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This paper proposes a fuzzy number—based framework for quantifying and propagating

uncertainties through a model for the trajectories of objects drifting at the ocean

surface. Various sources of uncertainty that should be considered are discussed. This

model is used to explore the effect of parameterizing direct wind drag on the drifting

object based on its geometry, and using measured winds to parameterize shear and

rotational dynamics in the ocean surface currents along with wave-driven circulation

and near-surface wind shear. Parameterizations are formulated in a deterministic

manner that avoids the commonly required specification of empirical leeway coefficients.

Observations of ocean currents and winds at Ocean Station Papa in the northeast

Pacific are used to force the trajectory model in order to focus on uncertainties arising

from physical processes, rather than uncertainties introduced by the use of atmospheric

and hydrodynamic models. Computed trajectories are compared against observed

trajectories from five different types of surface drifters, and optimal combinations of

forcing parameterizations are identified for each type of drifter. The model performance

is assessed using a novel skill metric that combines traditional assessment of trajectory

accuracy with penalties for overestimation of uncertainty. Comparison to the more

commonly used leeway method shows similar performance, without requiring the

specification of empirical coefficients. When using optimal parameterizations, the model

is shown to correctly identify the area in which drifters are expected to be found for the

duration of a seven day simulation.

Keywords: ocean, surface, drift, uncertainty, fuzzy, shear, observations, station papa

1. INTRODUCTION

The ability to respond to emergencies such as marine contaminant spills and search and rescue
efforts is directly linked with the ability to predict the trajectories of objects drifting at the ocean
surface (Daniel et al., 2002; Breivik and Allen, 2008; Davidson et al., 2009; Butler, 2015). Better
predictions of trajectories also enhance our understanding of marine ecosystem functioning and
connectivity (Checkley et al., 1988; Gawarkiewicz et al., 2007; Röhrs et al., 2014; Stark et al., 2018).
Drift trajectories of floating objects are governed by currents and winds at the very surface of
the ocean. These remain persistently difficult to measure (Soloviev and Lukas, 2014), and the
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submesoscale variability of these fields can only be measured
directly during targeted campaigns of limited duration (Poje
et al., 2014; D’Asaro et al., 2018). Therefore, further treatment
is generally required to properly characterize uncertainty arising
from imprecise measurements of surface currents and winds.
In practice, currents and winds used to force drift trajectory
simulations are usually obtained from numerical circulation
models, which introduces further uncertainty into the problem
as these models are by necessity a simplification of reality. For
the purposes of this paper, we consider only observational data
and the relevant processes giving rise to uncertainty in this data.
Model data and associated uncertainties will be considered in
future work, since the uncertainties in observations used to verify
the model data must first be established in order to accurately
estimate the uncertainties in modeled data.

Uncertainty in drift trajectory models is usually treated by
applying a series of random kicks to modeled particles (Zelenke
et al., 2012; De Dominicis et al., 2013; Cho et al., 2014),
ensemble modeling based on the uncertainty in empirically
derived forcing parameterizations (Breivik and Allen, 2008;
Breivik et al., 2011; Dagestad et al., 2018), or by defining an
empirically determined dispersion coefficient (Okubo, 1971).
This approach has a long history of relative success. However,
the specification of the magnitude of random kicks or dispersion
coefficients is generally not obvious, and the assumption that the
underlying forcing data is free of systematic uncertainties and
biases remains. Usually a large number of perturbed trajectories
are computed. Other workers have also computed ensemble
predictions from a variety of numerical models (Rixen et al.,
2008; Vandenbulcke et al., 2009) or systematic variations of
forcing data to capture variability on seasonal time scales (Fine
and Masson, 2015).

The present study takes a different approach, by expressing
the forcing data for a drift trajectory model as fuzzy numbers.
Fuzzy numbers are used to describe imprecise data. They are
described by their membership function, which gives the range
of possible values of the true data at varying degrees of belief, or
membership levels (Zadeh, 1965, 1978). Robust frameworks for
propagating the uncertainty described by fuzzy numbers through
mathematical models have been developed (Kaufman and Gupta,
1985; Hanss, 2002). The formulation of fuzzy numbers does
not require assumptions about the underlying character of
the uncertainty, they simplify aggregation of uncertainty from
various sources, and they can be constructed from sparse data
sets. In environmental sciences and engineering, fuzzy numbers
have been applied to a variety of problems involving imprecise
knowledge of parameters, such as: description of water masses
(Fengqi et al., 1989); tracking of storm systems (Mercer et al.,
2002); remote sensing of ocean surface properties (Moore et al.,
2009); modeling of water quality in rivers (Khan et al., 2013);
and assessing the frequency of landslide occurrence following
rain events (Park et al., 2017). Interval analysis, which can be
considered a simplification of fuzzy number arithmetic, has been
applied to drift trajectory prediction by Ni et al. (2010), who
considered a leeway model for drift (Breivik and Allen, 2008)
in the absence of waves, and tested this model using idealized
uniform current and wind forcing.

The leeway model is commonly used to model drift using
current and wind data as forcing. Here the motion of a drifting
object is described as the superposition of the current and a
fraction of the wind speed (often ∼ 3%) directed at an angle to
the wind (to the right in the northern hemisphere). Encapsulated
in this parameterization are the effects of current shear and
rotational dynamics in the upper ocean above the level at which
currents are measured, direct wind drag on exposed parts of
the drifting object, wave-induced circulation, and wind shear
below the level at which winds are measured. The origins of
this method date back to Nansen (1902) and Ekman (1905),
however it remains an active field of research (Dagestad et al.,
2018; Sutherland et al., 2020).

Object geometry has a significant effect on wind response.
The work reviewed in Allen and Plourde (1999) showed that
empirically fitted leeway parameters (rate and angle) of a variety
of drifting search and rescue targets is strongly dependent on the
target geometry. Wind response may change quite significantly
even for relatively small changes in geometry (Röhrs and
Christensen, 2015; Sutherland et al., 2020). Deterministically
describing the wind response for a given object geometry
remains an active research question, and empirically determined
coefficients are more frequently used (Allen and Plourde, 1999;
Breivik et al., 2011). A framework for deterministic description
of the wind response has been developed based on the force
balance on the drifting object (Daniel et al., 2002; Röhrs et al.,
2012), and in this paper the wind drag coefficients of five different
types of drifting buoys are derived using this framework. These
coefficients are used in our trajectory model in conjunction
with parameterizations for wave-induced circulation and near-
surface wind and current shear, rather than using empirical
leeway parameters.

A similar effort is described by Röhrs et al. (2012), who used
ship-based wind measurements, near-surface (0.5 m) current
measurements from a 1MHzADCP, and directional wave spectra
in a Norwegian fjord to describe the observations from surface
drifters. They found that wave-induced Stokes drift was of first
order importance to the trajectory prediction along with winds
and currents. Wind effects were parameterized by fitting a drag
coefficient to optimize the trajectory description. In a similar
vein, Tamtare et al. (2019) considered surface current shear
extrapolated from an ocean model of the Gulf of St. Lawrence,
coarsely resolved in the vertical direction, to test the effect of
adding this shear into a trajectory model. They report noticeably
improved predictions.

Here we expand on these efforts by developing a drift
trajectory model with uncertainty propagation based on fuzzy
numbers, forced with currents and winds measured at Ocean
Station Papa (hereafter OSP) in the northeast Pacific. The
resulting predictions are verified against observations from
five different types of ocean surface drifters launched nearby.
Uncertainty in the model is considered as both uncertainty in
the forcing data, which is propagated using fuzzy numbers,
and uncertainty about the relevant combinations of forcing
parameters. To address the latter, we compute an ensemble
of drift trajectory predictions using all possible combinations
of forcing terms and identify the combination resulting in
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the optimal predictions for each drifter type. Results from
the proposed method are compared to analogous results
derived using the leeway method with empirical coefficients
corresponding most closely to the object under consideration.

To begin, we describe the trajectory model and the derivation
of relevant forcing terms in section 2. Fuzzy numbers are
introduced next, and we describe how they are used to propagate
uncertainty through this trajectory model in section 3. Next, the
observational forcing data used to test and validate the model
is described in section 4, followed by the presentation of results
on model performance and the optimal combination of forcing
terms in section 5, followed by discussion and conclusions.

2. DRIFT TRAJECTORY MODEL

The trajectory of an object drifting at the ocean surface is
determined by the balance of forces acting on it. For a drifting
object of massm, this is written as,

m
d2Ex
dt2

= EFa + EFo + EFC + EFw (1)

Ex is the position of the object, EFa is wind drag on the airside parts
of the drifters, EFo is current drag on waterside parts of the drifter,
EFC is a Coriolis term, and EFw is the force due to wave scattering.
The force due to wave scattering is negligible since the drifters
horizontal dimensions are generally much less than 20% of the
wavelength of incident waves (Daniel et al., 2002; Breivik and
Allen, 2008; Röhrs et al., 2012). The acceleration of a drifting
object to its quasi-steady velocity is generally quick, ∼20 s for a
life raft in strong winds (Breivik and Allen, 2008), and therefore

we consider d2Ex
dt2

to be negligible, since it is unlikely to be relevant
at the model timestep (300 s for our study).

The contribution of the Coriolis force, which results in a
deflection of the drift trajectory to the right of the wind (in
the northern hemisphere), is contained in the current and wind
forcing and is therefore accounted for in the terms EFo and EFa. The
explicit Coriolis term in Equation (1), EFC, refers to the change in
this force caused by the difference between the mass of an ocean
surface drifter and a water parcel of equivalent volume. For a
small object such as an ocean surface drifter this term is small
compared to EFo and EFa and is therefore considered negligible.

The balance of forces therefore reduces to the balance of
airside wind drag and waterside current drag on the drifter.
Following Röhrs et al. (2012), with the classical equation for drag
force by Morison et al. (1950), this is written as,

1

2
ρaAaCa

(

Euw|z=zdrifter −
dEx
dt

)∣
∣
∣
∣
Euw|z=zdrifter −

dEx
dt

∣
∣
∣
∣
=

1

2
ρwAwCw

(
dEx
dt

− (Euc|z=zdrifter + Eustokes)
)

∣
∣
∣
∣

dEx
dt

− (Euc|z=zdrifter + Eustokes)
∣
∣
∣
∣

(2)

Here Euw|z=zdrifter is the wind velocity at the ocean surface,
Euc|z=zdrifter is the current velocity at the depth relevant to the

drifting object (zdrifter), and
dEx
dt

is the drift speed. The density of
air and water are taken as ρa = 1.225 kg/m3 and ρw = 1,025
kg/m3, respectively. The airside and waterside cross-sectional
areas of the drifter are Aa and Aw, and the corresponding drag
coefficients are Ca and Cw, respectively. Their product can be
determined from the vertical profiles of effective width, w(z), and
approximate drag coefficient, C(z), of the drifting object.

AaCa =
∫ Zmax

0 w(z)C(z)dz
∫ Zmax

0 w(z)dz
(3a)

AwCw =
∫ 0
Zmin

w(z)C(z)dz
∫ 0
Zmin

w(z)dz
(3b)

The maximum draft of the object below the water surface and
its maximum height above the surface are given by Zmin and
Zmax, respectively.

Assuming that wind speeds are much larger than drift speeds
reduces Equation (2) to a well-known linear vector equation for
dEx
dt

(Daniel et al., 2002; Röhrs et al., 2012).

dEx
dt

= Euc|z=zdrifter + Eustokes +
√

ρaAaCa

ρwAwCw
Euw|z=zdrifter (4)

For notational simplicity we will write the scaling factor on
Euw|z=zdrifter as

α =
√

ρaAaCa

ρwAwCw
(5)

The assumptions implicit in Equation (4) are that Euc|z=zdrifter is
known at the effective depth of the drifter, and Euw|z=zdrifter is
known at the water surface. This however is generally not the
case, as both are measured some distance from the water surface
on conventional observation platforms. Therefore some shear in
the winds and currents due to boundary layer effects between
the measurement level and the effective height (depth) of the
drifter is not represented in measurements. Accounting for near-
surface current shear has been shown to significantly improve
drift predictions based on numerical ocean models (Tamtare
et al., 2019). We test whether this holds for drift predictions
made using observations of currents at depth zc and winds
at height zw from OSP, by adding estimates of near-surface
current, 1Euc|

z=zdrifter
z=zc , and wind shear 1Euw|z=zw

z=zdrifter to Equation
(4). Therefore, the current at the effective depth of the drifter is
Euc|z=zdrifter = Euc +1Euc|

z=zdrifter
z=zc , and the wind at the water surface

is Euw|z=zdrifter = Euw + 1Euw|z=zw
z=zdrifter . Euc and Euw are the measured

currents and winds, respectively. This yields the following model
for drift trajectories,

dEx
dt

= Euc + 1Euc|
z=zdrifter
z=zc + Eustokes + α(Euw + 1Euw|z=zw

z=zdrifter
) (6)

From Euw and observed water and air temperatures, we estimate
Eustokes, 1Euc|

z=zdrifter
z=zc , and 1Euw|z=zw

z=zdrifter . The processes used to
estimate these quantities are discussed in the following sections.
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Both Stokes drift, Eustokes, and current shear, 1Euc|
z=zdrifter
z=zc ,

exhibit vertical gradients with strong surface intensification.
Stokes drift decays rapidly within a few meters of the surface
(Clarke and Van Gorder, 2018). Since the shapes of drifters below
the water surface are often irregular, we investigate whether the
method by which these velocity profiles are integrated has a
noticeable effect on trajectory predictions. We compare results
derived with Stokes drift and current shear taken either as the
value at the geometric centroid of the drifter, or as an area-
weighted average of the vertical velocity or drag force profile. For
a velocity profile Eu(z), these can be expressed as,

Eucentroid = Eu(z)|
z=zcentroid=

∫ 0
zmin

zw(z)dz
∫ 0
zmin

w(z)dz

(7a)

Euvelocity =
∫ 0
zmin

w(z)Eu(z)dz
∫ 0
zmin

w(z)dz
(7b)

Euforce =

√
√
√
√

∫ 0
zmin

w(z)C(z)Eu(z)|Eu(z)|dz
∫ 0
zmin

w(z)C(z)dz
(7c)

Here all symbols are as previously defined.
In order to address the systemic uncertainty in drift

trajectory prediction that arises from the uncertainty around
the importance of forcing terms in Equation (6) and methods
for applying sheared forcing, we test the sensitivity of the
predicted drift trajectory to the inclusion of the forcing terms
in Equation (6) and the choice of the three possible methods
of applying sheared forcing from Equation (7). This is done by
first calculating trajectories for each drifter type using all possible
combinations of forcing terms and sheared forcing methods,
starting with the simplest case of predicting a trajectory using
only a single forcing term, either Euc, Euw, or Eustokes. Additional
terms are added in subsequent predictions. All predictions are
then scored against observations from the type of drifter being
modeled at each time step of the prediction, and the combination
of terms resulting in the highest skill is reported. A term that is in
the solution with the highest skill at the majority of the time steps
is considered to be part of the optimal combination of parameters
for this drifter.

2.1. Stokes Drift
We estimate Stokes drift (Stokes, 1847) from one-dimensional
frequency spectra of sea surface height, which we in turn estimate
using the a parametric spectrum for fully developed seas by
Pierson and Moskowitz (1964). Stokes drift is assumed to be
in the wind direction. Using the classical expression for Stokes
drift in non-monochromatic seas given by Kenyon (1969) yields
the following expression for the vertical profile of Stokes drift,
Us(z), in the deep-water limit of the dispersion relation (i.e.,
ω2 = gk where ω is angular frequency, k is wavenumber, and
g is acceleration due to gravity),

Us(z) = 2αPg

∫ ∞

0
ω−2e

[
2ω2z
g −β1

(
ωp
ω

)4]

dω (8)

Here αP is the Phillips constant, set to 0.0081 following
Holthuijsen (2010), and β1 = 0.74 is a constant. The peak

circular frequency can be approximated as ωp = g/U19.5, where
U19.5 is the wind speed at a height of 19.5 m (the same height as
the measurements used by Pierson and Moskowitz, 1964). The
vertical Stokes drift profile for a given U19.5 can be derived by
integrating (Equation 8) at discrete depths, z. This profile is the
converted to a singular value, Eustokes for use in Equation (6) using
the methods in Equation (7).

We limit the discussion in this paper to parameterized
one-dimensional wave spectra of fully developed wind seas.
Recent work by Clarke and Van Gorder (2018), including
results from OSP, suggests that Stokes drift is well approximated
by parameterized one-dimensional spectra and that the
contribution of remotely generated swell is small compared
to higher frequency wind seas. This is because Stokes drift
for a monochromatic wave is proportional to the cube of the
waves frequency, implying exponential increases in Stokes drift
with increasing wave frequency (note that Equation 8 gives
the sum of all frequency bands in the spectrum). Further, the
approach adopted here is applicable wherever wind information
is available and the deep-water limit of the dispersion relation
applies. Fetch-limited locations may be considered using the
parametric spectrum proposed by Hasselmann et al. (1973).

It has been well established that the contribution of the Stokes
drift to the Coriolis force, i.e., the Coriolis-Stokes force (c.f.
Polton et al., 2005), influences near surface currents. However,
Coriolis-Stokes forcing is not considered here, since this is an
active field of research with evolving understanding of processes
and uncertainties, and a detailed contribution to this subject is
beyond the scope of the current work. Interested readersmay find
more information in recent papers and reviews, such as Weber
et al. (2015), Clarke and Van Gorder (2018), and van den Bremer
and Breivik (2018).

2.2. Current Shear
Wind forcing results in significantly sheared upper ocean
currents directed to the right of the wind (in the northern
hemisphere), as was first shown by Ekman (1905). Near-surface
shear is further enhanced in the shallow wave-affected layer in
the few meters immediately below the ocean surface (Craig and
Banner, 1994). The resulting difference between the current at the
effective depth of the drifter and the depth at which currents are
measured is given as 1Euc|

z=zdrifter
z=zc in Equation (6).

The wind-driven current shear in the upper ocean can
be modeled by numerically solving the unsteady momentum
balance between rotation and vertical diffusion of momentum
with surface wind forcing using the level 2.5 turbulence closure
scheme of Mellor and Yamada (1982), as described in Craig and
Banner (1994).

δu

δt
− δ

δz

(

A
δu

δz

)

= fv (9a)

δv

δt
− δ

δz

(

A
δv

δz

)

= −fu (9b)

δb

δt
− δ

δz

(

lqSq
δb

δz

)

= lqSM

((
δu

δz

)2

+
(

δv

δz

)2)

− 2qb

Bl
(9c)
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The first two equations describe the balance of momentum in
the u and v directions, and the latter describes the balance of
turbulent kinetic energy (TKE). The two relate via the eddy
viscosity A = lqSM , which requires the prescription of the
turbulent length scale l. q =

√
b is the turbulent velocity scale,

or square root of TKE. SM is a constant in unstratified water,
which use here and assume that the well-mixed condition holds
in the upper ocean mixed layer. This is supported by profiles of
temperature and salinity observed around the time of the drifter
deployments, which show well-mixed water down to 80–90 m
depth (Supplementary Figure 1).

Apart from twominor adjustments, which are described in the
next paragraphs, we retain the formulation of Craig and Banner
(1994) and do not reproduce details here. Readers interested in a
detailed description are referred to the original paper.

We force the system by converting measured winds to friction

velocities, u∗, defined as Eu∗ =
√

Cd
EU2
10

(
ρa
ρw

)

. Cd is the drag

coefficient, interpolated from tables given by Smith (1988) and
all other variables are as defined previously. The densities of
air/water (ρa/ρw) are taken as 1.225 kg/m3 and 1,025 kg/m3,
respectively. For simplicity we take Eu to be in the downwind
direction and Ev in the crosswind direction, and rotate the derived
velocities back to geographical coordinates once time-stepping
is complete.

Using this friction velocity we solve the equations over a
depth of 200 m, discretized into 0.5 m bins. This implies
the assumption that direct wind-driven currents and TKE are
negligible below 100 m.

Once the wind-driven upper ocean current Eu(z) = [u(z), v(z)]
has been modeled, we compute the wind-driven current at the
effective depth of the drifter, Eu(z = zdrifter) by the methods in

Equation (7) and then derive1Euc|
z=zdrifter
z=zc for use in Equation (6).

1Euc|
z=zdrifter
z=zc = Eu(z = zdrifter)− Euc (10)

2.3. Wind Shear
Vertical shear in the wind field between the measurement height
(4 m) and the level of the exposed parts of the drifter, taken
here as 1 m, can be estimated from atmospheric boundary layer
relationships. Smith (1988) gives a review of the necessary theory
and tabulates conversion factors for wind speed from 1, 2, 5, and
20 m to the standard 10 m reference height, for varying degrees
of atmospheric stability. Atmospheric stability is represented as
the difference between virtual sea surface temperature and virtual
potential air temperature at the measurement height, which we
obtain from measurements of both air and water temperature.
We then use the conversion factors, CUX_Y , interpolated from
tables in Smith (1988) to convert winds at the measurement
height, first to the 10 m reference height, and then to 1 m.
Single subscripts denote the vertical level in meters, and double
subscripts X_Y denote conversion from level X to level Y .
The conversion to derive 1Euw|z=zw

z=zdrifter for use in Equation (6)

proceeds as follows,

EU10 = (
3

4
CU5_10 +

1

4
CU1_10) EU4 (11a)

EU1 =
EU10

CU1_10
(11b)

1Euw|z=zw
z=zdrifter

= EU1 − Euw (11c)

In the following section we present a method for propagating
uncertainty in currents and winds measured at OSP through
the trajectory model described here, including the derivation
of the parameterized forcing terms Eustokes, 1Euc|

z=zdrifter
z=zc , and

1Euw|z=zw
z=zdrifter . The method is based on fuzzy numbers, and we

begin by giving a brief overview of the relevant theory.

3. UNCERTAINTY PROPAGATION

3.1. Overview of Relevant Fuzzy Number
Theory
Fuzzy numbers are used to describe imprecise quantities. At
their core, they describe the possible range of values a quantity
might take as a function of ones degree of belief in that range of
values. This is known as the membership function. Membership
functions are usually derived through quantitative analysis of the
process being considered, coupled with expert knowledge of this
process. To illustrate the concept of a membership function, an
informal hypothetical example of such a derivation is included in
the Supplementary Information.

In general, fuzzy numbers are a special case of fuzzy sets
(Zadeh, 1965, 1978). The membership function, which describes
the fuzzy number, is defined by a unique value that is certainly
possible, with a membership of one (the crisp value). From that
value the function decreases monotonically toward the lowest
and highest values thought to be possible, with a decreasing
degree of belief as values diverge from the crisp value. This
monotonic decrease implies the function is convex. The largest
range of values thought to be possible is the support of the fuzzy
number, with a membership of zero.

It is important to note that membership functions, and the
fuzzy numbers they represent, are not equivalent to probability
distributions. They instead describe the range of values one
believes a fuzzy number might take, without making claims
about the probability of occurrence of values in this range.
Fuzzy numbers are however weakly linked to probability theory
through the restriction that the possibility of any value must
always be greater than or equal to its probability. This is known
as the consistency principle (Zadeh, 1965).

Membership functions are generally given as a set of crisp
intervals defining a possible range of values at a given degree of
possibility, rather than defining a continuous function. We refer
to these intervals as membership levels, however they are also
known as α-cuts in the literature (Radecki, 1977). Hence a fuzzy
number P can be described as a set of membership levels A(j), i.e.,

P = {A(0),A(1), ...,A(m)} (12a)

A(j) = [a(j), b(j)] for j = 0, 1, ...,m, a(j) ≤ b(j) (12b)
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Here a(j) and b(j) are the lower and upper bounds of the
membership level j. The membership, or degree of belief, at each
level is given by j

m .
The simplest, and most common, type of membership

function is the triangular function, which is defined by a crisp
value and two points defining the support. However, other
types of membership functions exist, and some that are more
representative of the uncertainty beingmodeled have been shown
to improve results for geophysical applications (Khan et al.,
2013; Khan and Valeo, 2016). We do not consider triangular
membership functions for the purposes of this paper. Instead we
use a probability-possibility transform based on the consistency
principle to quantitatively derive membership functions for the
current and wind measured at OSP using Gaussian and Laplace
distributions. For this we must specify a crisp value, or mean
µK , and possible variability, or standard deviation σ , as well as
the number of membership levels, j = 0, 1, ...,m. The functions
describing a Gaussian (Laplace) distribution are given by f (x) =

1√
2πσ 2

e
− (x−µK )2

2σ2
(

f (x) = 1√
2σ
e−

√
2|x−µK |

σ

)

. With this information

the symmetric range of possible values around µK , denoted as
[µK − a,µK + a], can be derived for each membership level by
iteratively solving the following integral for a (Dubois et al., 2004;
Zhang, 2009).

∫ µK−a

−∞
f (x)dx+

∫ ∞

µK+a
f (x)dx = j

m
for j = 0, 1, ...,m (13)

The resulting membership functions are symmetric about µK

since the Gaussian and Laplace distributions are also symmetric;
this is not a general property of fuzzy numbers. The membership
levels are also not required to be evenly distributed, though
they often are for convenience. Specifying or modifying the
shape of a fuzzy number based on expert knowledge is possible,
where appropriate, as long as the membership function remains
convex. Examples of fuzzy numbers in various forms (triangular,
transformed from probability- distributions, and modified by
expert knowledge) are shown in Figure 1.

Fuzzy numbers can be used to propagate uncertainty through
a mathematical model by applying well established rules for
performing arithmetic operations on them. Traditionally this
has been done by applying interval arithmetic to individual
membership levels (Kaufman and Gupta, 1985). However, this
method has the drawback that uncertainty is overestimated in
systems where a fuzzy-valued term appears more than once in the
system’s equations. This is because all possible values of the fuzzy
term are considered for each instance of the fuzzy term, which
results in “double-counting” (Hanss, 2005).

For systems where a fuzzy-valued term appears multiple
times, arithmetic should be performed using the transformation
method described by Hanss (2002). This method is used
here, since parameterizations for wave-induced circulation, near
surface current shear, and wind shear all depend on the fuzzy-
valued wind velocity. In the transformation method, the fuzzy-
valued terms in the system of equations are discretized into
arrays describing all possible combinations of all possible values

FIGURE 1 | Examples of possible shapes of the membership function for a

fuzzy number describing possible values of an arbitrary parameter. Functions

for a triangular (dash-dotted), transformed Gaussian (solid), transformed

Laplace (dashed), and expert knowledge-informed (dotted) fuzzy number are

shown. The transformed membership functions are derived using a crisp value

µK = 0.4, and standard deviation σ = 0.2. All functions have a support width

of 3σ .

of these terms. The system can then be solved using element-
wise operations on these arrays. We give a brief description of
the general transformation method here. Interested readers may
refer to Hanss (2002) and Hanss (2005) for a thorough summary.

Consider a system of equations with n independent fuzzy
variables Pi, i = 1, ..., n. Each Pi consists of m + 1 membership

levelsX
(j)
i . Eachmembership levelX

(j)
i is described by the interval

[a
(j)
i , b

(j)
i ], which is then discretized into an array X̂

(j)
i according to

the following equations.

Pi = {X(0)
i ,X(1)

i , ...,X(m)
i } (14a)

X
(j)
i = [a

(j)
i , b

(j)
i ], a

(j)
i ≤ b

(j)
i (14b)

X̂
(j)
i =

(m+ 1− j)i−1 tuples of length (m+ 1− j)
︷ ︸︸ ︷

(γ
(j)
1,i , γ

(j)
2,i , ..., γ

(j)
(m+1−j),i, ..., γ

(j)
1,i , γ

(j)
2,i , ..., γ

(j)
(m+1−j),i)

(14c)

γ
(j)
l,i =

(m+ 1− j)n−i elements
︷ ︸︸ ︷

(c
(j)
l,i , ..., c

(j)
l,i ) (14d)

c
(j)
l,i =















a
(j)
i for l = 1 and j = 0, 1, ...,m
1
2

(

c
(j+1)
l−1,i + c

(j+1)
l,i

)

for l = 2, 3, ...,m− j and

j = 0, 1, ...,m− 2

b
(j)
i for l = m− j+ 1 and j = 0, 1, ...,m

(14e)

A graphical example of this discretization, adapted from Hanss
(2005), is given in Figure 2 for a hypothetical fuzzy number
described by four membership levels, i.e.,m = 3. The final result
of the transformation of all n fuzzy input variables Pi at one point

in time is a set of m + 1 arrays X̂
(j)
i for each Pi. To illustrate

explicitly, consider a system of equations with two fuzzy input
variables (i.e., n = 2), each similar to the example shown in
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FIGURE 2 | Illustration of the discretization of a fuzzy number into array form

using the transformation method. Adapted from Hanss (2005).

Figure 2. The final arrays describing the membership level j = 1
are constructed as follows.

X̂
(1)
1 = [c(1)0,1, c

(1)
0,1, c

(1)
0,1, c

(1)
1,1, c

(1)
1,1, c

(1)
1,1, c

(1)
2,1, c

(1)
2,1, c

(1)
2,1] (15a)

X̂
(1)
2 = [c(1)0,2, c

(1)
1,2, c

(1)
2,2, c

(1)
0,2, c

(1)
1,2, c

(1)
2,2, c

(1)
0,2, c

(1)
1,2, c

(1)
2,2] (15b)

Using these arrays the system of equations for the membership
level can be solved as it would be in a crisp manner, but using

element-wise arithmetic on the arrays X̂(1)
1 and X̂

(1)
2 .

The result of this element-wise arithmetic for each
membership level (X̂

(j)
result

) can then be re-transformed into
a fuzzy number by taking the minimum and maximum values

of each X̂
(j)
result

to be the bounds of the membership level j of the
fuzzy result, while ensuring that the fuzzy result remains convex.

Presult = {Z(0),Z(1), ...,Z(m)} (16a)

Z(j) = [a(j), b(j)], j = 0, 1, ...,m (16b)

a(j) = min(a(j+1),min(X̂
(j)
result

)) (16c)

b(j) = max(b(j+1),max(X̂
(j)
result

)) (16d)

To apply this method to the prediction of drift trajectories, we
begin by applying a probability-possibility transform to convert
time series of measured ocean currents and winds at OSP into
fuzzy numbers, using (Equation 13) as detailed in the following
section. Each value in the resulting fuzzy time series is then
transformed into arrays describing each membership level of the

currents and winds, X̂
(j)
Euc (t) and X̂

(j)
Euw (t), according to Equation

(14). The fuzzy-valued time series of drift speed, X̂
(j)
dEx
dt

(t) can then

be derived by substituting X̂
(j)
Euc (t) and X̂

(j)
Euw (t) into (Equation 6)

and re-transforming each value in X̂
(j)
dEx
dt

(t) into a fuzzy number

according to Equation (16).

X̂
(j)
dEx
dt

(t) = X̂
(j)
Euc (t)+ 1Euc|

z=zdrifter
z=zc

(

X̂
(j)
Euw (t)

)

+ Eustokes
(

X̂
(j)
Euw (t)

)

+α
(

X̂
(j)
Euw (t)+ 1Euw|z=zw

z=zdrifter

(

X̂
(j)
Euw (t)

))

(17)

As described above, Equation (17) is solved using element-wise

array arithmetic. The term 1Euc|
z=zdrifter
z=zc

(

X̂
(j)
Euw (t)

)

is derived by
applying the procedure described in section 2.2 to all elements

of X̂
(j)
Euw (t). Similarly, Eustokes

(

X̂
(j)
Euw (t)

)

and 1Euw|z=zw
z=zdrifter

(

X̂
(j)
Euw (t)

)

are
derived by element-wise solution of the procedures in sections 2.1
and 2.3, respectively. The procedure by which the resulting fuzzy-
valued drift velocities are integrated to give the set of all possible
displacements is described in section 3.3.

3.2. Fuzzification of Input Data
Fuzzy forms of observed currents and winds can be derived by
considering the energy at scales unresolved by the observations,
as well as the associated instrument uncertainties. To estimate the
energy at time scales that are not resolved in the current and wind
measurements, we fit a power law Af−B to the high-frequency
tail of the energy spectra of the currents and winds, defined as
P(f ) = 1

2 (Pu(f )+Pv(f )) where Pu/v(f ) are the component spectra
in the u/v directions. The unresolved energy between the Nyquist
frequency, fN = 1

2dtobs
, and the frequency corresponding to the

model timestep, fC = 1
2dtmodel

, can be estimated by log-linearly
extrapolating the fitted power law to fC, integrating from fN to
fC, and finding the associated velocity scale by converting the
resulting variance to amplitude, Av.

Av =
√
2σ 2 =

√
2

( ∫ fC

fN

Af−Bdf

) 1
2

(18)

In order to later derive the possible time series of drift velocity,
the amplitude of the maximum unresolved accelerations, Aa, can
be similarly derived by differentiating the extrapolated velocity
energy spectrum. Here,

Aa =
√
2

( ∫ fC

fN

Af−(B−2)df

) 1
2

(19)

Uncertainty due to spatial variability in the currents fields can
only be estimated from numerical model results, or similar
products, as observations of currents are only available in a single
location. This uncertainty is denoted by σs, and the derivation is
discussed in section 5.1 as it is case-specific.

To fuzzify the observed currents and winds we then assume
that the uncertainty is isotropic, and that the uncertainties in the
u and v directions are uncorrelated. The probability-possibility
transform (Equation 13) can then be applied to each component
separately, using the measured value as the crisp value. The
standard deviation of the probability density function to be
transformed is taken as the sum of Av, σs, and the instrument
uncertainty, σi. The approach taken here only requires the
assumption of one distribution to describe the total uncertainty

Frontiers in Marine Science | www.frontiersin.org 7 November 2021 | Volume 8 | Article 618094

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Blanken et al. Fuzzy-Based Framework for Drift Prediction

(discussed in section 5.1). A support width of b(0) − a(0) =
6(Av + σs + σi), centered on the crisp value was selected, and
the bounds of the intermediate membership levels were derived
from Equation (13). Once the input variables have been expressed
in fuzzy form they are used to solve for the fuzzy drift velocity
by Equation (17), which is then integrated to derive the possible
displacement of the drifting object.

3.3. Integration of Fuzzy Drift Velocities
The fuzzy set of all possible displacements can be derived
by integrating all possible time series of drift velocity within
a membership level that adhere to the maximum unresolved
acceleration Aa. For each membership level below the crisp
solution these time series can be found by first discretizing the
membership level at the initial time into a number of starting
points, nS. From each starting point, np possible values at the
next time step are determined based on themaximum unresolved
acceleration and the bounds of the membership level. For each
subsequent time step, np further possible values are determined
from each possible value at the current time step, until the last
time step is reached.

Letting the fuzzy drift velocity P dEx
dt

= Z for notational

simplicity, a possible value Z
(j)
k,t (i.e., within membership level

j, originating from starting point k, at time t) results in the
following possible values at the next time step.

Z
(j)
k,t+1(n) = Z

(j)
k,t + 1Z(m) + 1Z(j)(n), for n = 1, 2, ..., np (20a)

1Z(m) = Z
(m)
t+1 − Z

(m)
t+0(20b)

1Z(j)(n) = 6AaF
(j)(n)1t (20c)

F(j)(n) =
1
2 (np + 1)− n

1
2 (np − 1)

b
(j)
t+1 − a

(j)
t+1

b
(0)
t+1 − a

(0)
t+1

(20d)

a
(j)
t+1 ≤ Z

(j)
k,t+1 ≤ b

(j)
t+1 (20e)

Here 1t = dtmodel is the model time step, a
(j)
t and b

(j)
t are the

lower and upper bounds of membership level j at time t, and
Z(m) is the crisp time series of predicted drift velocities. All other
symbols are as previously defined. A schematic of the process
detailed in Equation (20) is shown in Supplementary Figure 2.

Integrating all unique crisp time series in the resulting set,
using the forward Euler method, gives the set of all possible

drifter displacements within this membership level P
(j)
Ex at time

T = N1t. This is written as follows

P
(j)
Ex =

N−1
∑

t=1

1

2

(

Z
(j)
m,t+1(n)+ Z

(j)
m,t

)

, for n = 1, 2, ..., np

, andm = 1, 2, ...nS (21)

In this case, use of the forward Euler method does not impact the
results negatively, due to the assumption that the forcing fields
are free of spatial variability. This will change when extending this
analysis to include data from numerical ocean and atmospheric
models and the associated spatial interpolation.

FIGURE 3 | Illustration of instantaneous fuzzy skill score for trajectory

evaluation. For clarity only a single membership level is shown.

3.4. Model Evaluation
3.4.1. Skill Score
Drift trajectory models are generally evaluated for their ability to
predict a drifting objects position at a snapshot in time (Molcard
et al., 2009), as well as their ability to predict the complete path
the object took to arrive at this position (Liu and Weisberg,
2011). The latter is a more difficult test, as it requires that the
timing, magnitude, and direction of forcing events are captured
correctly, whereas the former only requires that the cumulative
effect of forcing events up to the time the snapshot is taken is
correct. For the purposes of this paper we only evaluate themodel
performance at snapshots in time.

Our evaluation of model skill is based on the approach
outlined in Molcard et al. (2009) and also used in Nudds et al.
(2020). We adapt the approach for application to fuzzy results
as follows. Model skill is calculated as a weighted sum across
the membership levels, j = 0, 1, ...,m. Predictions with no skill
receive a score of zero, while a perfect prediction receives a score
of one.

Skill =
(

1+ β
)(

1−min
(

1, s
dobs

))

+ ∑m−1
j=0

(

fj
j
m + β

)

min
(

1,
dj
Xdj

)

∑m
j=0(

j
m + β)

(22)
The distances relevant to Equation (22) are illustrated in
Figure 3. The first term in the numerator is the crisp
instantaneous skill score, as in Nudds et al. (2020). The distance
between the observed and modeled drifter positions, s, is
normalized by the distance the observed drifter has traveled,
dobs, since a prediction within a fixed s should be considered
more skillful as dobs increases (Liu and Weisberg, 2011). This
instantaneous skill score becomes zero if s > dobs. β is a
positive constant (arbitrarily set to 0.1 here) to ensure some skill
is assigned to the predictions in the lowest membership level
(j = 0). The exact value of β is unimportant.

The second term in the numerator is added to assign skill for

each membership level P
(j)
Ex that contains the observed position.
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fj is set equal to −β m
j if the observed drifter is not within

membership level j, and equal to 1 otherwise. To ensure that
overestimation of uncertainty negatively impacts skill scores,
scores are reduced proportionally to the ratio of the distance
across the membership level, Xdj, and the mean displacement of
the predicted drifter positions within the membership level dj. A
time series of skill can be derived by solving Equation (22) for
each model time step.

3.4.2. Leeway Model Comparison
To contextualize the performance of the proposed drift
prediction scheme we compare our results to analogous
predictions made using the commonly used leeway method
(Breivik and Allen, 2008; Breivik et al., 2011, 2013). In this
method, the drift of an object is described as the sum of it’s
downwind, crosswind, and current-driven motion. The wind-
driven component of the motion is object-specific and described
using a set of nine coefficients, empirically determined for
each object (Allen and Plourde, 1999; Breivik et al., 2011),
which describe linear fits of the motion to the downwind,
left-crosswind, and right-crosswind components of the motion
along with error terms around these fitted values. Uncertainty is
considered by perturbing the error terms using a Monte Carlo
scheme (Breivik and Allen, 2008). For more details on the leeway
method, interested readers are referred to Breivik and Allen
(2008) and other works referenced herein.

The trajectories of each drifter type were simulated using the
formulation of the leeway model in the OpenDrift trajectory
modeling suite (Dagestad et al., 2018), by choosing the leeway
object class which most closely corresponds to each drifter
type (given in section 4). Simulations were performed using an
ensemble of 5,000 particles released in a 100 m radius around the
deployment site of the drifters.

For quantitative comparison of the proposed fuzzy number—
based method with the leeway method, the results of the leeway
method were described as a fuzzy number to enable scoring using
the algorithm presented in the previous subsection. To convert
the distributions of the 5,000 simulated particles into a fuzzy
number, the relative particle density was calculated on a 1 km
horizontal grid and this gridded density was then converted to
a 2-dimensional fuzzy number by a slight modification of the
algorithm presented by Khan and Valeo (2016), which enables
the construction of fuzzy numbers from histograms of observed
scalar data. Here the binned data comprising the histogram is
sorted from largest to smallest bin count, and a membership of
1.0 is assigned to the coordinates of the bin with the largest count.
Themembership at coordinates corresponding to bins with lower
counts is determined as the sum of the relative observation
density in all bins lower than that under consideration to satisfy
the consistency principle. For a detailed description of this
method of constructing fuzzy numbers please refer to Khan and
Valeo (2016). To adapt this method to two dimensional data,
the coordinates of the bin centers were expressed as a complex
number Exbin = xbin + iybin and fixed membership levels were
determined by delineating the area encompassing all bins with
membership greater than or equal to the chosen level. Scoring
of the leeway simulations was conducted according to section

3.4.1 once the simulated particle distribution was fuzzified in
this manner.

4. FORCING AND VERIFICATION DATA

The observational data used to test the methods presented in
sections 2 and 3 was collected near Ocean Station Papa (OSP)
in the northeast Pacific during the period Feb 19–Mar 3, 2015.
OSP (50.1◦N, 144.9◦W) has been the site of meteorological and
oceanic observations since the early 1940’s, and currently hosts
a moored observation platform operated by the Ocean Climate
Stations Office of NOAA/PMEL (Freeland, 2007). Detailed
descriptions of the circulation and water properties at OSP are
given in publications such as Pelland et al. (2016) and Cummins
and Ross (2020). We make use of measurements of currents and
winds recorded at the moored observation platform during a
release of 44 ocean surface drifters nearby. The drifter tracks, as
well as time series of the winds and currents measured at OSP, are
shown in Figure 4.

Near-surface currents at OSP are recorded by a single-point
2 MHz Nortek Aquadopp current meter moored in a taut-line
configuration at 15 m depth as well as a down-ward looking
300 kHz RDI Sentinel ADCP at 2 m below the water surface.
Both instruments sample data over a period of 2 min. The
current meter reports data at 10 min intervals, while ADCP
profiles are reported at 30 min intervals (National Oceanic
and Atmospheric Administration, Pacific Marine Environmental
Laboratory, 2020a). The reported current meter accuracy is±(1%
of velocity + 0.5 cms−1), while the accuracy of the ADCP is
reported as ± 0.5 cms−1. Both sensors have a resolution of 0.1
cms−1. Winds are recorded 4 m above the water surface by a
Gill Windsonic anemometer and averaged to 10 min intervals,
with a reported accuracy of ± 2% (3%) of the speed (direction)
reading, and a resolution of 0.01 ms−1 (1◦) (National Oceanic
and Atmospheric Administration, Pacific Marine Environmental
Laboratory, 2020b).

The current meter record at 15 m depth (Figures 4C,D)
initially shows northeastward flow in response to northwesterly
winds (Figure 4E), consistent with descriptions of wind-driven
flow in the upper ocean dating back to Ekman (1905). As winds
slacken between midday on Feb 21 and the evening of Feb
23, signals consistent with inertial oscillations appear in the
current data.

Visual comparison of the current meter record with data from
the closest ADCP measurement (centered at 16 m depth) during
the first 7 days of the experiment (Figures 4C,D) reveals that
the current meter indicates higher amplitude of low frequency
fluctuations in the flow, and shows less spiking than the
ADCP. A more detailed comparison (included in the section
1.2 of the Supplementary Material) reveals further differences
between the two instruments. The current meter records a
northeastward mean flow of ∼ 3–4 cms−1, while the mean flow
recorded by the ADCP is much smaller and in the opposite
direction. This appears to be a systematic discrepancy between
the two instruments. Differences between the two instruments
could be due to interference from the point current meter on
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FIGURE 4 | Tracks of drifters for 7 days after deployment near Ocean Station Papa (A,B), and time series of u,v components of currents (C,D) and wind (E) during

the deployment.
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the beams of the ADCP (Nathan Anderson, PMEL, personal
communication, September 2021) or due to the differences in
operating frequency and sampled volume of water (Richard
Thomson, DFO, personal communication, September 2021).
Drifter trajectories are computed and assessed using the data
from both instruments, in order to test which instrument
provides more relevant information.

On February 19, 2015 at approximately 20:30H UTC, 44
ocean surface drifters of five different geometries were deployed
approximately 75 km east of OSP. These included the following:
8 Sphere drifters which float mostly above the water surface;
28 Surface Circulation Tracker (SCT) (Oceanetic Measurement
Ltd., 2016) drifters which float in the upper 37.5 cm of the
water column and have been shown to reasonably reproduce
oil sheening (Blanken et al., 2020); 3 Davis drifters (Davis,
1985) which float in the upper 1.5 m of the water column
and are similar to the SLDMB drifters commonly used for
search and rescue applications; and 5 drifters based on the
Surface Velocity Program (SVP) design (Poulain and Niiler,
1989; Niiler et al., 1995), 4 with the 4.6 m holey-sock drogue
starting at ∼8 m depth (hereafter SVP 8) and one starting at
∼18 m (hereafter SVP 18). SVP drifters are generally used to
map near-surface ocean circulation. One of the SCT drifters
failed shortly after deployment. Pictures of the drifters and their
idealized geometry and drag coefficients are shown in Figure 5.
Most drifters transmitted data until Mar 3, 2015, however
we only consider the first 7 days of the deployment in this
study. During this time drifters were within 55–150 km of OSP
(Supplementary Figure 3). To simulate the trajectories of these
drifter types using the leeway method, the following object types
were chosen as proxies: Sphere − > bait box (lightly loaded);
SCT − > WW2 mine; Davis − > oil drum; SVP (8 and 18
m) − > person-in-water floating vertically. The corresponding
leeway coefficients are reproduced in Supplementary Table 1.

All drifters followed a mean northeastward trajectory during
the first 5 days of their deployment (Figure 4A), consistent
with the mean wind direction during this time, with a change
to westward drift coincident with a change in the wind
direction. The lengths of the trajectories are inversely related to
drogue depth of the drifter. The Sphere drifter trajectories are
approximately twice as long as those of the SCT drifters, which
are in turn longer than the Davis, SVP 8, and SVP 18 drifters. The
latter three drifter types, which are drogued deeper in the water
column, exhibit clockwise looping which is likely due to inertial
oscillations like those noted in the current meter record.

5. RESULTS

5.1. Fuzzy Forcing
Converting the current and wind record into fuzzy number
equivalents using the procedures described in section 3.2 shows
that the uncertainty in these measurements is appreciable once
aggregated. To begin, we fit power laws to the tail of the wind and
current meter spectra using log-transformed linear regression
between frequencies 1

2x7200sec and the Nyquist frequency, fN .
The low-frequency threshold is chosen by visual inspection of
the energy spectra (Supplementary Figure 4). The parameters to

the regression Af B as well as the amplitude of the unresolved
velocities and accelerations according to Equations (18) and (19)
are given in Table 1 for a model timestep dtmodel = 300 s. The
amplitude of the unresolved energy Av is approximately three to
five times the instrument uncertainty for the anemometer and the
current meter but approximately 17 times larger for the ADCP.
This is at least in part due to the longer output interval of the
ADCP but also due to the shallower spectral slope that suggests
additional noise at high frequencies, as was noted from visual
inspection of the time series in section 4.

Uncertainty due to spatial variability is estimated by
examining the current fields from the GLORYS12 ocean re-
analysis. GLORYS12 is a state-of-the art hindcast numerical
simulation of ocean conditions from 1993-present, with data
assimilation of satellite altimetry and temperature measurements
as well as in situ profiles of temperature and salinity (Lellouche
et al., 2021). The modeled daily-mean currents at 15 m depth
suggest significant spatial structure with maximum fluctuations
in current amplitude of ∼0.2 m/s over the duration of
the experiment (see Supplementary Figure 5). Comparing the
modeled currents at OSP to daily averages of the measurements
from the current meter and ADCP suggests that at OSP the
modeled currents are biased southeasterly by ∼0.045 m/s with
respect to the current meter, and easterly by ∼0.05 m/s with
respect to the ADCP. RMS errors of the modeled velocity
components are ∼0.04–0.06 m/s. A comparison of the modeled
currents at the drifter locations with the modeled current at OSP
also suggests that currents at OSP are directedmore southeasterly
than at the drifter locations, with a bias of ∼0.075 m/s and RMS
errors of 0.01–0.02 m/s for all drifters except the Sphere drifters
which travel further and therefore sample more variability (see
Supplementary Figures 3, 6). However, there is considerable
uncertainty about the accuracy of the mean difference in the
modeled currents between the drifter location and OSP given
that this difference corresponds well with the identified bias in
the currents at OSP. A plausible explanation is that the features
shown in Supplementary Figure 5 may be slightly misaligned
in the model. For the purpose of this paper, we approximate
uncertainty due to spatial variability by taking σs = 0.015 m/s
as the standard deviation of the differences between the modeled
currents at OSP and the drifter locations. As the modeled
currents leave some doubt about the relevance of the currents
at OSP to the drifter locations, trajectories are computed with
and without forcing from the measured currents as is later
discussed in section 5.2. Further assessment of the modeled
surface dynamics in GLORYS12 can be found in Lellouche
et al. (2021). As noted previously, the effect of uncertainty in
modeled ocean currents on trajectory prediction will be further
investigated in future work.

Once uncertainties have been quantified, the current and
wind data are converted to a fuzzy number using the
probability-possibility conversion in Equation (13). We expect
that the uncertainty due to unresolved time scales will follow
a distribution that is similar to that obtained by simulating
a red noise process with an f B spectral slope and variance
corresponding to the sum of Av, σs, and σi (shown for
the current meter record in Supplementary Figure 7). This
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FIGURE 5 | The drifters deployed for this study (left), and their idealized geometry, including approximate drag coefficients (right). The SVP 8 (bottom-left photograph)

and SVP 18 drifters (no photograph shown) are identical except for the length of the tether.

TABLE 1 | Amplitude of energy in unresolved timescales and associated power

law coefficients.

Data source A B Av (m/s) Aadtmodel (m/s)

Anemometer 0.19 –0.97 0.46 0.17

Current meter 1.77 × 10−3 –0.73 0.020 0.0074

ADCP 0.084 –0.49 0.088 0.026

distribution is better represented by a Laplace distribution than
by a Gaussian distribution, though both overestimate the tails.
The random instrument uncertainty is more likely to follow a
Gaussian distribution. Since the unresolved energy in the current
data, especially for the ADCP, is significantly larger than the
instrument uncertainty we convert it to fuzzy numbers using
a Laplace distribution, while a Gaussian distribution is chosen
for the wind record. The effect of the choice of distribution
should be further investigated, however this is beyond the scope
of the current study. Applying Equation (13) with the above

distributions, Av from Table 1, σs from above, σi from section
4, and four equally spaced membership levels on the interval
[0, 1], i.e. m = 3, yields the fuzzy time series shown in
Figures 6A–D. The number of membership levels is limited by
the computational expense of the current shear calculation. This
may be mitigated by employing alternative parameterizations
for current shear, however a detailed comparison of possible
parameterizations is beyond the scope of the current work.

The fuzzified winds and currents exhibit uncertainties that at
times exceed 5 m/s for winds and 0.2 m/s for currents at the
lowest membership level, during times when winds and currents
are strong. The influence of the relative instrument uncertainty
on overall uncertainty is clearly seen in the reduced width of the
fuzzy numbers when wind speeds are low, between midday on
Feb 22 and midday on Feb 23 (Figure 6).

Transforming the fuzzy winds according to Equation (14)
allows us to calculate fuzzy values of Stokes drift, current shear,
and wind shear according to the procedures outlined in sections
2.1 and 2.2. The time series of these fuzzy vectors are shown in
Figures 6E–J. Here only values for SCT drifters derived using
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FIGURE 6 | Components of fuzzy wind (A,B), current (C,D), Stokes drift (E,F), current shear (G,H), and wind shear (I,J) for the first 7 days of the drifter deployment.

The crisp value (measurement) is shown in black and the three fuzzy membership levels are indicated in grayscale. For clarity in (E–J) only values for SCT drifters with

the velocity profile applied by the “centroid” scheme are shown.

the centroid method (Equation 7a) are shown for clarity. These
variables were calculated for each drifter separately by each of the
three methods of applying the shear profile given in Equation (7).
Stokes drift and current shear on the near-surface SCT drifters
are strongly positively correlated with the wind velocity, though
both diminish significantly when wind speeds are below ∼5
m/s. During times of strong winds both Stokes drift and current
shear are comparable to, or larger than, the measured currents.
These terms are therefore expected to have first order impacts
on the drift trajectory prediction, consistent with the findings of
Röhrs et al. (2012). During strong winds the magnitude of the
uncertainty (i.e., the width of the lowest membership level) in
the estimated Stokes drift and current shear is comparable to the
magnitude of the estimate itself.

Wind shear appears to be a minor factor compared to Stokes
drift and current shear. As expected, 1Euw|z=zw

z=zdrifter is inversely
correlated with wind velocity, i.e., it reduces the effective wind
velocity in Equation (17). The magnitude of wind shear is at
most ∼20% of the wind speed, and subject to similar relative
uncertainties as Stokes drift and current shear.

5.2. Optimal Forcing Combinations
Drift trajectories were computed for all combinations of forcing
terms on the right-hand side of Equation (17), methods of
applying sheared forcing as per Equation (7), and sources of
current data (current meter or ADCP). Trajectories were then
scored at each time step using Equation (22) to determine
the optimal combination of parameters by identifying the
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FIGURE 7 | Summary of optimal forcing terms for each drifter as a function of time. In the left-hand (A,C,E,G,I), timesteps where a forcing term contributed to the

solution achieving the highest skill score are shaded in blue for each drifter type. In the right hand (B,D,F,H,J) the percentage of applicable time each forcing term

contributed to the optimal solution is summarized.

combination giving the highest skill score at each time step. We
consider a forcing term to be part of the optimal solution if it
is present in the solution with the highest skill score, for at least
50% of time steps. Wind shear is only considered during times
when wind drag is an important forcing term, however current
shear may be considered independently of measured currents.
The optimal combination of forcing terms as a function of time is

summarized for each drifter in Figure 7. The percentage of time
each of the three methods of applying profile shear (Equations
7a–c) was most suitable is summarized in Figure 8. The optimal
parameters for each drifter, and the trajectories predicted using
these parameters, are shown in Figures 9–13.

Current, wind, and current shear all play an important role
in predicting the trajectories of the drifters, and wind shear is
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FIGURE 8 | Percentage of time current shear (A) and Stokes drift (B) profiles applied via the centroid and area-weighted average of velocity or force produce the

optimal solution for a the trajectories of each of the five drifters. No results are shown for Stokes drift on the SVP drifters, as the analysis indicates that Stokes drift

does not contribute to the optimal trajectory prediction at any time. (C) Shows the percentage of time the currents measured by the current meter (red) and the ADCP

(blue) contribute to the optimal solution.

an important term for the near-surface drifters (Sphere, SCT,
and Davis) (Figure 7). This suggests that the importance of
wind shear increases with the magnitude of the wind drag term.
Since forcing from measured currents is consistently part of
the optimal solution, we conclude that currents measured at
OSP are relevant to the drifter location, despite the separation
between these locations. In 60–80% of instances, forcing with
the currents measured by the current meter produced a
better solution than forcing with currents measured by the
ADCP (Figure 8C). This is likely due to the higher reporting
frequency (every 10 min for current meter compared to every
30 min for ADCP), as well as the possible high frequency
noise in the ADCP record discussed earlier. Stokes drift is
not part of the optimal solution for any drifter type. It is
more frequently of importance for the near-surface drifters
however, and not important at any time for the SVP drifters.
A possible explanation is that Stokes drift may lag behind wind
forcing as the wave field responds to changes in the wind. In
general, the potential effects of Stokes drift should be further
investigated by a sensitivity analysis to both different methods
of calculating Stokes drift as well as time-lagged methods of
applying this forcing. The optimal forcing terms are often
simultaneously applicable in the latter half of the simulation
period, however this is less likely to be the case during the
first half of the simulation period. A possible explanation
for this is that the lower winds during the first half of the
simulation period result in more small scale current variability,
such as inertial oscillations, which are not captured in the
measurements at OSP.

The deterministically derived wind drag factor, α, from
Equation (5) produces appropriate results. Values of α are 5.43,
1.00, 0.53, 0.28, and 0.27% for the Sphere, SCT, Davis, and SVP 8
and 18 drifters, respectively. The values calculated for the SVP
drifters agree well with the slippage estimate of 0.2% of the

wind speed given by Poulain and Niiler (1989). To assess the
sensitivity of the results to the wind drag factor, the changes
in mean skill score for trajectory predictions made using values
ranging from 0.5α to 1.5α are given in Table 2. For the near-
surface drifters any increase in the wind drag factor degrades
the predictions, while decreases in the wind drag factor can
improve the prediction. This improvement is minor (maximum
5.5%) for the SCT and Davis drifters, but can be significant
(up to 78% for a 25% reduction of α) for the Sphere drifters.
This suggests that perhaps wind shear is underestimated here,
which may be expected as winds are calculated at a 1 m
reference height while the bulk of the exposed drifter parts
are within 0.2 m of the water surface. It is also possible that
some dynamics associated with objects that are primarily above
the water surface are not captured here, as suggested by the
significant differences in the Sphere drifter results. Altering the
wind drag factor for the SVP drifter generally resulted in a
negligible change to the results. Decreasing α generally resulted
in a small (maximum 3.1%) decrease in skill while increasing
α resulted in a similarly small (maximum 3.4%) increase
in skill.

Optimal methods of applying sheared forcing vary by drifter
type. For applying current shear, the centroid method produces
the best results for near-surface drifters, while the area-weighted
force method produces the best results for the SVP drifters
(Figure 8A). The grouping of these results is likely in part due
to the 1 m vertical discretization used in solving for the current
shear, which results in approximately linear velocity profiles over
the draft of the near-surface drifters as these are almost entirely
in the uppermost vertical level. For the longer SVP drifters, the
effect of nonlinearities in the vertical velocity profile becomes
both more relevant and better resolved. The centroid method
provides the best results for applying Stokes drift for all applicable
drifter types (Figure 8B).
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FIGURE 9 | Daily predicted tracks of the sphere drifters for 7 days after deployment using the indicated optimal forcing combination (A–G), and a time series of model

skill during this period (H). Membership levels of the possible displacement, P
(j)
Ex for j = 0, 1, 2, are indicated in grayscale shading, increasing in intensity toward the

crisp solution (j = 3) which is indicated by the dashed black line. Equivalent results obtained using the leeway method are shown in red shading. Observed drifter

tracks are superimposed in orange. Model skill is also shown in grayscale for the optimal forcing combination and in red for the leeway method. Shading indicates the

maximum and minimum skill for the ensemble of drifters, while the solid line indicates the mean. Red markers on the x-axis of the skill plot indicate times when at least

one observed drifter fell outside of the lowest membership level.

5.3. Trajectory Results
The optimal forcing combinations for each drifter lead to
predictions that are skillful (i.e., the observed positions remain
within the lowest membership level) for at least 7 days. The
observed and predicted trajectories of the Sphere, SCT, Davis,
SVP 8, and SVP 18 drifters as well as the time series of model
skill associated with the prediction are shown in Figures 9–13.
The analogous results from the leeway method and associated
skill scores are also shown.

The trajectories of the near-surface drifters (Sphere, SCT, and
Davis) are generally well predicted, especially for the SCT drifters
(Figures 9–11). In the first 2 days of the simulation, the length
of all three trajectories is slightly under-predicted, however the
model results converge with observations by the third day. This
convergence coincides with a shift in the winds from consistent
winds toward the northwest to weaker and more variable winds.
The predicted trajectories of the Sphere drifters consistently veer
slightly to the west of the observations. On the fifth day of the

simulations, the behavior of the three near-surface drifter types
diverges. From here, the northward extent of the Sphere drifter
trajectories is over-predicted and the predicted trajectories of
the Davis drifters begin to shift eastward of the observations,
while the predicted tracks of the SCT drifters remain close to
the observations. Modeled tracks of both the Sphere and Davis
drifters continue to propagate eastward at a higher rate than is
observed on days 6–7, while the trajectories of the SCT drifters
remain close to the observations. During this time the dispersion
of the cluster of SCT drifters becomes comparable to the scale
of the 0.67 membership level, which suggests that the size of
thesemembership levels corresponds well with natural dispersion
processes associated with unresolved high-frequency fluctuations
in the forcing data.

The near-surface drifter locations predicted by the leeway
method tend to be slightly to the southeast of the locations
predicted by the proposed fuzzy method, with the observed
positions in between the two sets of model results. The lowest
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FIGURE 10 | Daily predicted tracks of the SCT drifters for 7 days after deployment using the indicated optimal forcing combination (A–G), and a time series of model

skill during this period (H). Same layout as Figure 9.

membership level of the predicted positions is larger for the
proposed fuzzy method than for the leeway method, while the
intermediate membership levels are larger for the leewaymethod.
Skill scores for the two models are quite similar. Whenever a
particular model captures one or more of the observed positions
in an intermediate membership level (0.33 or 0.67), its skill will
rise above the other model temporarily. The skill of the leeway
method is higher near the beginning and end of the simulation,
however the proposed fuzzy method often has higher skill overall
during the intermediate period due to the smaller intermediate
membership levels.

For the more deeply drogued SVP drifters, the trajectory
length is generally slightly under-predicted and the modeled
trajectories also begin to veer eastward of the observations
around the fourth day of the simulation. After this point,
the modeled trajectories strongly diverge eastward of the
observations. The center of the predicted positions is similar
between the proposed fuzzy method and the leeway method
however, contrary to the near-surface drifters, the membership
levels of positions predicted by the leeway method are generally
larger than those from the fuzzy method here. Again the skill

score of the two methods is similar, with the leeway method
scoring higher near the beginning and end of the simulation
while the fuzzy method scores higher in the intermediate period.

6. DISCUSSION

The fuzzy number based scheme for describing and propagating
uncertainty in trajectory predictions proposed in this paper
appears to work well, given that the predicted sets of possible
displacements covered the observed position of the drifters. The
scheme is advantageous in that it does not require specification of
empirical coefficients, and can be applied anywhere concurrent
measurements of wind and currents are available. Future work to
extend the scheme to include forcing data from numerical models
will further expand its utility. The work presented here can also
be readily extended to arbitrary or unknown object geometries by
describing the direct wind drag coefficient, α, as a fuzzy number.

Regarding the representation of uncertainty, it is worthwhile
to consider whether displacements in the lowest membership
level should be reported, given that they are representative
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FIGURE 11 | Daily predicted tracks of the Davis drifters for 7 days after deployment using the indicated optimal forcing combination (A–G), and a time series of model

skill during this period (H). Same layout as Figure 9.

of the largest displacements thought to be possible, without
making claims about the probability of such displacements (by
definition of a possibility distribution). It is noted that the
lowest membership level at times overestimated the uncertainty
of predicted positions, which is to be expected as the probability
density functions transformed to derive the fuzzy currents and
winds were noted to overestimate the extreme values (i.e.,
the tails) of the represented uncertainty. The form of the
input fuzzy numbers clearly affects the results of the trajectory
model, similar to previous results from Khan et al. (2013).
Increasing the number of membership levels in future work
may help resolve this question by better resolving the skill score
and the lowest membership level containing observed drifters.
However, increasing the number of membership levels comes
with significant increases in computational demands, and the
’lowest useful’ membership level will always vary as a function
of the forcing data quality.

Direct wind drag is a dominant forcing factor on all
considered drifter types, and it is shown that a deterministic,
geometry-based wind drag coefficient leads to skillful predictions
for at least 7 days when the uncertainty in the forcing data is

propagated through the prediction (Figures 9–13). However, the
determined wind drag coefficients at times over-predicted the
trajectory length for near-surface drifters and lower values of α

would have resulted in higher model skill. Conversely, for the
SVP drifters trajectory lengths were slightly under-predicted even
without the addition of Stokes drift and wind shear terms, and
higher values of α would have resulted in slightly increasedmodel
skill (see Table 2). Therefore, some uncertainty remains around
the processes relevant to the down-wind components of the
motion, as direct wind drag, part of the current shear, and Stokes
drift act co-linearly and their relative importance is less clear
when the uncertainty in the wind forcing is accounted for. Due to
this ambiguity in the co-linear forcing terms, a single set of leeway
coefficients describing the down-wind motion was noted as
beneficial in Breivik et al. (2011). However, within the framework
proposed here, further sensitivity analysis of the parameters
of the Stokes drift and current shear parameterizations in the
proposed method may provide clarification of this ambiguity,
though this is beyond the scope of the current paper.

The model proposed here avoids the need to specify
empirically determined leeway coefficients while retaining results
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FIGURE 12 | Daily predicted tracks of the SVP 8 drifters for 7 days after deployment using the indicated optimal forcing combination (A–G), and a time series of

model skill during this period (H). Same layout as Figure 9.

of a similar quality to the commonly used leeway method.
This is a clear benefit, as leeway coefficients are not available
for every object type and may not be representative of an
object for which no coefficients have been determined. This
is evident when comparing the correspondence of the leeway
and fuzzy results for near-surface and SVP drifters. For near-
surface drifters the leeway method results in a smaller range
of predicted possible positions at the lowest membership level,
though the range of intermediate membership levels is larger.
This is to be expected as the lowest membership level represents
all possible solutions, which may not be realized during a
simulation with 5,000 particles. For the SVP drifters however, the
leeway method results in a larger area of possible displacements
at all membership levels. For near-surface drifters closely
aligned proxy objects are available, with leeway coefficients
determined by the direct method (current measured during
determination) (Breivik et al., 2011). For the SVP drifters, the
closest available proxy object is a vertically oriented person
in the water which in reality has a much shallower draft
than the SVP drifters. The geometry of a vertical PIW is
also quite variable, which is represented in the coefficients

and results in a larger uncertainty than is predicted by the
fuzzy method.

Closer comparison of the modeled and observed trajectories
also suggests that not all physics governing the evolution of a
drift trajectory are captured by the trajectory model proposed
here. The inclusion of uncertainty compensates for this by
capturing the resulting discrepancies in lower membership levels,
but the effect of the missing physics remains evident. For four
of the five drifter types, a significant eastward displacement is
predicted during the last 2 days of the simulation, in response
to a change in the winds. This displacement is not seen to
the same extent in the observations, which may point to a
lagged response to wind forcing or spatial variability in the
winds between OSP and the drifter locations. The modeled
trajectories also more generally tend slightly to the east (left) of
the observed trajectories, which may be due to absence of Stokes
drift forcing or due to the chosen values of the constants in the
current shear parameterization. A sensitivity analysis of these
parametersmay yield further insight here, but is beyond the scope
of the current study. Alternatively, this eastward tendency may
suggest that Coriolis-Stokes forcing plays a role, as its inclusion
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FIGURE 13 | Daily predicted tracks of the SVP 18 drifters for 7 days after deployment using the indicated optimal forcing combination (A–G), and a time series of

model skill during this period (H). Same layout as Figure 9.

is expected to deflect the surface current further to the right of
the wind (Polton et al., 2005; Weber et al., 2015). This may be
expected as our estimates of Stokes drift have a similar magnitude
to the measured currents, consistent with the results reported
by Röhrs et al. (2012). Most common ocean models include
parameterizations of Coriolis-Stokes forcing (Röhrs et al., 2012),
and therefore extending the method proposed here to numerical
modeling results may achieve these improvements and also meet
the obvious need for representation of spatial variability in the
forcing fields.

7. CONCLUSIONS

Uncertainty in surface drift trajectory predictions is of significant
importance when responding to marine contaminant spills
and performing search and rescue operations, along with
a plethora of other applications. We have presented a
method for modeling the trajectories of drifting objects that
makes use of fuzzy numbers to characterize the uncertainty
inherent in these predictions without relying on specification
of empirical dispersion coefficients or random kicks. A

TABLE 2 | Percent change in mean trajectory prediction skill for given

adjustments to deterministic wind drag factor, α.

Prediction skill change from deterministic α-value (%)

Drifter type –50% –25% –10% –5% +5% +10% +25% +50%

Sphere +17.8 +78.0 +32.5 +12.3 –5.99 –15.8 –35.2 –62.9

SCT –6.70 +0.97 +2.38 +1.46 –2.55 –5.03 –13.2 –26.1

Davis +5.48 +3.63 +2.31 +0.87 –1.09 –1.58 –6.17 –17.2

SVP 8 –1.43 –2.15 –1.38 –0.37 +0.53 +0.96 +2.33 +3.37

SVP 18 –3.09 –0.46 +0.27 –0.05 +0.02 +0.11 –0.25 +0.54

comparison of results from this method to observations from
five different types of surface drifters suggests that the method
works well, and offers similar performance as the frequently
used, empirical leeway method. Following a deployment near
Ocean Station Papa in the northeast Pacific, 44 observed
drifters of five different types remain within the range of
modeled possible displacements during the 7 days following
their deployment.
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Moreover, our results show that the response of drifting
objects to direct wind forcing can be reasonably well predicted
based on the objects geometry provided that wind-induced
Stokes drift and current shear are appropriately parameterized.
Even with these parameterizations, we find direct wind drag
to be a forcing term of first order importance for all drifters
considered here. A novel skill metric for assessing model
performance proved to be a useful tool for identifying the optimal
combinations of parameterizations. The analysis presented here
can be extended to objects of arbitrary geometry, and also
unknown or uncertainty geometry when α is expressed as a fuzzy
number. Further development and evaluation will expand its
utility by incorporating forcing data from numerical models.
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