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An understanding of population structure and connectivity at multiple spatial scales is

required to assist wildlife conservation and management. This is particularly critical for

widely distributed and highly mobile marine mammals subject to fisheries by-catch. Here,

we present a population genomic assessment of a near-top predator, the common

dolphin (Delphinus delphis), which is incidentally caught in multiple fisheries across

the Australasian region. The study was carried out using 14,799 ddRAD sequenced

genome-wide markers genotyped for 478 individuals sampled at multiple spatial scales

across Australasia. A complex hierarchical metapopulation structure was identified, with

three highly distinct and genetically diverse regional populations at large spatial scales

(>1,500 km). The populations inhabit the southern coast of Australia, the eastern coast of

Australia, New Zealand, and Tasmania, with the latter also showing a considerable level

of admixture to Australia’s east coast. Each of these regional populations contained two

to four nested local populations (i.e., subpopulations) at finer spatial scales, with most

of the gene flow occurring within distances of 50 to 400 km. Estimates of contemporary

migration rates between adjacent subpopulations ranged from 6 to 25%. Overall, our

findings identified complex common dolphin population structure and connectivity across

state and international jurisdictions, including migration and gene flow across the Tasman

Sea. The results indicate that inter-jurisdictional collaboration is required to implement

conservation management strategies and mitigate fisheries interactions of common

dolphins across multiple spatial scales in the Australasian region.
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INTRODUCTION

Genetic connectivity and the delineation of populations,
including their boundaries, are fundamental issues in
conservation biology, because such information can advise
on the scale of which to conserve and manage wildlife species
(Leslie and Morin, 2016; Taylor et al., 2017; Dunn et al., 2019;
Pierre, 2019; Sousa et al., 2019; Taft et al., 2020; Tulloch et al.,
2020). Studies using molecular markers can inform on the
number and distribution of populations, their genetic diversity,
their resilience to environmental change, as well as their
vulnerability to anthropogenic impacts and disease outbreaks
(DiBattista et al., 2017; Holland et al., 2017; Bradburd et al.,
2018; Batley et al., 2019; Breed et al., 2019; Grummer et al.,
2019; Jasper et al., 2019; Perry and Lee, 2019; Leitwein et al.,
2020). However, incorporating genetic data into conservation
policy and management remains a challenge, and enhanced
collaboration between conservation geneticists and wildlife
managers is needed (Funk et al., 2012; Hendricks et al., 2018;
Gardner et al., 2020; Holderegger et al., 2020; Taft et al., 2020).

Studies of population structure and dynamics emerged with
the theories of island biogeography and metapopulation
dynamics (MacArthur and Wilson, 1967; Levins, 1969;
Hanski, 1998), and have evolved since then into characterizing
connectivity of species among habitat patches in heterogeneous
environments under different spatial and temporal scales
(Waples and Gaggiotti, 2006; Compton et al., 2007; Manel et al.,
2019). In marine environments, there is still limited information
about how geographic barriers and spatial scales impact on
population genetic structure (Riginos et al., 2016). Population
structure and the dispersal of marine species may be associated
with a range of factors such as spatial distance, oceanographic
features (e.g., currents, upwellings, environmental gradients)
and ecological traits (e.g., feeding ecology and life history),
making it difficult to disentangle these factors (Selkoe et al.,
2016; Bernatchez et al., 2018), and establishing policies for
conservation and management.

The movement of marine species with active dispersal, such
as delphinids, can occur at any life stage. Despite this, dolphins
can exhibit population genetic structure at relatively small
spatial scales (e.g., Hoelzel, 1998; Natoli et al., 2006; Möller
et al., 2007; Quérouil et al., 2007) and are often subdivided
into local populations (e.g., Natoli et al., 2005; Hoelzel et al.,
2007; Mendez et al., 2008; Möller, 2011; Caballero et al., 2012;
Nykanen et al., 2018; Parra et al., 2018; Pratt et al., 2018).
When these populations are interconnected, but exhibit specific
ecological and/or behavioral traits in a geographic area, a
complex metapopulation system may arise (Riginos et al., 2016;
Selkoe et al., 2016; Perry and Lee, 2019).

At large scales, the dispersal and population structure of
dolphins is influenced by oceanographic or environmental
variables such as depth, currents, upwellings, salinity gradients,
sea surface temperatures, and primary productivity (Fullard et al.,
2000; Natoli et al., 2005; Quérouil et al., 2007; Mirimin et al.,
2009; Möller et al., 2011; Amaral et al., 2012a; Bilgmann et al.,
2014; Fruet et al., 2014; Gaspari et al., 2015a; Pratt et al., 2018).
At smaller scales, localized site fidelity, complex social behavior,

and feeding specializations may result in adaptations to local
environments, which leads to further population subdivision
(Hoelzel et al., 2007; Möller et al., 2007; Ansmann et al., 2012;
Fruet et al., 2014; Cammen et al., 2016; Foote et al., 2016; Zanardo
et al., 2017; Pratt et al., 2018).

Common dolphins (Delphinus delphis) have a high dispersal
potential and inhabit coastal and pelagic environments in
temperate and subtropical waters of both southern and northern
hemispheres (Natoli et al., 2008; Whitehead et al., 2008; Möller,
2011). In Australasia, common dolphin distribution ranges from
embayment and gulf waters, to coastal and shelf waters of
Australia and New Zealand (Möller et al., 2011; Bilgmann et al.,
2014; Stockin et al., 2014; Mason et al., 2016; Zanardo et al.,
2016; Dwyer et al., 2020; Peters and Stockin, 2021). At its most
extreme, common dolphins in some semi-enclosed, relatively
shallow embayments, show moderate to high site fidelity, such as
in Port Phillip Bay (Victoria, Australia), Gulf St Vincent (South
Australia) (Filby et al., 2010; Mason et al., 2016), and in the
Hauraki Gulf (New Zealand) (Stockin et al., 2008; Hupman, 2016;
Hupman et al., 2018; Pawley et al., 2018).

Differences in prey abundance, distribution and diversity can
lead to feeding specializations in common dolphins (Neumann
and Orams, 2003), which may shape their population structure
at fine and medium spatial scales (Möller et al., 2007, 2011;
Tezanos-Pinto et al., 2009). Movements of common dolphins are
known to generally associated with the movement of their prey,
which includes schooling fish such as jack mackerel (Trachurus
declivis, T. symmetricus. Murphyi, and T. novaezelandiae),
blue mackerel (Scomber australasicus), sardines (Sardinops
sagax), southern calamari (Sepioteuthis australis), and anchovies
(Engraulis australis) (e.g., Meynier et al., 2008; Goldsworthy
et al., 2019a). In turn, most of these prey species are heavily
targeted by fisheries, both for human consumption and to
feed fish held in aquaculture farms, making common dolphins
particularly susceptible to interactions with fisheries and to
incidental mortalities (Kemper et al., 2003; Bilgmann et al., 2008;
Stockin et al., 2009b).

Indeed, common dolphins in Australasia suffer mortalities as
by-catch in multiple fisheries (Hamer et al., 2008; Thompson
et al., 2013; Abraham et al., 2017; Tulloch et al., 2020). In
Australia, common dolphins are incidentally by-caught in purse-
seine, trawl, and gillnet fisheries (e.g., Hamer et al., 2008; AFMA,
2019b), with ∼380 mortalities recorded in purse-seine nets in
2004-2005 (Hamer et al., 2008), and more than 100 mortalities
during 2011-2019 in gillnets (AFMA, 2019a, 2020). In New
Zealand, common dolphins are mainly threatened by trawl and
surface long-line fisheries (Abraham et al., 2017; Pierre, 2019),
with at least 200 captures occurring from 2002 to 2017 in the
trawl fishery (MPI, 2019). While mitigation of common dolphin
by-catch in these countries has led to a general reduction in
mortalities over time (Rowe, 2007; Ward and Grammer, 2018;
Goldsworthy et al., 2019b), by-catch incidents have continued
and occasionally spike in numbers (Abraham et al., 2017;
Goldsworthy et al., 2019b). Notably, the cumulative impacts
of dolphin-fishery interactions are currently unknown (Mackay
et al., 2016), and by-catch is still managed separately by each
fishery and based on fishing management zones, not based on
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dolphins’ stock structure. These issues are exacerbated by limited
information about dolphin abundance in Australasia, and how
many dolphins can be caught without compromising the long-
term viability of the populations. These estimates of potential
biological removal (PBR), have been estimated based on aerial
surveys and fisheries surveys. For South Australia, an aerial
assessment done over 40,000 km2 led to an estimation of 21,733
common dolphins (CV = 0.25; 95% CI = 13,809–34,203) (Parra
et al., in review), while in New Zealand an estimation for the
Northern Island was of 18,145 common dolphins (CV = 0.33,
95% CI= 9,669–33,726) (Abraham et al., 2017).

In Australasia, common dolphins are known from previous
studies to exhibit a degree of population genetic structure
(Bilgmann et al., 2007b, 2014; Möller et al., 2011; Amaral et al.,
2012a; Zanardo et al., 2016). These studies utilized traditional
genetic markers such as mitochondrial DNA (mtDNA)
and microsatellites and have identified population genetic
differentiation at broad spatial scales (>1,500 km) between
common dolphins of the Pacific and Indian Oceans (Amaral
et al., 2012a; Bilgmann et al., 2014), as well as over finer spatial
scales (<1,000 km; in southern (Bilgmann et al., 2014) and
eastern Australia (Möller et al., 2011), and New Zealand (Stockin
et al., 2014). However, studies based on a few molecular markers
may not be accurate for determining spatial population structure
(e.g., Teske et al., 2018; Rajora, 2019). The use of thousands
of genome-wide markers circumvents this issue by providing
powerful data to clarify spatially complex population structure
(Frankham et al., 2010; Funk et al., 2012; Cammen et al., 2016;
Teske et al., 2018; Manel et al., 2019).

Here, we assess the population genomic structure of common
dolphins using a multi-scale approach across its distribution
in Australasia. Our primary aims are to elucidate patterns
of genomic diversity, population structure, and connectivity
using a novel and powerful genome-wide dataset for common
dolphins based on single nucleotide polymorphisms (SNPs). We
complement this population genomic assessment with analyses
of novel and previously published mtDNA sequences. Our
study combines broad and fine-scale approaches to resolve
structure and connectivity and provides detailed information
to enhance the conservation management of common dolphins
in Australasia.

METHODS

Study Area and Sampling
The study area encompasses two major oceanic regions, the
southern Indian Ocean (Australia’s southern coast) and the
south-western Pacific Ocean (Australia’s eastern coast, Tasmania
and New Zealand). Skin samples were collected from live
animals (i.e., biopsied) and carcasses (i.e., stranded and by-caught
animals) over 17 years (2000-2017) at 16 localities across the
species range in Australia and New Zealand (Figure 1). Samples
from live individuals were obtained using a hand held biopsy pole
(Bilgmann et al., 2007a) or a remote biopsy system (PAXARMS)
(Krutzen et al., 2002). A total of 510 samples were analyzed
for population genomics, including 310 biopsy samples and 200

stranding and by-catch samples, with the GPS location allocated
to where an individual was found/caught (Figure 1).

DNA Extraction and Sex Determination
Genomic DNA was extracted from samples using a modified
salting out protocol (Sunnucks and Hales, 1996). Extraction
quality was then assessed using a NanoDrop-2000 (Thermo
scientific) spectrophotometer, quantity estimated by a Qubit 2.0
fluorometer (Life Technologies), and integrity evaluated with
agarose gels. If degradation was observed, DNA fragments >5
Kbp were selected using AMPure XP magnetic beads (Beckman
Coulter Genomics), using a ratio of 0.8:1 (beads: DNA). The sex
was genetically determined by the amplification of fragments of
the ZFX and ZFY genes for all DNA samples, following Banks
et al. (1995).

Mitochondrial DNA Control Region (mtDNA
CR) Sequencing and Data Analysis
A fragment of the mtDNA CR of ∼450 base pairs was amplified
by the polymerase chain reaction (PCR) with primers DLP1.5
and DLP5, as modified by Möller and Beheregaray (2001),
and sequenced in an Applied Biosystems 3730XL Sequencer.
MtDNA CR sequences were then trimmed and aligned using
Geneious v.6.0.4 (Kearse et al., 2012). ARLEQUIN v3.5.2.2
(Excoffier and Lischer, 2010) was used to estimate nucleotide
and haplotype diversities overall and for each locality. To assess
genetic differentiation between localities, pairwise 8ST (Weir
and Cockerham, 1984) was estimated with significance assessed
using 10,000 permutations False Discovery Rate (FDR = 10%)
and corrected for multiple tests by the B-Y method (Benjamini
and Yekutieli, 2001). Heatmap plots of pairwise 8ST values were
then constructed in the language R (R Development Core Team,
2018), with the package ggplot2 (Wickham, 2016). A haplotype
network was built in PopART 1.7, using the ancestral parsimony
and 95% cut-off (Clement et al., 2002). The latter was carried
out to assess evolutionary relationships of the inferred maternal
lineages (i.e., mtDNA CR haplotypes). Together with estimates
of nucleotide diversity, this provides an indication of long-
term evolutionary divergence (or similarity) of common dolphin
lineages. A total of 197 samples were sequenced and retained for
analysis after filtering out poor quality peaks, and trimming to
440 base pairs to match the sequence fragments of Möller et al.
(2011) (N = 63), Stockin et al. (2014) (N = 24), and Bilgmann
et al. (2014) (N = 110). Altogether a total of 394 individual
sequences were available for analyses based on mtDNA CR.

Genomic Library Preparation and ddRAD
Sequencing
Double digest restriction-site associated DNA (ddRAD)
libraries were prepared following Peterson et al. (2012), with
modifications. Each sample was digested with two restriction
enzymes SbfI andMseI, and then ligated with one of 96 individual
barcodes designed in-house. Samples were then pooled into
a multiplex of 12 individuals. Libraries were size selected for
250–800 bp fragments with a Pippin prep electrophoresis gel
(Sage Science). The samples were amplified by PCR, and after
this removal of PCR byproducts was done using AMPure XP
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FIGURE 1 | Study area in the Australasian region showing the geolocations for 478 common dolphin (Delphinus delphis) samples used for the genome-wide

analyses. Blue lines correspond to main current systems in Australasia. WSC, *West, Southern coast of Australia; GBSC, Great Australian Bight, Southern coast of

Australia; SGSC, shelf waters in Spencer Gulf, Southern coast of Australia; GSVSC, Gulf St Vincent, Southern coast of Australia; ESC, East, Southern coast of

Australia; WPSC, Wilson Promontory, Southern coast of Australia; NECA, North, Eastern coast of Australia; CECA, Central, Eastern coast of Australia; SECA, South,

Eastern coast of Australia; CS, Cook Strait, New Zealand; WNI, West North Island, New Zealand; NENI, North East Island, New Zealand; ENI, East, North Island, New

Zealand; CI, Chatman Island, New Zealand; ESI, East, South Island, New Zealand.

magnetic beads (ratio of 0.8:1). Real-time PCR was used to
determine the DNA concentration to accurately pool eight
libraries of 12 samples together in equal concentrations, creating
one multiplex library of 96 uniquely barcoded samples sent
for sequencing. The multiplex libraries were then single-end,
100 bp sequenced using multiple lanes in an Illumina HiSeq
2500 at the South Australian Health & Medical Research
Institute (SAHMRI).

Sequences and SNP Filtering
Sequence quality checks were performed on the raw reads,
followed by demultiplexing, trimming of barcodes and RAD tags
(only one error allowed) and sorting into individual samples
using process_radtags with STACKS v1.48 (Catchen et al., 2013).
Next, filtered sequences were processed to generate a final SNP
dataset using the dDocent2.2.19 pipeline (Puritz et al., 2014). The
resulted variant calling file (VCF), with sequence variation across
all samples (raw SNP catalog), was then filtered using VCFtools

(Danecek et al., 2011) (for details see Supplementary Material).
To further assess the quality of the SNP dataset and to exclude
exogenous sequences, the quality-filtered reads were mapped
against two genomes from closely related dolphin species:
the Tursiops truncatus genome (Tur_tru_Illumina_phased_v1,
GenBank Assembly ID: GCA_003435595.3) and the southern
Australian bottlenose dolphin (SABD),Tursiops aduncus genome
(Batley et al., unpublished). This was done using Bowtie2,
following suggested standard procedures from Langmead and
Salzberg (2012), allowing no mismatches in seed alignment
and up to 20 consecutive seed fails. A linkage disequilibrium
(LD) filter was implemented to obtain a dataset with the
most likely number of independent markers (for details see
Supplementary Material).

Detecting Neutral SNPs
SNPs putatively under selection were identified and removed
from the dataset so that population structure analyses were based
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on markers conforming to neutral expectations (Luikart et al.,
2003). This was done using an outlier test in BayeScan v2.1
(Foll and Gaggiotti, 2008) run with 100,000 iterations and prior
odds of 10,000. Loci with a false discovery rate <10% were
considered as not behaving as neutral and removed from the
population analyses.

Relatedness Estimates for Excluding
Potential Duplicate Samples
Relatedness between pairs of individuals was estimated using
the triadic likelihood estimator (TrioML) in Coancestry v1.0.1.9
(Wang, 2011) to exclude potential re-sampled individuals (set at
r > 0.7) from the population analyses. This method estimates
pairwise relatedness (r) by using a third individual as a control,
thus decreasing the chance of genes identical in state being
mistakenly inferred as identical by descent (Wang, 2007).

Genomic Data Analyses
Genomic Diversity, Population Structure, and

Genomic Differentiation
Genomic diversity was estimated for each locality sample as
expected heterozygosity (HE), observed heterozygosity (HO),
the inbreeding coefficient (FIS), and percentage of polymorphic
loci (P) using Genodive 2.0b27 (Meirmans and Van Tienderen,
2004). Population genetic structure was assessed using a Principal
Component Analysis (PCA) and Discriminant Analysis of
Principal Components (DAPC) with the R package Adegenet
(Jombart and Ahmed, 2011) using an annealing simulation of
50,000 steps, and an optimal number of PCs to be retained,
as suggested in Adegenet (Jombart and Collins, 2015). Both
PCA and DAPC are model-free approaches for investigating
population structure. The Bayesian information criterion (BIC)
and Akaike information criterion (AIC) were then used to
determine the best-supported number of clusters in the dataset,
using the snapclust.chooseK function in the R package Adegenet
(Beugin et al., 2018). Bayesian clustering was used to infer
population stratification based on estimated individual ancestries
using Admixture v1.3.0 (Alexander et al., 2009). This was done by
performing a maximum likelihood estimates, using the ancestry
portion and the population allele frequency to assign the most
likely number of K (e.g., populations) in the dataset, testing
for K1-16, and to model the probability of observed genotypes.
The maximum likelihood of K and the fast-sequential quadratic
algorithm were subsequently used as a cross validation with
10 replicates for each K value, using K1-8 (Alexander et al.,
2009; Alexander and Lange, 2011). Genetic differentiation among
localities was estimated as pairwise FST (Weir and Cockerham,
1984) using Genodive 2.0b27. Significance levels were assessed
using 10,000 permutations (FDR = 10%), and then corrected
by the B-Y method. Heatmap plots of FST were constructed
with the R package ggplot2. A Mantel test (Mantel, 1967) was
used to test for isolation by distance (IBD) using the shortest
waterway distance matrix calculated in ArcMap v10.4 (Esri Inc.,
Redlands, CA) and a linearized pairwise FST matrix (FST /1- FST)
as genetic distance. Scatterplots were then generated with the R
package Adegenet.

Contemporary Migration Rates and First-Generation

Migrants
Contemporary migration rates were estimated with BayesAss
v3.0.4 (Wilson and Rannala, 2003) using the putatively neutral,
unlinked SNPs. The method applies a Bayesian Markov chain
Monte Carlo approach to estimate asymmetrical rates of
recent migration (m), which represents the proportion of each
population having migrant ancestry over the last generations.
Common dolphins exhibit a long generation time ∼15 years,
with interbirth intervals from 1 to 3 years (Taylor et al., 2007;
Möller, 2011). The analysis was run with 10 million iterations
and 1 million iterations as burn-in, and mixing parameters (allele
frequencies, inbreeding coefficients, and migration rates) were
adjusted to achieve recommended acceptance rates (Wilson and
Rannala, 2003). Convergence was then inspected by plotting the
cumulative log likelihoods of the iterations using TRACER 1.7
(Rambaut et al., 2018), with three runs used to verify consistency
across runs.

First generation migrants were identified by performing a
population assignment test in GeneClass2 (Piry et al., 2004),
using the criteria of Rannala and Mountain (1997). This uses
the multilocus genotypes and 1,000 simulations to provide a
probability of an individual belonging to a population (Paetkau
et al., 2004). An exclusion rate of 0.01 was applied. Only 800
SNPs were used due to the limitations of the software which only
allowed successful runs to this maximum number of SNPs. The
SNP subset was chosen using a random generator in R studio, and
extracted from the full dataset of filtered putatively neutral SNPs.

RESULTS

Diversity and Differentiation Based on
mtDNA CR
In the 440 bp of the mtDNA CR sequences of 394 Australasian
common dolphins, three indels and 94 substitutions were
observed. This resulted in 173 unique mtDNA haplotypes, 66 of
which were not previously described for common dolphins in
this region (Möller et al., 2011; Bilgmann et al., 2014; Stockin
et al., 2014). Most haplotypes were represented by only one
individual in the dataset. The overall haplotype diversity was
high (h = 0.860), while the nucleotide diversity was low (π
= 0.0160) (Supplementary Table 4). The haplotype diversity
observed was similar to that previously reported for the eastern
and southern Australia and for New Zealand (e.g., Möller et al.,
2011; Bilgmann et al., 2014; Stockin et al., 2014). Fixation indices
based on mtDNA CR indicated low to moderate differentiation
between samples from the Pacific and the Indian Ocean (0.029–
0.620) (Supplementary Figure 2, Supplementary Table 7). The
haplotype network indicated very shallow phylogeographic
structure (Supplementary Figure 3).

Genome-Wide SNP Data and Filtering for
Putatively Neutral Loci
A total of 1,601,109,786 raw sequence reads were obtained, and
a raw SNP catalog of 339,932 SNPs (Supplementary Table 1).
The alignment rates with the Tursiops genomes were very high,
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TABLE 1 | Measures of genomic diversity based on 14,799 SNPs for Australasian common dolphins (Delphinus delphis) by locality*.

Population Locality N Ho HE FIS P%

SC WSC 33 0.169 0.172 0.015 73.295

GBSC 22 0.170 0.176 0.032 74.816

SGSC 32 0.172 0.172 0.000 81.053

GSVSC 28 0.154 0.160 0.037 59.862

ESC 79 0.170 0.176 0.033 91.155

WPSC 20 0.175 0.181 0.033 71.005

EC NECA 14 0.189 0.189 −0.001 58.862

CECA 31 0.209 0.209 −0.003 80.587

SECA 20 0.201 0.209 0.037 67.126

NZTAS TAS 37 0.209 0.209 0.002 93.614

CS 26 0.207 0.208 0.004 82.215

WNI 41 0.204 0.206 0.013 87.209

NENI 87 0.194 0.200 0.031 85.134

ENI 6 0.179 0.190 0.061 52.760

CI 1 NA NA NA NA

ESI 1 NA NA NA NA

Total average 29.875 0.186 0.190 0.021 75.621

Total SD 0.018 0.017 0.019 12.523

HO, observed heterozygosity; HE , expected heterozygosity; FIS, inbreeding coefficient; P%, percentage of polymorphic loci; NA, not applicable (due to only one sample available). SC,
*Southern coast of Australia; EC, Eastern coast of Australia; TAS, Tasmania; NZ, New Zealand. WSC, West, Southern coast of Australia; GBSC, Great Australian Bight, Southern coast

of Australia; SGSC, shelf waters in Spencer Gulf, Southern coast of Australia; GSVSC, Gulf St Vincent, Southern coast of Australia; ESC, East, Southern coast of Australia; WPSC,

Wilson Promontory, Southern coast of Australia; NECA, North, Eastern coast of Australia; CECA, Central, Eastern coast of Australia; SECA, South, Eastern coast of Australia; CS, Cook

Strait, New Zealand; WNI, West North Island, New Zealand; NENI, North East Island, New Zealand; ENI, East, North Island, New Zealand; CI, Chatman Island, New Zealand; ESI, East,

South Island, New Zealand.

attesting to the high quality of the SNP dataset: 97% aligned with
the T. truncatus genome and 99% with the SABD T. aduncus
genome (retaining 26,199 SNPs, Supplementary Table 1).
Filtering with stringent criteria resulted in a high-resolution
dataset of 17,875 SNPs (Supplementary Table 1). The outlier
test detected 3,076 SNPs likely not behaving as neutral,
and these were excluded from the total dataset. This final
dataset included 14,799 unlinked, putatively neutral SNPs
(Supplementary Table 1, Supplementary Figure 1) that were
used for the population structure analyses and to estimate
migration rates.

Exclusion of Duplicate Samples
Thirty-two sample pairs were estimated as likely originating from
duplicate individuals (r ≥ 0.7), including 24 pairs of biopsies and
eight pairs of stranding or by-caught individuals. One sample
from each of the pairs was excluded, resulting in a final dataset
of 478 individuals (Figure 1).

Genomic Diversity, Population Structure,
and Genomic Differentiation
Genome-wide diversity was relatively high for all localities
(Table 1) and there was no indication of population-level
inbreeding (Table 1). When analyzing all samples combined,
PCA and DAPC analyses suggested three distinct regional
populations: (1) southern coast of Australia; (2) eastern coast
of Australia; and (3) New Zealand and Tasmania, although the
latter shows a degree of admixture to Australia’s eastern coast

(Supplementary Figures 5, 6). Admixture analysis suggested
a hierarchical metapopulation structure in Australasia, with
moderate levels of admixture within the regional populations
(Figure 2, Supplementary Figure 7). At a metapopulation level,
three clusters (K = 3), corresponding to geographical regional
populations, were considered most likely (Figure 2). The
membership probability of an individual belonging to a
population varied according to the geographic position of the
locality, with individuals from localities close to the interface
between the Indian and Pacific Oceans (i.e., Wilsons Promontory
in Victoria and southern localities in New South Wales,
Australia), and between Tasmania and Australia’s eastern coast
being more admixed (Supplementary Figure 7A).

Further subdivision was disclosed within each regional
population, when analyzing the three datasets separately,
with two additional clusters (K = 2) within each region
(Figure 2, Supplementary Figures 7B–D) best supported, but
three and four clusters also highly supported for eastern and
southern Australia (Figure 2, Supplementary Figures 7B–D),
respectively. In the southern coast of Australia, the strongest
separation was disclosed between individuals from Gulf St
Vincent and the other localities, followed byWilsons Promontory
compare to the west coast individuals. In the case of Australia’s
eastern coast, the northern localities were most distinct from the
central-south localities, with a greater proportion of admixed
individuals in the central localities, possibly representing
a further sub-population. For New Zealand and Tasmania,
differentiation was disclosed mainly between localities in the east
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FIGURE 2 | Population genomic structure analysis using Admixture based on 14,799 SNPs for Australasian common dolphins (Delphinus delphis) (labeled by

locality*). The results depict levels of admixture for each individual sample and grouping into two and/or three genomic clusters. Each sample (labeled by geographic

sample groups in the x axis) is represented by one vertical line and is color-coded by the membership probability to (A) one of the three regional populations in

Australia and New Zealand or (B–D) one of the potential local populations of the: (B) Southern coast of Australia; (C) Eastern coast of Australia; or (D) New Zealand

and Tasmania. *Acronyms used as in Figure 1.

coast and west coast of New Zealand, with Tasmanian individuals
considerable admixed. However, most of the Tasmanian common
dolphins showed higher probability of assignment to the New
Zealand population (∼57%) based on Admixture’s Q-values
(>0.8), and DAPC results (Supplementary Figures 6, 7), and
were therefore considered primarily part of the New Zealand
regional population.

Fixation indices indicated moderate genetic differentiation
between the southern coast of Australia (SCA), eastern
coast of Australia (ECA), and the New Zealand/Tasmania
(NZT) regional populations (SCA vs. ECA = 0.060–0.213;

SCA vs. NZT = 0.045–0.142; ECA vs. NZT = 0.018–
0.142) (Figure 3A, Supplementary Table 6). In contrast, low
genetic differentiation was observed between common dolphin
subpopulations (Figures 3B–D). In the southern coast of
Australia, the highest differences of FST were between Gulf St
Vincent, Wilsons Promontory, and west southern coast vs. the
other localities; whereas for the eastern coast of Australia, the
northern localities showed the highest differentiation compared
to the southern localities, followed by the central localities vs.
the northern and southern localities. For New Zealand/Tasmania,
the differentiation occurred between West coast of New
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FIGURE 3 | Heatmap of pairwise FST values between localities* based on 14,799 SNPs for Australasian common dolphins (Delphinus delphis); (A) Australia and New

Zealand; (B) Southern coast of Australia; (C) Eastern coast of Australia; and (D) New Zealand and Tasmania. *Acronyms used as in Figure 1.

Zealand/Tasmania vs. the localities from the east coast of New
Zealand (Figure 3, Supplementary Figure 8).

A significant signal of IBD was observed at the
metapopulation level (r2 = 0.084, p = 0.003) (Figure 4A),
and for the populations from the southern and eastern Australia
(r2 = 0.346, p = 0.001; r2 = 0.742, p = 0.03, respectively). In
contrast, there was no evidence of IBD in the New Zealand
and Tasmania regional population (r2 = 0.005, p = 0.615)
(Figures 4B–D).

Contemporary Migration Rates and
First-Generation Migrants
Estimates of contemporary migration rates based on BayesAss,
that provide inferred rates of the portion of recent immigration
over the last generations, indicated asymmetric migration
between population pairs (Supplementary Table 2, Figure 5).
There was relatively low estimates of migration (2–9%)
between pairs of the three main regional populations, and
moderate estimates of migration (6–25%) between pairs of
the two subpopulations (Figure 5). First-generation migrants
were detected in GeneClass between the three main regional
populations, with 14 individuals rejected (p < 0.01) from the
population they were sampled in Supplementary Table 3. These

individuals were retained in all the population analyses to
provide a representative picture of the metapopulation dynamics
(Supplementary Table 3).

DISCUSSION

The delineation of populations and their respective geographic
boundaries, as well as estimation of the degree of connectivity
between populations are crucial for the conservation
management of small cetaceans (Rosel et al., 2017; Taylor
et al., 2017; Dunn et al., 2019; Pierre, 2019; Sousa et al., 2019; Taft
et al., 2020). Integrating genomic technology for answering these
questions can inform about the dolphin populations and scale
at which anthropogenic activities may impact upon them (e.g.,
Leslie and Morin, 2016). Genomic analyses also provide baseline
information for design of further studies and the monitoring
of populations; for example, the area at which to estimate
population abundance and trends, data on parameters for
modeling population persistence, and for estimating sustainable
by-catch rates (Waples and Gaggiotti, 2006; Allendorf et al.,
2010; Frankham et al., 2010; Grummer et al., 2019; Manel et al.,
2019).
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FIGURE 4 | Isolation by distance between FST values and the shortest waterway distance based on 14,799 SNPs for Australasian common dolphins (Delphinus

delphis). (A) Australia and New Zealand metapopulation; and regional populations, (B) Southern coast of Australia, (C) Eastern coast of Australia, and (D) New

Zealand and Tasmania.

This study revealed a hierarchical metapopulation structure
for Australasian common dolphins, with high levels of genome-
wide diversity and negligible inbreeding among them. At a
broad scale, the southern Indian Ocean was represented by
a single regional population inhabiting the southern coast
of Australia. The south-west Pacific Ocean was represented
by two regional populations, one along the eastern coast of
Australia and the other in New Zealand/Tasmania, which

suggests substantial connectivity across the Tasman Sea. Further
subdivision was disclosed at finer scales, with evidence for at least
two subpopulations within each regional population, but perhaps
more. The varying levels of population connectivity identified
across inter-state and international jurisdictions, have substantial
implications for the conservation and management of common
dolphins, which are subject to interactions and mortalities in
multiple fisheries in the region.
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FIGURE 5 | Circos plot of inferred contemporary migration rates (per last generations) between local populations of Australasian common dolphins (Delphinus delphis)

based on 14,799 SNPs. Plot corresponds to the migration directionally (full values from BayesAss are provided in Supplementary Table 2). Width of the curves

indicates the amount of migration according to the scale going from one subpopulation into another one. Scale bar is in units of the proportion of migrations. Ticks

represent the gross number of migrants per 100s. Migration rate < 0.01 is not shown. SCA, *Southern coast of Australia; ECA, Eastern coast of Australia; NZ, New

Zealand.

Population Structure of Australasian
Common Dolphins
Studies investigating genetic partitioning at fine spatial scales
in the sea usually provide evidence for distinct subpopulations,
whereas metapopulations are generally disclosed when broader
spatial scales are explored (Pitt and Kingsford, 2000; Dawson
et al., 2014; Calò et al., 2016; Almany et al., 2017; Jasper et al.,
2019). Nonetheless, sampling effort often makes it difficult to
assess marine systems over broad scales, and as a consequence
metapopulations may remain largely undisclosed (Manel et al.,
2019).We assessed the population structure of common dolphins
over a broad geographical area and revealed a hierarchical
metapopulation structure across Australasia. Metapopulations
have also been described for other dolphin species, such as
spinner dolphins (Stenella longirostris) among Pacific Islands
(Oremus et al., 2007), Hector’s dolphins (Cephalorhynchus hectori
hectori) between the west and east coasts of New Zealand
(Heimeier et al., 2018), bottlenose dolphins (Tursiops truncatus)
in the North Atlantic Ocean and Mediterranean Sea (Louis et al.,
2014; Gaspari et al., 2015b), and Indo-Pacific bottlenose dolphins

(Tursiops cf. australis) in southern Australia (Pratt et al., 2018).
Although our sampling took place over 17 years, we believe there
was little impact on the population genetic structure disclosed
given than common dolphins exhibit a long generation time (∼15
years; Taylor et al., 2007). In addition, we found similar patterns
of genomic diversity for sites sampled in multiple years, and
similar levels of genomic differentiation between sites sampled
in same and different years (data not shown).

At a broad scale, Australasian common dolphins showed
moderate genomic differentiation at the level of the two
ocean basins investigated, the Indian and Pacific Oceans. The
mtDNA dataset provided enough resolution to distinguish
historical population structure between the two oceans basins,
as previously demonstrated in other genetic studies of common
dolphins (e.g. Amaral et al., 2012a,b), bottlenose dolphins
(Tursiops spp.) (e.g., Tezanos-Pinto et al., 2009; Charlton-Robb
et al., 2011), and killer whales (Orcinus orca) (e.g., Reeves
et al., in review). This regional distinction was also clear
based on analyses of the SNP dataset. In Australia, we found
pronounced genomic divergence between common dolphins of
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the southern coast, the eastern coast, and Tasmania. This split was
evident along the Wilsons Promontory, which was once a land-
bridge (the Bassian Isthmus, ∼14,000 ybp), which connected
mainland Australia with Tasmania (Waters, 2008; Condie et al.,
2011). The Wilsons Promontory region has been described as
a prominent biogeographic boundary for many marine species
(e.g., invertebrates, algae, small pelagic fish), accounting for
many of the genetic discontinuities observed today along these
coastlines (York et al., 2008; Teske et al., 2015, 2017; Costello
et al., 2017).

An oceanographic perspective can also assist the
interpretation of the pattern of regional genomic differentiation
inferred in this study. The East Australian current (EAC) flows
from the western boundary current into a southward direction,
bringing warm and productive waters along the coast. The
EAC is dominated by anticyclonic eddies, that creates three
different water masses, and gradients of oceanographic variables
along the coast, represented by northern, central and southern
areas (Suthers et al., 2011). It then becomes weaker as it enters
Tasmania and diverges eastward into New Zealand via the
Tasman Front, where upwelling occurs mainly on the west
coast (York et al., 2008; Flynn et al., 2018). These may impact
on common dolphin movements along the eastern Australian
region, leading to the pattern of local differentiation (Möller
et al., 2011) and Tasman Sea regional separation.

The warm Leeuwin current runs south from western Australia
into the southern coast of Australia. It then becomes the Great
Australian Bight current, and later the Zeehan current, which
extends from western Victoria into western Tasmanian waters,
excluding the Bass Strait where currents in shallow waters tend
to follow an eastward direction (York et al., 2008; Kämpf,
2015). Likewise, these currents may impact on common dolphin
movements along the southern Australian region, leading to the
proposed differentiation at finer-scales. The Zeehan current is
weaker, and during the summer it is replaced by the cold Flinders
current that enters from the west coast of Tasmania into the
southern coast of Australia, bringing productive waters toward
the continental shelf and leading to upwelling events (York et al.,
2008; Lynch et al., 2014; Kämpf, 2015; Flynn et al., 2018). These
complex oceanographic features cause variations in primary and
secondary productivities along the two Australian coasts and in
Tasmania, and may act as contemporary barriers that maintain
historical divisions between marine organisms (Waters, 2008;
Condie et al., 2011; Teske et al., 2017). While common dolphins
have a high dispersal capability, their distributions are known
to associate closely with that of their prey movements (e.g.,
Bilgmann et al., 2008; Meynier et al., 2008; Natoli et al., 2008;
Zanardo et al., 2016; Peters et al., 2020), which may coincide
with areas of high primary productivity along the two Australian
coasts, as well as in New Zealand and Tasmania.

Previous population genetic studies of common dolphins
based on microsatellite DNA markers suggested five
subpopulations along the southern coast of Australia, including
Tasmania (Bilgmann et al., 2014), three in the eastern coast of
Australia (Möller et al., 2011), and three in New Zealand (Stockin
et al., 2014), with the last two studies not including samples
from Tasmania. At finer spatial scales, the genetic differences

disclosed in our study suggested further subdivision within the
identified Australasian regional populations. Two additional
sub-populations were disclosed for New Zealand/Tasmania,
two to four in southern Australia, and two to three in eastern
Australia. These could potentially be explained by geological
and oceanographic features (as mentioned above) reflecting on
the contemporary population and feeding ecology of common
dolphins. In the Australasian region, common dolphins are
mainly found along continental shelf waters between the 20 and
200m isobaths (Stockin et al., 2008, 2014; Möller et al., 2011;
Meissner et al., 2015; Bilgmann et al., 2018; Peters and Stockin,
2021). By contrast, in the Gulf St Vincent, common dolphins are
present in relatively shallow, protected waters (∼20m) of the
inner gulf (Supplementary Figure 4), with seasonal circulation
year-round and may represent a resident population (Filby
et al., 2010; Kämpf and Bell, 2014). The geological formation
during the Cenozoic, established the Gulf St Vincent and Spencer
Gulf as inverse estuaries (Bourman et al., 2016). These unique
formations provide highly productive ecosystems, offering
shelter for common dolphin prey species, such as sardines (S.
sagax) and anchovies (E. australis) (Filby et al., 2010; Kämpf
and Bell, 2014). These characteristics may have impacted on site
fidelity of dolphins to this area and over time leading to genetic
differentiation of Gulf St Vincent animals to those outside
the gulf.

In the case of the eastern Australia, the northern localities
are oceanographically and biologically differentiated due to the
presence of a distinct water mass (Keane and Neira, 2008;
Suthers et al., 2011). This could affect the distribution of
common dolphins if they feed upon particular fish assemblages
(Möller et al., 2011), and in turn lead to restricted movement
and genetic differentiation between subpopulations. Common
dolphins along the continental shelf of southern and eastern
Australia presented a strong signal of IBD, a finding consistent
with other common dolphin studies carried out across different
ocean basins (Amaral et al., 2012a; Bilgmann et al., 2014). With
the use of genomic markers, the pattern of IBD was also disclosed
in this study at smaller spatial scales.

In the New Zealand and Tasmania regional population,
genetic subdivision was found between the west and east
coasts of New Zealand. This pattern between west and
east coast subdivision has also been reported for Hector’s
dolphins that inhabit the southern island of New Zealand
(Heimeier et al., 2018). Common dolphins from the west
coast of New Zealand and Tasmania appear to comprise a
subpopulation exhibiting moderate gene flow to dolphins on
New Zealand’s east coast and, to a lesser extent, with populations
in Australia’s eastern coast. The latter could also be due to
historical factors. After the last glacial cycle (12,000–120,000
ybp) (Ashe and Wilson, 2019), subpopulation differentiation
of dolphins across the Tasman Sea could have occurred due
to habitat preferences and changes in prey availability. In
New Zealand, differences in major currents, such as the east
and the west Auckland current in the North Island, and
the D’Urville current in the Cook Strait (Ayers and Waters,
2005; Ross et al., 2009; Chiswell et al., 2015), may influence
fish distribution (Papa et al., 2020), and could have also
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led to restrictions on dolphin movement, and subsequent
genetic differentiation.

Contemporary Migration Within and
Between Ocean Basins
In an idealized population, individuals that are closer to each
other, are genetically more similar than individuals that are
further apart (Hanski, 1998). This may lead to a pattern of
IBD, which was a common finding of the study across both
broad and fine spatial scales. Migration of individuals between
populations can also be shaped by intrinsic and extrinsic
factors, promoting genetic discontinuities across heterogeneous
environments (Armansin et al., 2019; Grummer et al., 2019;
Rajora, 2019). For example, individuals may be unable or unlikely
to disperse across physical or environmental barriers, and
thus gene flow between populations may become compromised
(Armansin et al., 2019). The estimated migration rates were
relatively small between ocean basins (i.e., Pacific and Indian
Oceans) and the regional populations (i.e., Southern Australia,
Eastern Australia, and New Zealand/Tasmania, as described
above) (<6%), separated by strong oceanographic discontinuities
(i.e., unique biogeographic region in the Bassian Isthmus
(Waters et al., 2010; Teske et al., 2017) (Figure 5). By contrast,
estimated migration rates between subpopulations within ocean
basins and between more homogeneous environments were
higher (<18%). The migration rates and the number of first-
generation migrants identified support the idea that genetic
connectivity mainly occurs between subpopulations nested
within regional populations. This suggests that if an extinction
event was to occur, by either natural or anthropogenic causes,
a subpopulation’s home range will more likely be recolonized
by individuals from within that region (e.g., Sandoval-Castillo
et al., 2018; Riginos et al., 2019; Waters et al., 2020). However,
if such events are strong enough to prevent gene flow and
change the availability of prey resources, the subpopulation
could decline without replacement. These types of events
have been recorded for common dolphin populations from
the Mediterranean Sea, which suffered dramatic declines due
to combined impacts from by-catch mortalities, reduction
of prey availability, and habitat degradation (Genov et al.,
2020).

It appears that, in addition to spatial distance, heterogeneous
marine environments found across the distribution of
Australasian common dolphins have led to low and moderate
connectivity between and within regional populations,
respectively. In southern Australia, gene flow is restricted
from continental shelf waters to Gulf St Vincent (∼5%). This
protected environment allows common dolphin prey species
to be locally available throughout the year (Filby et al., 2013;
Ward et al., 2017; Goldsworthy et al., 2019a). The year-round
availability of food resources could influence the feeding
behavior of the common dolphins, maximizing their energy
efficiency due to a lesser need for long-range movements, and
perhaps increase reproductive success and lifetime fitness.
All of these could lead to high site fidelity and residency
by common dolphins to Gulf St Vincent, which while rare

for the species, has been suggested for other semi-enclosed
embayments in Australia, such as Port Philip Bay (Mason
et al., 2016), and the Hauraki Gulf in New Zealand (Stockin
et al., 2008, 2009a; Hupman, 2016; Peters et al., 2020). These
characteristics, which may have led to genetic divergence of the
Gulf St Vincent dolphins, also make them particularly at risk
of decline due to interactions with fisheries in Gulf St Vincent
and Investigator Strait (Hamer et al., 2008; Goldsworthy et al.,
2019b).

In eastern Australia, stronger differentiation of common
dolphins from the northern and southern localities translated
in the lowest estimated migration rates (∼3%) between any two
subpopulations in Australasia. In this area, the EAC creates
eddies, which act as barriers for eggs and larval fish (Condie
et al., 2011; Suthers et al., 2011). Thus, given the close association
of common dolphins’ distribution to that of their prey, these
circulation patterns and differences in water masses could
potentially act as oceanographic barriers for dolphin movements
and gene flow (Möller et al., 2011).

Within the New Zealand and Tasmania population, moderate
migration rates were estimated between the two subpopulations
(∼18%). Migration here was strongly asymmetric, occurring
mostly from the east into the west coast of New Zealand. Along
the east coast of New Zealand there are several habitats (e.g.,
Hauraki Gulf), which have been proposed as breeding and
calving areas for groups of common dolphins (Stockin et al.,
2008; Dwyer et al., 2020). In this regional population, New
Zealand’s east coast appears to be acting as a genetic source, while
the west coast, which presents higher rates of dolphin mortality
due to fisheries (Thompson et al., 2013; Abraham et al., 2017),
may be acting as a sink, similar to source-sink dynamics observed
in other marine species (e.g., Benestan et al., 2016; DiBattista
et al., 2017; Lal et al., 2017; Manel et al., 2019). Interestingly,
Tasmania in Australia and the west coast of New Zealand
displayed high connectivity over more than 1,000 km across
the Tasman Sea, and genetic signatures show that individuals
from western New Zealand are also found in Tasmanian
waters. However, to the best of our knowledge, movements of
common dolphins over long distances (∼1,000 km) have only
been document across the Mediterranean Sea through photo-ID
(Genov et al., 2012). Similar patterns of connectivity across the
Tasman Sea have been disclosed for other marine species, such
as teleosts and invertebrates (e.g., Hippocampus abdominalis,
Hoplosthethus atlanticus, Nerita melanogastrus) (Cumming et al.,
2016; Flynn et al., 2018; Ashe and Wilson, 2019; Gardner
et.al. unpublished). Historically, dispersal of marine species
across the Tasman Sea seems to have occurred during the last
glacial cycle (12,000–120,00 ybp), leading to the colonization
of multiple areas by marine species in both countries (Ashe
and Wilson, 2019). However, contemporary genetic connectivity
seems to have been retained by oceanographic currents (Flynn
et al., 2018). Further sampling and assessment of common
dolphins from Tasmania may clarify whether this represents a
contact area, and if they should be considered as a separate
or combined unit for management with New Zealand. The
latter would involve cross jurisdictional cooperation between
policy makers.
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Implications for Conservation and
Management of Australasian Common
Dolphins
Common dolphins in Australasia are mainly threatened due
to by-catch in commercial fisheries (Abraham et al., 2017;
Tulloch et al., 2020), and potentially by anthropogenic-associated
competition for food resources. In Australia, incidental by-catch
has occurred mainly in trawl fisheries and purse-seine fisheries
that catch mackerel (T. declivis, T.s. murphyi, T. novaezelandiae,
and S. australasicus) and sardines (S. sagax), as well as in gillnet
fisheries targeting gummy sharks (Mustelus sp.) (Australian
Goverment, 2019b). In New Zealand the observed incidental
by-catch of common dolphins occurs mainly in mid-water
trawl fisheries that catch the same mackerel species (Thompson
et al., 2013; Abraham et al., 2017). However, by-catch within
recreational set nets has also been documented as a threat to
these dolphins (Stockin et al., 2009b). These incidental catches
are known to have resulted inmortalities of hundreds of common
dolphins in at least two of these fisheries (Abraham et al.,
2017; Goldsworthy et al., 2019b). High mortalities were disclosed
in 2004-2005 in the South Australian Sardine Fishery (SASF)
(Hamer et al., 2008), likely exceeding the potential biological
removal of individuals for one of the population’s segment (Parra
et al., in review). For New Zealand, an increase of common
dolphin mortalities was reported between 2002 and 2003 in the
trawl fishery (Thompson et al., 2013; MPI, 2019). After these
periods, codes of practices were implemented in both fisheries,
leading to a reduction in mortality rates (Hamer et al., 2008;
Goldsworthy et al., 2019b; Pierre, 2019). More recently the Small
Pelagic and Gillnet fisheries of Australia also implemented a
by-catch trigger limit of six dolphins per operator, leading to a
temporally exclusion of the vessel for 6 months from the fishing
management zone if that occurs (Mackay et al., 2016; AFMA,
2019a,b). A recent study in New Zealand also reported that
common dolphins are still one of the main marine mammal
species accidentally caught by commercial fisheries (Abraham
et al., 2017), although use of mitigation measures in the jack
mackerel trawl fisheries has reduced mortalities to negligible
levels in 2016-18 (Fisheries New Zealand, 2020). In Australia’s
SASF, an upsurge in mortalities has been recorded between 2018-
19, with discrepancy in the data recorded by fishermen and
independent observers (Goldsworthy et al., 2019b). These issues
suggest that information about common dolphin population
structure, connectivity and abundance are critical to evaluate
the risk of by-catch to particular dolphin populations, and to
establish strategies to mitigate the combined interactions and
mortalities within the multiple fisheries.

In the Australasian region, fisheries that threaten common
dolphins operate under different jurisdictions based on
geographic delimitation and stock delineation for each prey
targeted (Abraham and Thompson, 2015a,b,c; Patterson et al.,
2019). The delineation of fish stocks represents different
management zones (e.g., Supplementary Table 5) and often it
does not consider the population structure of the targeted fish
species (Papa et al., 2020). In addition, these management zones
are not only used to manage the targeted species, but also to

manage interactions and mortalities of by-caught species, such as
common dolphins (Abraham and Thompson, 2015a,b,c; Mackay
et al., 2016; AFMA, 2019a,b; Goldsworthy et al., 2019b; Patterson
et al., 2019). Our findings suggest that regional populations and
subpopulations of Australasian common dolphins are currently
allocated across and within different fishing management zones.
This suggests that the use of the management zones as presently
implemented (e.g., Supplementary Table 5) could differentially
impact populations of common dolphins.

Marine species that present connectivity over large
spatial scales, such as common dolphins, need planning
and implementation of conservation and management strategies
over broad spatial scales that can guarantee the long-term
persistence of populations (Rosel et al., 2017; Taylor et al., 2017;
Dunn et al., 2019; Grummer et al., 2019; Manel et al., 2019;
Sousa et al., 2019; Taft et al., 2020; Tulloch et al., 2020). Some
of the dolphin subpopulations identified here are potentially
at higher-risk of negative impacts from the fisheries. For
example, the Gulf St Vincent subpopulation, which is possibly
resident and relatively small (Filby et al., 2010), suffers by-catch
induced mortalities by the SASF (Goldsworthy et al., 2019b),
and these could potentially impact their long-term viability.
In the West coast of New Zealand-Tasmania subpopulation,
interactions with common dolphins and other top predators
occur mainly with the mid-water trawl fisheries (Kemper et al.,
2003; Thompson et al., 2013; Hamilton and Baker, 2019).
Both of these fisheries have implemented codes of practice
to reduce the number of entanglements and mortalities,
including not setting nets when a cetacean sighting occurs,
reporting cetacean interactions, modifying the fishery’s gear
(FAO, 1995; Rowe, 2007; Hamer et al., 2008; Goldsworthy
et al., 2019b), and/or implementing an annual assessment
with independent observers (Hamer et al., 2008; Goldsworthy
et al., 2019b). Nevertheless, the management zones used to
mitigate common dolphin interactions with these fisheries
(Supplementary Table 5) are not in concordance with the
population genomic structure of common dolphin disclosed
here (Figure 2).

In Australasia, small cetacean populations have been
generally managed in zones or units that do not reflect their
genetic structure (e.g., Möller et al., 2001, 2011; Krutzen
and Sherwin, 2004; Möller and Beheregaray, 2004; Bilgmann
et al., 2007b, 2008, 2014, 2018; Wiszniewski et al., 2009;
Amaral et al., 2012a; Stockin et al., 2014; Zanardo et al.,
2016, 2017; Pratt et al., 2018). These could potentially make
dolphin populations more vulnerable to decline due to
anthropogenic impacts, as exemplified for common dolphins
in the Mediterranean Sea (e.g., Natoli et al., 2008; Moura
et al., 2013; Genov et al., 2020). These challenges highlight
the need of using genetics and genomics markers as a tool
for delineating population and estimating connectivity for
biological meaningful management zones to be implemented
(Funk et al., 2012; Leslie and Morin, 2016; Rosel et al., 2017;
Taylor et al., 2017; Dunn et al., 2019). In particular, genetic and
genomic analyses provide an opportunity to identify populations
or subpopulations that require prioritization or additional
conservation policies.
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In this study, we found that Australasian common
dolphins present a complex hierarchical metapopulation,
with nested subpopulations within regional populations. The
estimated contemporary migration rates between most of these
subpopulations suggest that they are not entirely genetically
or demographically independent, and therefore common
dolphins in the Australasian region should be managed on
both meso-scale (regional population level) and fine-scale
(subpopulation level). Each population and subpopulation
are relevant to conserve for the maintenance of the complex
metapopulation system. Subpopulations with potentially high-
risk of anthropogenic impacts due to fisheries may act as sink
population as previously reported for other marine species
with sink-source dynamics (e.g., Benestan et al., 2016; Lal et al.,
2017; Manel et al., 2019; Rajora, 2019). However, the levels
of contemporary migration suggest that the subpopulations
identified cannot be managed entirely separately. Thus,
we suggest that assessment and management of by-catch
interactions and mortalities of common dolphins needs to be
considered across multiple fisheries, management zones, and
jurisdictions for adequate conservation management to occur.
For example, interactions and mortalities in the West coast of
New Zealand need to be perhaps considered in conjunction
with impacts on common dolphins in Tasmania, as they
(provisionally) appear to belong to the same subpopulation,
albeit with moderate connectivity to other southeastern
Australian localities. The equivalent level of management
should be applied within southern Australian states (southern
Western Australia, South Australia, Victoria) and within
eastern Australia states (New South Wales and southern
Queensland). Therefore, potential management zones for
mitigation and assessments of common dolphin by-catch in
Australasia need to be based on populations’ boundaries and
connectivity, and through collaboration between inter-state and
international jurisdictions.

Our findings integrating genetics and genomics markers
provide reliable estimates of population structure and
connectivity at broad and fine spatial scales for common
dolphins of Australasia. Future risk assessments of by-
catch and potential biological removal will require an
application of the population structure and connectivity
information presented here. Genomic analyses are also
essential in additional studies addressing adaptation in
marine ecosystems, in which selection can potentially further
clarify substructure within regional populations (e.g., Shafer
et al., 2015; Bernatchez et al., 2018; Hendricks et al., 2018;
Sandoval-Castillo et al., 2018; Xuereb et al., 2018; Rajora,
2019). This is a topical issue that needs to be considered in
future conservation policies of marine ecosystems given the
increase in anthropogenic impacts and ongoing changes of
Earth’s climate.
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