyses, the animals were dissected through
standardized procedures (Wyneken, 2001), and muscle and
kidney samples were obtained. The tissue samples were stored
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FIGURE 1 | Map of the study area of Região dos Lagos, eastern coast of the state of Rio de Janeiro, southeastern Brazil.

TABLE 1 | ICP-MS instrumental operating conditions applied in elemental
determinations in green turtle (Chelonia mydas) muscle and kidney samples.

ICP-MS parameter Condition

RF power 1100 W

Plasma gas flow rate 17.0 L min−1

Auxiliary gas flow rate 1.2 L min−1

Carrier gas flow rate 0.98 L min−1

Sampling and skimmer cones Pt

Dwell time 50 ms per isotope

Number of readings 5

separately in sterile polypropylene tubes and frozen at −80◦C
until further processing. Authorization for sampling and analyses
of the stranded sea turtles was given by the Brazilian Ministry
of Environment (ABIO license no. 861/2017). No ethics
committee authorization in Brazil is required for the analyses of
animals found dead.

Total Elemental Determinations
Samples were thawed and approximately 150 mg of each were
weighed, transferred to new sterile 15 mL polypropylene tubes
and mixed with 1.5 mL of bidistilled nitric acid (HNO3, 67%
v/v). The samples were then heated to 100◦C in the capped
(closed) polypropylene tubes for approximately 4 h, avoiding
loss of volatile elements, such as As and Hg (USP, 2013). After
cooling, samples were adequately diluted with Milli-Q water
(resistivity >18.0 M� cm) obtained from a Merck Millipore
water purifying system (Darmstadt, Germany), for subsequent
analysis by inductively coupled plasma mass spectrometry (ICP-
MS), employing a NexIon 300X spectrometer (PerkinElmer,
United States). Multielemental external calibration was applied
by appropriate dilutions of a mixed standard solution (Merck IV)
and 103Rh was used as the internal standard from a 20 mg L−1

solution introduced online. All determinations were performed
in triplicate. Analytical curve correlation coefficients were always
above 0.995. The instrumental ICP-MS conditions are displayed
in Table 1.

TABLE 2 | Limits of detection (LOD) and limits of quantification (LOQ) for each
element investigated herein in green turtle (Chelonia mydas) muscle and
kidney samples.

Element LOD (mg kg−1) LOQ (mg kg−1)

Al 0.29 0.99

As 0.002 0.008

Ag 0.0005 0.0017

Cd 0.0001 0.0002

Co 0.0002 0.0006

Cu 0.017 0.055

Fe 0.50 1.65

Hg 0.009 0.028

Mg 0.29 0.99

Mn 0.002 0.006

Na 0.050 0.168

Ni 0.0015 0.0050

Pb 0.010 0.035

Zn 0.013 0.042

TABLE 3 | Observed and certified concentrations (mg kg−1) for the ERMBB422
certified reference material and elemental recoveries (%).

Element Certified value Observed value % Recovery

As 12.7 ± 0.7 15.7 ± 0.7 124

Cd 0.0075 ± 0.0018 0.0049 ± 0.0024 66

Cu 1.67 ± 0, 16 1.62 ± 0.09 97

Fe 9.4 ± 1.4 9.8 ± 2.8 104

Hg 0.601 ± 0.030 0.701 ± 0.049 116

Mg 1370 1330 ± 38.74 97

Na 2800 2665 ± 114 95

Zn 16 ± 1.1 16 ± 0.7 99

The limits of detection (LOD) and limits of quantification
(LOQ) for each investigated element were calculated according
to the Brazilian National Institute of Metrology, Quality
and Technology (Inmetro, 2016) using the following
equations: LOQ = (3 × DSDP × df)/slope of the line and
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LOQ = (10 × SD × df)/slope of the line, where SD is the
standard deviation of the ratio of the analytical signal to the
internal standard signal of 10 blanks and df is the applied
sample dilution factor. The determined LOD and LOQ for each
investigated element in the present study are displayed in Table 2.

Method accuracy was verified by the parallel analysis
of procedural blanks and of a certified reference material
(ERMBB422 – fish tissue, European Commission), in triplicate.
Table 3 displays the observed and certified values for the
ERMBB422 certified reference material and elemental recovery
percentages. The volatile elements determined herein (As and
Hg) presented slightly higher concentrations than the certified
values, demonstrating that the sample preparation procedure is
efficient and not prone to losses. In addition, the concentrations
are also higher than the limits of quantification of the technique
obtained through direct introduction of the sample solution.
Therefore, it is not necessary to employ the vapor generation
technique, which is more time- and reagent- consuming.
Certified reference material recovery values were considered
adequate for this type of study, as per Eurachem standards
(Eurachem, 1998; Ishak et al., 2015).

Statistical Analyses
Data normality was assessed by the Shapiro–Wilk normality
test. As data displayed a non-gaussian distribution, Spearman’s
correlation test was used to evaluate the degree of associations
between the determined elements and CCL, and between

element pairs. Only strong and very strong correlations were
evaluated, according to Bryman and Cramer (2011). The Mann–
Whitney test was used to assess differences between elemental
concentrations among organs and between males and females.
Potential differences regarding metal concentrations between the
three juvenile individuals presenting fibropapillomatosis and the
other juveniles were evaluated by the Kruskal–Wallis test. The
significance level for all statistical tests was set at p < 0.05. The
statistical analyses were performed using the R software (version
3.5.0) R Core Team (2019).

RESULTS

Sea Turtle Stranding Locations
A total of 24 stranded green sea turtles were obtained. The sea
turtle stranding locations within the oil fields and exploration
blocks located at the Campos Basin are exhibited in Figure 2.

Morphobiometric Results
The morphobiometric data and the presence or absence of
fibropapillomatosis of the assessed green turtles are exhibited
in Table 4. Concerning sex, 75% of the individuals were
female and 25% males. Regarding maturity, most (87.5%) were
juveniles and 12.5% were hatchlings. Of the 24 individuals,
only three (12.5%) presented fibropapillomatosis. CCL and
CCW means for hatchlings were of 26.87 ± 0.47 cm and

FIGURE 2 | Location of the green sea turtle strandings in the Região dos Lagos region, eastern coast of the state of Rio de Janeiro, southeastern Brazil.
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TABLE 4 | Morphobiometric results of the evaluated sea turtles, indicating, sex, maturation (according to CCL), curved carapace length (CCL, in cm), curved carapace
width (CCW, in cm), and presence or absence of fibropapillomatosis.

Code Sex Maturation stage CCL (cm) CCW (cm) Fibropapillomatosis Decomposition scale

T1 Female Juvenile 32 27.8 Absent 2

T2 Female Juvenile 29.8 28.3 Absent 2

T3 Female Juvenile 35.9 35.5 Absent 2

T4 Female Juvenile 35.2 31.2 Absent 2

T5 Female Juvenile 38.9 34.6 Absent 2

T6 Female Hatchling 26.5 25.2 Absent 2

T7 Female Juvenile 57.4 50.7 Present 3

T8 Female Juvenile 35.5 32.5 Absent 2

T9 Female Juvenile 34.5 30.4 Absent 3

T10 Female Juvenile 32.5 31.5 Absent 4

T11 Female Juvenile 39.9 35.7 Absent 3

T12 Female Juvenile 29.8 28.4 Absent 2

T13 Male Hatchling 26.7 24.9 Absent 3

T14 Male Juvenile 33.8 30.5 Absent 2

T15 Female Juvenile 39.9 36.1 Absent 3

T16 Female Juvenile 34.7 31 Absent 2

T17 Male Juvenile 40.6 36.3 Absent 2

T18 Female Hatchling 27.4 25.2 Absent 2

T19 Male Juvenile 32.2 29.3 Absent 2

T20 Male Juvenile 52.9 45.8 Present 2

T21 Female Juvenile 38.9 36.4 Absent 2

T22 Female Juvenile 33.7 29.8 Absent 2

T23 Female Juvenile 34 30.3 Present 3

T24 Male Juvenile 37.2 34.2 Absent 2

25.10 ± 0.17 cm, while juveniles measured 37.11 ± 6.8 cm and
33.63 ± 5.67 cm, respectively.

Elemental Determinations
Elemental concentrations in green turtle muscle tissue and
kidneys are exhibited in Figures 3, 4. The concentrations of
most elements (Mn, Fe, Co, Ni, Cu, Zn, Cd, Hg, and Pb)
were significantly (p < 0.05) higher in kidney when compared
to muscle samples. In contrast, Al and As were significantly
(p < 0.05) higher in muscle tissue. This seems to indicate
inefficient detoxification of these elements by the liver and kidney
routes, thus resulting in muscle bioaccumulation. This is due
to the fact that these contaminants are generally lipophilic and
usually detoxified first by the liver, followed by kidneys and only
then, if present in high concentrations above organic-specific
detoxification thresholds, do they accumulate in muscle (Hall
et al., 1989; Becker and Bigham, 1995; Taylor et al., 2017).

No significant differences in concentrations were observed
between male and female green turtle juveniles in liver or kidney
for all investigated elements in the present study. Most studies
report no differences in feeding strategies between adult males
and females (Barbieri, 2009; Prior et al., 2015; Stokes et al.,
2019). One of these studies compared the diets of males, gravid
females and non-gravid females from the Western Indian Ocean
(Republic of Seychelles), and reported only differences between
the gravid and non-gravid females, where seagrass accounted

for 95% of gut content biomass for both males and non-
breeding females, but only 58% for gravid females, alongside
substrate (14%), and macroalgae (13%) contents (Stokes et al.,
2019). Juvenile assessments, however, are rarer. One assessment
indicated no difference between green turtle juvenile and adult
feeding habits in seagrass habitats by applying last-bite diet and
stable isotope analyses within Port Curtis, QLD, Australia (Prior
et al., 2015), although the authors did not assess differences
between male and female juveniles.

Generally higher concentrations in juveniles compared to
hatchlings were observed for Ag, Al, Cu, Fe, Hg, Ni, Pb, and
Zn. This is expected, as green turtle hatchlings, which remain
associated with pelagic currents for a number of years (Musick
and Limpus, 1997), shift their dietary niche from omnivorous,
feeding on neustonic material, to herbivorous in their juvenile
and adult stages, when they feed on macroalgae, sea grass
and/or mangrove material (Bjorndal, 1997; Cardona et al.,
2010), favoring environmental contaminant biomagnification. In
addition, juveniles inhabit a slightly differential niche than adult
individuals, of shallower habitats and amongst mangroves, with
higher abundance of macroalgae, while adults inhabit deeper
channels, feeding on deeper seagrass beds (Limpus et al., 2005).

No statistically significant correlations were observed between
the concentrations of the determined elements in both muscle
and kidney and turtle CCL. This is in agreement with previous
assessments (Gardner et al., 2006), but in contrast with other
reports indicating negative correlations between CCL and Cd
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FIGURE 3 | Box plots representing elemental concentration variations in green turtle (Chelonia mydas) muscle tissue. Black dots indicate outliers, while white bars
represent breaks in the y-axis. Light green columns represent females and dark green, males.

and Cu concentrations in muscle (Da Silva et al., 2014), CCL
and Cd and Zn concentrations in kidney (Gordon et al., 1998),
CCL and As in muscle and kidney (Saeki et al., 2000), as well as
negative correlations between CCL and Zn, Cu and Cd in kidney,
positive correlation between CCL and Mn concentration in the
same tissue, negative correlations between CCL and Mn and Hg
concentration in muscle and positive correlation between CCL
and Cu concentrations (Sakai et al., 2000) in green turtles. A trend
toward negative correlations between elemental concentrations
in kidney and muscle and body size in green turtles has been
attributed to the previously mentioned ontogenic shift in diet
observed in this species McKenzie et al. (1999). Thus, exposure
to metals and a bioaccumulation trend may occur only in the
initial phase of this species life, and subsequent growth and
development would decrease contaminant loads, due to the
“dilution effect” (Kamunde and Wood, 2003).

Statistically significant elemental concentration
differences between the three juvenile individuals presenting
fibropapillomatosis and healthy juveniles were observed only
for Cu, an essential element, in muscle. In this case, animals
presenting the condition exhibited a means of 0.26 ± 0.02 mg
kg−1, significantly lower than the mean for healthy individuals,
of 1.82 ± 0.20 mg kg−1. Although the exact etiology of
fibropapillomatosis is not yet fully known, its multicausal

nature is a consensus, and many studies suggest genetic
predispositions, contamination by environmental contaminants,
mainly polycyclic aromatic hydrocarbons and metals, alterations
in chemical water parameters and the presence of the herpesvirus
in the environment (Aguirre and Lutz, 2004; Da Silva et al.,
2016). For example, reported high Cu and Pb concentrations
(means of 1.32 µg g−1 and 1.44 µg g−1, respectively) in the blood
of sea turtle individuals positively correlated to the inhibition
of the activity of 3-hydroxy-3-methylglutaryl-CoA reductase,
an enzyme that participates in the biosynthesis process of
sterols, including cholesterol, which was detected at levels below
normal in turtles affected by fibropapillomatosis. In addition,
the authors suggest that oxidative stress caused by high Fe and
Pb concentrations may be directly related to the cause and
development of the disease. It is known that Cu is essential
for optimal innate immune function, and that its deficiency
results in decreased immune responses in several groups, such as
mollusks, birds, and mammals (Blanco et al., 2004; Wang et al.,
2009; Djoko et al., 2015), and that the reactivation of herpesvirus
is closely correlated with the immune system, as the disease
mainly occurs in immunocompromised individuals in several
organisms (Schmader and Dworkin, 2008). Thus, it may stand
to reason that the decreased Cu concentrations observed in
the three individuals presenting fibropapillomatosis are related
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FIGURE 4 | Box plots representing elemental concentration variations in green turtle (Chelonia mydas) kidneys. Black dots indicate outliers, while white bars
represent breaks in the y-axis. Light green columns represent females and dark green, males.

to decreased immune responses, activating this herpesvirus in
green turtles, although further evaluations are required to verify
this hypothesis.

Literature comparisons of studies conducted throughout the
Brazilian coast are presented in Table 5. The kidney samples
analyzed herein exhibited higher Cd, Mn, and Ni concentrations,
with a notable difference related to Cd concentrations, and
lower Cu concentrations when compared to Barbieri (2009),
who evaluated samples obtained from the Cananeia estuary, a
reportedly pristine area, with little or no metal pollution, which
is probably the cause of the low metal concentrations detected in
most of the assessed samples. Cd, Hg, Pb, and Zn, on the other
hand, were considerably higher than reported by De Macêdo
et al. (2015), which is interesting as those authors assessed a
highly industrialized region on the northern coast of Bahia and
expected to present high metal contamination levels. Cd and Zn
levels were also considerably higher when compared to the kidney
samples analyzed. Muscle samples analyzed herein contained
lower Ag and Pb concentrations compared to values reported by
Da Silva et al. (2014), and higher Cd, Cu, and Zn. All studies
grouped both males and females, due to the aforementioned lack
of statistical differences between feeding strategies. The study
area evaluated by Da Silva et al. (2014) has seen a significant

increase in urban, industrial and port activities in recent years,
which may have contributed to increased metal concentration
in the surrounding marine environment and, consequently, in
sea turtles. In addition, the region suffers from the continuous
and growing input of agricultural waste from the adjacent
plantation area.

Statistical Correlations Between
Variables
The strong and very strong significant (p < 0.05) inter-elemental
Spearman correlations observed among sea turtle organs are
exhibited in Table 6.

Metal and metalloid interactions within organisms are related
to several physic-chemical and biotic aspects, such as chemical
speciation in the environment, which may lead to preferential
competitive environmental uptake and differential tissue affinity,
as well as different metal detoxification routes, resulting in
differential distribution patterns in animal tissues, which indicate
that inter-elemental interactive effects should be considered
in environmental monitoring and risk assessment evaluations
(Norwood et al., 2003; Peterson et al., 2009; Yang et al.,
2010). Therefore, investigations of statistically significant inter-
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TABLE 5 | Literature comparisons of metal concentrations (mg kg−1) in green turtle (Chelonia mydas) tissues conducted in other areas throughout the Brazilian coast.

Sampling
site

Tissue Age Ag Al As Cd Co Cu Fe Hg Mn Ni Pb Zn References

Região dos
Lagos, Rio
de Janeiro,
Brazil

Kidney Hatchlings (males
and females)

0.014 ±

0.017
5.321 ±

5.394
4.482 ±

7.259
24.418 ±

10.573
1.530 ±

0.470
2.122 ±

0.516
125.849 ±

175.052
0.219 ±

0.153
1.345 ±

0.763
0.321 ±

0.165
0.045 ±

0.029
58.204 ±

36.257
Present
Study

Juveniles (males
and females)

0.049 ±

0.146
2.893 ±

0.848
3.850 ±

6.387
20.676 ±

12.109
1.096 ±

0.742
2.492 ±

0.826
73.153 ±

55.937
0.153 ±

0.093
1.071 ±

0.402
0.349 ±

0.254
0.100 ±

0.101
43.824 ±

32.622

Muscle Hatchlings (males
and females)

0.000 ±

0.000
2.217 ±

0.492
5.359 ±

8.659
0.281 ±

0.089
0.037 ±

0.036
0.345 ±

0.072
17.029 ±

12.018
0.034 ±

0.030
0.002 ±

0.004
0.011 ±

0.005
0.003 ±

0.001
9.024 ±

3.190

Juveniles (males
and females s)

0.046 ±

0.143
7.745 ±

13.321
6.981 ±

12.546
0.166 ±

0.152
0.023 ±

0.205
0.377 ±

0.160
25.112 ±

36.266
0.060 ±

0.089
0.148 ±

0.503
0.036 ±

0.037
0.011 ±

0.019
14.773 ±

12.810

Cananeia
Estuary,
São Paulo,
Brazil

Kidney Hatchlings (males
and females)

ND ND ND ND ND ND ND ND ND ND ND ND Barbieri,
2009

Juveniles (males
and females)

ND ND ND 0.280 ±

0.090
ND 3.514 ±

0.291
ND ND 1.070 ±

0.204
0.025 ±

0.003
ND ND

Muscle Hatchlings (males
and females)

ND ND ND ND ND ND ND ND ND ND ND ND

Juveniles (males
and females)

ND ND ND ND ND ND ND ND ND ND ND ND

Arembepe
Beach,
Bahia,
Brazil

Kidney Hatchlings (males
and females)

ND ND ND ND ND ND ND ND ND ND ND ND De Macêdo
et al., 2015

Juveniles (males
and females)

ND 19.488 ±

16.156
337.400 ±

295.120
15.260 ±

5.936
1.243 ±

0.655
3.808 ±

1.820
121.800 ±

64.960
0.101 ±

0.039
1.694 ±

0.787
0.538 ±

0.395
0.042 ±

0.039
42.280 ±

5.880

Muscle Hatchlings (males
and females)

ND ND ND ND ND ND ND ND ND ND ND ND

Juveniles (males
and females)

ND ND ND ND ND ND ND ND ND ND ND ND

Rio Grande
do Sul,
Brazil

Kidney Hatchlings (males
and females)

ND ND ND ND ND ND ND ND ND ND ND ND Da Silva
et al., 2014

Juveniles (males
and females)

0.115 ±

0.014
ND ND 7.924 ±

0.644
ND 3.416 ±

0.308
ND ND ND ND 1.512 ±

0.112
15.204 ±

1.148

Muscle Hatchlings (males
and females)

ND ND ND ND ND ND ND ND ND ND ND ND

Juveniles (males
and females)

0.084 ±

0.021
ND ND 0.084 ±

0.021
ND 0.252 ±

0.042
ND ND ND ND 0.882 ±

0.063
3.486 ±

0.273

ND, Non-determined. Results reported as dry weight were transformed to wet weight considering 72% and 79% water content for kidney and muscle water content, respectively (Godley et al., 1999).
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TABLE 6 | Significant (p < 0.05) inter-elemental Spearman correlations observed
between sea turtle organs.

Association Correlation coefficient Strength

As K × As M 0.924 Very strong

Hg K × Hg M 0.833 Strong

Ni M × Pb M 0.808 Strong

As K × Hg K 0.733 Strong

K, kidney; M, muscle.

and intra-organ correlations are paramount in performing
biological inferences. These associations have been previously
suggested as indicative of common exposure sources, storage
pathways and/or detoxification routes (Ribeiro et al., 2009;
Jerez et al., 2013).

In the present study, all statistically significant associations
were positive and either strong or very strong, although
only between toxic elements (As, Ni, Hg, and Pb). Elemental
associations between different organs indicate transport
between tissues (Erasmus, 2004; Hauser-Davis et al., 2020)
and are important to assess potentially deleterious effects and
bioaccumulation or excretion processes. As all associations
detected herein were positive, probable synergistic effects and
similar sources for different elemental pairs in the same organ
are postulated (e.g., Ni and Pb in muscle, and As an Hg in
kidney). On the other hand, As and Hg present in both, kidney
and muscle, seem to indicate inter-tissue transport and muscle
bioaccumulation, as described previously.

CONCLUSION

The data reported herein includes baseline levels for both green
turtle hatchlings and for Al, As, Co, Fe, Hg, Mn, and Ni in
muscle tissue for juvenile and hatchling green sea turtles, as no
studies concerning metal levels in hatchling kidney and muscle
samples are available for Brazil and Al, As, Co, Fe, Hg, Mn,
and Ni have not yet been determined in muscle for any age
in green turtle specimens in Brazil. The establishment of these
baseline elemental data is extremely valuable and paramount
for biomonitoring efforts and, consequently, conservation
measures for this threatened species, furthering knowledge
on environmental elemental contamination in this species
geographic distribution range.

No differences were observed between male and female
element loads in kidney or liver, corroborating other literature
reports, and generally higher metal concentrations in juveniles
were observed compared to hatchlings for Ag, Al, Cu, Fe, Hg,
Ni, Pb, and Zn, probably due to the ontogenic dietary shifts that
occur in this species.

Statistically significant lower Cu concentrations in the
three juvenile individuals presenting fibropapillomatosis
were observed compared to healthy juveniles, which may
indicate decreased immune functions and adequate herpesvirus
activation in green turtles. Further assessments concerning other
contaminants, such as polycyclic aromatic hydrocarbons, also

implicated in the etiology of this disease are, thus, required to
further evaluate potentially associated factors to this condition.

In addition, probable synergistic effects and similar sources
for the Ni-Pb and As-Hg toxic element pairs in green turtle
muscle and kidney, respectively, are postulated, as well as
inter-tissue transport between kidney and muscle and muscle
bioaccumulation of As and Hg, which may be the result of a
highly contaminated environment in the Campos Basin.

In sum, constant green sea turtles monitoring in this region
is required, in order to aid in the conservation this species
and maintain the ecological balance of marine environments.
Furthermore, contaminant monitoring is also necessary aiming
at both environmental and human health risk assessments and
decision-making.
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