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Eutrophic water bodies in coastal estuary areas usually show saline-alkaline
characteristics influenced by tides. The purification performance of traditional planted
floating beds in this water body is limited because of the poor growth of plants.
A novel integrated floating bed with plants (Iris pseudoacorus), fillers (volcanic rocks
and zeolites), and microbes named PFM was established, and the pollutant removal
performance was studied. Results showed that the average ammonia nitrogen (NH4

+-
N), total nitrogen (TN), total phosphorus (TP), and permanganate index (CODMn) removal
efficiencies of PFM were higher with the value of 81.9, 78.5, 53.7, and 72.4%,
respectively, when compared with the other floating beds containing plants (P), fillers
(F), microbes (M), and plants and fillers (PF) in this study. Therein, the most of NH4

+-
N (30.1%), TN (27.9%), TP (22.5%), and CODMn (43.6%) were removed by microbes,
higher than those removed by plants and fillers. Analysis of the microbial community
revealed that the establishment of PFM led to a higher microbial richness than M,
and Acinetobacter, as the main microbes with the function of salt tolerance and
denitrification, were dominated in PFM with a relative abundance of 6.8%. It was inferred
that the plants and fillers might enrich more salt-tolerance microbes for pollutants
removal, and microbes favored the growth of plants via degradation of macromolecular
substrates. Synergistic actions in the process of eutrophic brackish water purification
were established. This study provided an idea for the application of integrated floating
bed in eutrophic and brackish water bodies purification in coastal estuary areas.

Keywords: integrated floating bed, brackish water, synergistic action, microorganism, Iris pseudoacorus

INTRODUCTION

Coastal estuaries are the ecotone of terrestrial and marine ecosystem with low water exchange
rate, and susceptible to human activities. Thus, eutrophication is prone to occur. It is generally
accepted that excessive nutrient input is the main reason of water eutrophication (Bhagowati and
Ahamad, 2019). The consequences are the outgrowth of harmful algae, decreased light intensity,
water body anoxia, and extinction of submerged plants and aquatic animals (Ma et al., 2019). More
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importantly, eutrophication may lead to serious health hazards
to humans in various pathways. In addition to eutrophication,
salt or brackish water bodies caused by NaCl or HCO3

−-CO3
2−

are also a challenge to the environment in coastal estuary
areas. The growth of plants and microorganisms is inhibited
under the influence of salt and alkali stress, and the self-
purification ability of water bodies is restrained, resulting in
a deterioration of waterfront ecological landscape (Zhao et al.,
2005; Benzarti et al., 2014). Therefore, a suitable remediation
method should be selected with the advantages of an effective
water purification performance and the tolerance to salt and
alkali when eutrophication occurs in the coastal estuary areas.

Integrated floating bed is an innovative water remediation
technology developed from the conventional constructed
wetlands. It is mainly composed of aquatic plants and microbial
carrier packing. The plants in integrated floating beds grow in
a hydroponic floating mass on the surface of water bodies, and
the microbes are fixed mainly on the fiber fillers and plant roots
(Li et al., 2010; Liu et al., 2016a). Integrated floating bed has
been increasingly researched and applied to control the water
eutrophication with the advantages of low investment, high
efficiency, no additional land occupation, and flexible operation
(Gottschall et al., 2007; Wang et al., 2020a). Wu et al. (2016)
established the enhanced ecological floating beds with total
nitrogen (TN), ammonium nitrogen (NH4

+-N), nitrate nitrogen
(NO3

−-N), total phosphorus (TP), and chemical oxygen demand
(CODCr) removal efficiencies of 49.3, 49.2, 69.5, 48.7, and 70.6%,
respectively. Olguín et al. (2017) assessed the performance of
floating treatment wetlands for the water quality improvement
of a eutrophic urban pond, and fecal coliforms and nitrate
decreased by 86 and 76%, respectively, in 2 years. Nevertheless,
most of the researches about integrated floating bed are related
to fresh water purification according to previous studies (Huang
et al., 2013; Abed et al., 2017), and the studies of integrated
floating bed applied in coastal estuary areas for brackish water
purification are limited. The stability of traditional floating bed is
usually low in the actual application (Wang et al., 2020b), and it
is a challenge to build a stable floating bed system.

Water purification would be achieved via the integrated
floating bed with comprehensive effects of plant absorption,
microbial degradation, and others (Wang et al., 2020a).
Integrated floating beds have been applied in many field-
scale river remediation projects, and the water purification
processes indicated the synergistic effects of plants and microbes
(Chang et al., 2012; Wang and Sample, 2014; Wang et al.,
2015). Macromolecule pollutants would be decomposed into
micromolecular substrates via enzymes secretion. On the other
hand, some micromolecular substrates would be degraded by
microbes, and others would be easily uptaken by plant roots (Wu
et al., 2016; Urakawa et al., 2017). Meanwhile, the developed
plant roots could provide the attachment sites for microbial
growth, and oxygen released from plant roots would facilitate
microbial growth and enhance biofilm formation (Keizer-Vlek
et al., 2014; Saeed et al., 2016). The biofilm structure could resist
lots of environmental stresses, such as salinity, pH, and toxic
substance, and the interaction between microbes and plants in
the integrated floating bed system would enhance the pollutants

removal performance. There are diverse microbial communities
in brackish aquatic ecosystems. In addition, lots of salinity-
tolerance microbes could produce bioactive compounds and
secondary metabolites to combat osmotic stress (Wang et al.,
2020c). Nonetheless, the microbial community composition in
brackish water ecosystems is poorly understood. Furthermore,
Iris pseudoacorus is a common aquatic plant with a good
landscape effect in the estuary area. It has been proved to
have a high capacity to take up nutrients from the effluent
water and retain N and P (Yousefi and Mohseni-Bandpei, 2010;
Gacia et al., 2019).

The first objective of this study is to document the
performance of the integrated floating bed for eutrophic brackish
water purification in the coastal estuary areas. Six floating beds
with different structures were established. The second objective
is to evaluate the contribution of plants, fillers, and microbes for
pollutants removal performance. The contribution rates of plants,
fillers, and microbes to NH4

+-N, TN, TP, and permanganate
index (CODMn) removal were calculated. At last, the microbial
community in integrated floating bed system were analyzed by
16S rRNA high-through sequencing, and the microbial diversity
and structure were analyzed. Therefore, the third objective is
to prove the synergistic action for water purification in the
integrated floating bed in the aspect of microbial enrichment.

MATERIALS AND METHODS

Reactors and Operation
Reactors
Six identical reactors were established with a size of 80 cm
(length) × 20 cm (width) × 50 cm (height). The reaction zone
was 70 cm× 20 cm× 40 cm and an effective volume of 56 L. The
reactor consisted of a floating bed system, an aeration system, a
water inlet system, and an effluent system (Figure 1). The floating
bed system consisted of four parts: plants, floating plate, planting
baskets, and artificial bio-carriers. A polyethylene foam board
was placed in each device as a floating plate, and the size was
50 cm × 19 cm × 2.5 cm. Six planting holes with a diameter
of 5 cm were set on each plate. The planting baskets made of
30 mesh gauze with a diameter of 5 cm and a height of 10 cm
were installed in the holes. Fillers (30 g of volcanic rock and 30 g
of zeolite) were placed at the bottom of each planting basket. Iris
pseudoacorus was selected as the floating bed plant. It was planted
in the basket and the root was fully in contact with the fillers
(Figure 1). Four strings of artificial bio-carrier (aldehyde fiber)
with the capability of enhancing microbial adhesion were hung
under the floating plate, and each length was 35 cm. The artificial
bio-carriers were hung for 3 days by the smoldering method
before the start of the operation, and installed on the floating bed
after the yellowish viscous biofilm appeared on them. An aeration
system was installed at the bottom of the reaction zone.

Materials
The I. pseudoacorus was collected from the estuary areas of
the Licun River. Before the reactor operation, I. pseudoacorus
was cultured in water for 7 days, and the plants with a similar
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FIGURE 1 | Structure of the integrated floating bed. The integrated floating bed consisted of a floating bed system, an aeration system, a water inlet system, and an
effluent system. The floating bed system consisted of four parts: plants, floating plate, planting baskets with fillers, and artificial bio-carriers.

height and fresh weight were selected as the testing plants. The
membrane-hanging microorganism was a compound microbial
agent and an original bacterium concentrated one-generation
probiotic powder provided by the Ningu Country Bacteria
Password Biological Co., Ltd. NH4Cl, NaNO3, KH2PO4, and
glucose were used to simulate the water quality of the estuary
areas of the Licun River. The concentrations of NH4

+-N, NO3
−-

N, TN, TP, and CODMn in the influent water were 3.6, 2.6, 6.2,
3.4, and 40.0 m·L−1, respectively. The salinity of the influent was
5h, and pH was 8.0 (Table 1).

Experimental Design
Six floating beds with different structures were constructed: plant
floating bed (P), filler floating bed (F), microbe floating bed (M),
plant + filler floating bed (PF), plant + filler + microbe integrated
floating bed (PFM), and blank floating bed (CK). The operation
time of the reactors was 31 days, and the dynamic test was carried
out by continuous water inflow and effluent. The hydraulic
retention time was 4 days, and the aeration rate was 0.8 L/min.

The plant characteristics were analyzed at the beginning
and end of the operation for fresh and dry weight, water
content, root activity, proline content, leaf relative conductivity,
and chlorophyll content. The effluent of the six floating beds
were analyzed after the start of operation, and the average
concentrations and removal efficiencies of NH4

+-N, TN, TP, and
CODMn were calculated.

Analytical Methods
Analysis of Plant Characteristics
Plant height and root length were measured by scale. The fresh
weight and the dry weight were determined by gravimetric
method with an electronic analytical balance. Chlorophyll
content, root activity, leaf relative conductivity, and root proline

content were measured by N, N-dimethylformamide extraction,
triphenyltetrazolium chloride method, immersion method, and
acid ninhydrin colorimetry, respectively (Puniran-Hartley et al.,
2014; Abdelaziz et al., 2017).

Water Quality
NH4

+-N, TN, TP, and CODMn were measured by the
Nesslerizatin colorimetric method, alkaline potassium persulfate-
ultraviolet spectrophotometry, ammonium molybdate–antimony
potassium tartrate–ascorbic acid spectrophotometry, and
potassium permanganate method, respectively, according to
the protocols described in the Chinese Standard Methods
(State Environmental Protection Administration of China, and
Editorial Board of Monitoring and Analytical Method of Water
and Wastewater, 2002).

Microbial Community Analysis
At the end of the operation, the fillers and artificial bio-carriers
were crushed and mixed evenly with the effluent to prepare
for DNA extraction. Total genome DNA from samples was
extracted using the CTAB/SDS method. DNA concentration and
purity were monitored on 1% agarose gels. According to the
concentration, DNA was diluted to 1 ng/µL using sterile water.
16S rRNA genes of distinct regions (16S V4) were amplified
using a specific primer (341F: CCTAYGGGRBGCASCAG; 806R:
GGACTACNNGGGTATCTAAT) with the barcode. All PCR
reactions were carried out with the PhusionHigh-Fidelity PCR
Master Mix (New England Biolabs). Mix same volume of 1X
loading buffer (contained SYB green) with PCR products and
operate electrophoresis on 2% agarose gel for detection. Samples
with a bright main strip between 400 and 450 bp were chosen
for further experiments. PCR products was mixed in equidensity
ratios. Then, the mixture PCR products was purified with
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the Qiagen Gel Extraction Kit (Qiagen, Germany). Sequencing
libraries were generated using the TruSeq DNA PCR-Free
Sample Preparation Kit (Illumina, United States) following the
manufacturer’s recommendations, and index codes were added.
The library quality was assessed on the Qubit@ 2.0 Fluorometer
(Thermo Fisher Scientific) and Agilent Bioanalyzer 2100 system.
At last, the library was sequenced on an IlluminaHiSeq2500
platform and 250 bp paired-end reads were generated.

Data Processing
The relative growth rate RGR (mg·g−1

·d−1) was calculated as
follows:

RGR =
[
ln (W2)−ln (W1)

]
/(t2−t1) (1)

where W1 and W2 were the dry weight (g) of the plant at the
beginning (t1) and at the end (t2) of the experiment, respectively.

In order to assess the role of plants and microbes in purifying
eutrophic brackish water, the change of pollutant concentration
in effluent was characterized by c/c0 based on the determination
of pollutant indexes. c and c0 were the concentration of effluent
pollutant (mg·L−1) and influent pollutant (mg·L−1), respectively.
The integrated floating bed removal efficiency ηPFM, other
effects (aeration, illumination, etc.) removal efficiency, i.e., CK
removal efficiency ηCK, filler removal efficiency ηF, plant removal
efficiency ηP, microbe removal efficiency ηM, and synergistic
removal efficiency ηS were calculated, respectively (Wang et al.,
2012).

Removal efficiency (%) = (c0−c) c0 × 100% (2)

Filler removal efficiency ηF(%) = Filler floating bed

F removal efficiency−ηCK (3)

Plant removal efficiency ηP(%) = Plant floating bed

P removal efficiency−ηCK (4)

Microbe removal efficiency ηM(%) = Microbial floating

bed M removal efficiency−ηCK (5)

Synergy removal efficiency ηS(%) = ηPFM−ηCK−ηF−ηP−ηM
(6)

The average value, standard deviation, and analysis of variance
(ANOVA) were determined by using the SPSS software (PASW
Statistics 20.0). The means were compared by using paired
sample t-tests, and the significance level was p < 0.05.

RESULTS AND DISCUSSION

Pollutants Removal Performance
The concentrations of NH4

+-N and TN in PFM decreased at
the first 7 days, and gradually stabilized after Day 17 with

effluent concentrations of 0.65 and 1.33 mg·L−1 and average
removal efficiencies of 81.9 and 78.5%, respectively, higher than
those of the other reactors. In addition, microbes and plants
were the main reason for NH4

+-N removal performance of
PFM, ηM and ηP were 30.1 and 20.2%, respectively, at the
end of the operation (Figure 2A). Similarly, the contribution
of microbes and plants for TN removal performance was 27.9
and 14.9%, higher than the other factors (Figure 2B). The
mechanisms of nitrogen removal in water mainly consist of
physical adsorption, plant absorption, and microbial degradation.
Zeolites are effective in the adsorption of ammonium as an
ion exchanger. With the increase of other cations such as
Ca2+, Mg2+, K+, the adsorption of the fillers was weakened
and gradually maintained at a stable state (Wang and Peng,
2010). Plants could directly absorb and utilize NH4

+-N to
synthesize a variety of amino acids in an aerobic environment,
while most NH4

+-N is mainly converted into NO3
−-N and

NO2
−-N by nitrifying bacteria. Most of the NO3

−-N and
NO2

−-N are reduced to nitrogen during denitrification process
by microbes, and others are absorbed and utilized by plants
(Bartucca et al., 2016; Liu et al., 2016a). In traditional plant
floating bed systems, the growth rate and absorption capacity
of plants limit the ability of pollutants purification, nevertheless,
microbial nitrification-denitrification greatly improves nitrogen
removal performance in the integrated floating bed (Sun et al.,
2019). It was indicated that microbes may play a major role in the
nitrogen removal process.

The effluent TP from P, M, PF, and PFM dropped sharply
during the reactors’ operation, then tended to be stable, while
changed less in CK and F (Figure 2C). The effluent TP in F
gradually decreased at the first 5 days. After Day 5, the phosphate
might be precipitated with the Ca2+ exchanged from fillers to be
continuously removed (Karapınar, 2009), and reached a steady
state, indicating that the adsorption of TP by the filler tended to
be saturated at the end of the operation. In floating bed PFM, the
effluent TP decreased sharply after Day 5, and basically stabilized
after Day 17 (p < 0.05). Considering the effluent TP of PFM was
the least, followed by that of PF and M, it was speculated that TP
removal in the early operation period of floating bed PFM mainly
relied on the absorption of plants and microbes, adsorption of
the filler further enhanced TP removal performance of PFM
at the first 5 days of operation (Guo et al., 2014). The results
demonstrated the importance of plants and microbes for TP
removal in floating bed systems.

During the reactors’ operation process, the effluent CODMn
of F, P, M, PF, and PFM decreased continuously and tended to
be stable on the 9th, 11th, 15th, 13th, and 19th day of operation,
respectively (Figure 2D). The reactors of PFM and M obtained
higher CODMn efficiency than others, and CODMn removal
efficiency of PF was significantly higher than that of P and F.
The results indicated the importance of microbes for CODMn
removal in the floating bed system, and the obvious synergistic
effect of fillers and plants for pollutants removal in the system.
Based on the results above, it was indicated that the plants and
microbes were the main factors for pollutants removal in the
floating bed system, and the filler could enhance the pollutants
removal performance with plants and microbes synergistically.
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FIGURE 2 | Change of pollutants concentration in different floating beds. (A) NH4
+-N. (B) TN. (C) TP. (D) CODMn.

Growth and Physiological
Characteristics of Plants
Plant growth and physiology are important factors for pollutant
removal performance of plants. With the reactors’ operation, the
roots of I. pseudoacorus penetrated the planting basket, plant
height increased significantly with the growth of new shoots. In
the three reactors planted with I. pseudoacorus, the plants in PFM
obtained excellent growth characteristics with a relative growth
rate (RGR), net increment of root length, and net increment
of plant height of 11.59 mg·g−1

·d−1, 9.31 cm, and 25.51 cm,
respectively, at the end of the operation, significantly higher than
those in PM and P (p< 0.05) (Table 2). The results indicated that
fillers and microbes played important roles in enhancing the root
and plant growth of I. pseudoacorus.

Saline-alkali could decrease root activity, increase proline
content, and decrease chlorophyll content in plant cells (Puniran-
Hartley et al., 2014). As shown in Table 3, the root activity
and Chlorophyll content of I. pseudoacorus in PF and PFM
were similar and higher than those in P. Especially the root
activity of I. pseudoacorus, the value in PF and PFM was
1.13 and 1.18 mg·g−1

·h−1, respectively, at the end of the
operation, significantly (p < 0.05) higher than that in P. The
results indicated that fillers and microorganisms could enhance
the physiological characteristics of plants, particularly the root
activity in the integrated floating bed. Accordingly, the salt

tolerance of I. pseudoacorus in PFM was enhanced, and the
proline content of I. pseudoacorus in PFM was 0.49 µmol·g−1

higher than the other two reactors. Also, the relative conductivity
of the leaves in PFM was 11.96%, which is significantly lower
than that in P and PF (Table 3). Microorganisms could colonize
around the root zone through fillers and provide positive
feedback for plant growth by discharging beneficial compounds
in the rhizosphere (Ahemad and Kibret, 2014). In addition, salt-
tolerance microorganisms could suppress the accumulation of
reactive oxygen species and sodium accumulation in plants, and
improve salt-tolerance characteristics of plants by stimulating
the activities of antioxidant enzymes (Yasmeen et al., 2020). The
results indicated that the integrated floating bed could facilitate
the salt tolerance and root activity of I. pseudoacorus and increase
the contribution of plants for pollutants removal.

Microbial Structure of Floating Bed M
and PFM
The microbial structure was analyzed by 16S rRNA high
throughput sequencing technology. The results showed that
Acinetobacter, Bdellovibrio, Hydrogenophaga, and Shewanella
were mainly enriched in PFM with a relative abundance of
6.8, 6.1, 4.7, and 3.1%, respectively, when compared with the
microbial structure in M (Figure 3). According to previous
studies, Acinetobacter, Bdellovibrio, and Hydrogenophaga showed
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TABLE 1 | The influent components of floating bed in this study.

NH4
+-N (mg·L−1) NO3

−-N (mg·L−1) TN (mg·L−1) TP (mg·L−1) CODMn (mg·L−1) Salinity (h) pH

3.6 2.6 6.2 3.4 40.0 5 8.0

TABLE 2 | Growth characteristics of I. pseudoacorus in the floating beds P, PF, and PFM.

Floating bed RGR (mg·g−1·d−1)* Net increment of root length (cm)* Net increment of plant height (cm)*

P 5.18 ± 0.46 a 6.22 ± 0.66 a 15.25 ± 2.52 a

PF 7.57 ± 1.12 b 7.61 ± 0.82 ab 19.93 ± 1.50 b

PFM 11.59 ± 1.04 c 9.31 ± 0.91 b 25.51 ± 1.17 c

*Results were the mean of three replicates ± standard deviation. Different small letters behind the values indicated a significant difference among the different floating
beds (P < 0.05).

TABLE 3 | Physiological characteristics of I. pseudoacorus in the floating beds P, PF, and PFM.

Floating bed Root activity (mg·g−1·h−1)* Root proline content (µ mol·g−1)* Relative conductivity of leaves (%)* Chlorophyll content (mg·g−1)*

P 1.05 ± 0.02 a 0.42 ± 0.04 a 21.87 ± 1.19 a 2.13 ± 0.04 a

PF 1.13 ± 0.03 b 0.47 ± 0.05 a 14.99 ± 2.53 a 2.33 ± 0.04 ab

PFM 1.18 ± 0.02 b 0.49 ± 0.04 a 11.96 ± 2.34 b 2.43 ± 0.05 b

*Results were the mean of three replicates ± standard deviation. Different small letters behind the values indicated a significant difference among the different floating
beds (P < 0.05).

the characteristic of salt tolerance and the function of nutrient
removal performance in water (Hood et al., 2010; Ji et al.,
2016; Zuo et al., 2016; Wang et al., 2017). Lots of species in
Shewanella have been detected in hypersaline environments,
and it has demonstrated its tolerance to a wide range of salt
concentrations (Fu et al., 2014). In addition, Shewanella plays an
important role in marine P transformation through producing a
large amount of extracellular polymeric substances and showing a
relatively high P removal performance under aerobic conditions
(Jiang et al., 2018). Acinetobacter and Pseudomonas have great
nitrogen removal ability, and could remove NH4

+-N and NO3
−-

N via heterotrophic nitrification and aerobic denitrification,
respectively (Huang et al., 2021; Li et al., 2021). Thus, it was
inferred that plants in PFM could enrich more microbes with
the function of salt tolerance and pollutant removal performance.
Plants improved the salt tolerance of biofilm while strengthening
their own growth, and ultimately, promoted the stability of the
system and the effective removal of pollutants.

Synergistic Action of Integrated Floating
Bed PFM
The synergistic action of I. pseudoacorus, filler, and microbe
on the purification of brackish water was characterized by
the synergistic pollutant removal efficiency (ηS) of the floating
bed PFM. As shown in Table 4, the synergistic pollutant
removal efficiency of NH4

+-N, TN, TP, and CODMn in PFM
was 3.9, 16, 1.9, and 4.2%, respectively. In a single ecosystem
with only plants, assimilation by plant root and the associated
denitrification are the main mechanisms of nitrogen removal.
In the microbial system, various biochemical reaction, including
nitrification and denitrification, existed in the nitrogen removal

process as well (Liu et al., 2016a). Nevertheless, there are
some different interactions occurring in an integrated plant and
microbe ecosystem. The relative growth rate, root activity, and
root proline content of plants in the integrated floating bed
PFM were higher than those in P and PF (Tables 2, 3). It
was indicated that the addition of microorganisms enhanced
the salt tolerance of plant and promoted plant growth. On
the one hand, the macromolecules could be degraded into
micromolecules by microbes, the plants then directly absorbed
and utilized these micromolecules (Figure 4). On the other hand,
microorganisms could improve the survival ability of plants
by remitting the toxicity of plant pathogens (Lu et al., 2015).
Microorganisms can also alleviate water deficiency and increase
antioxidant capacity of plants by establishing new ion balance
(Kudoyarova et al., 2013).

Previous studies have shown that the removal mechanisms of
pollutants in water mainly include microbial degradation, plant
root retention, and filler adsorption, among them, microbial
degradation played a major role (Yu et al., 2019). This is
consistent with the results of this study (Table 4). The relative
abundance of functional bacteria for nitrogen and phosphorus
removal increased in PFM according to the results of microbial
community analysis (Figure 3), leading to a higher contribution
rate of pollutant removal than plants and fillers. In the PFM
system, fillers and plant roots provided carriers for attachment
and habitation of the functional bacteria (Ning et al., 2014b;
Keizer-Vlek et al., 2014) because oxygen secreted by plant roots
could form many anaerobic–anoxic–oxic micro areas, which
were equivalent to many series–parallel A2/O units. These units
could enhance microbial nitrification and denitrification, and
indirectly improve the denitrification efficiency (Cao and Zhang,
2014; Li et al., 2015). Furthermore, plant roots can also secrete
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FIGURE 3 | Relative abundance of microbial community at the Genus level.

TABLE 4 | Removal efficiency of pollutants in the integrated floating bed PFM.

Removal efficiency ηPFM (%) ηCK (%) ηF (%) ηP (%) ηM (%) ηS (%)

NH4
+-N 81.9 19.5 8.2 20.2 30.1 3.9

TN 78.5 14.9 4.8 14.9 27.9 16

TP 53.7 4.5 5.6 19.2 22.5 1.9

CODMn 72.4 4 7.1 13.5 43.6 4.2

FIGURE 4 | Mechanism of synergistically purifying eutrophic brackish water by plants, microbes, and fillers. Microorganisms can degrade the macromolecules into
micromolecules that can be directly absorbed and utilized by plants. Plant roots and fillers provide carriers for attachment and habitation of the functional bacteria.
Plant roots can also secrete a variety of unstable carbon compounds, such as organic acids and amino acids that promote microbial metabolism and form biofilms
on the root surface.

Frontiers in Marine Science | www.frontiersin.org 7 April 2021 | Volume 8 | Article 619087

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-619087 March 31, 2021 Time: 13:57 # 8

Liu et al. Floating Bed Purifies Brackish Water

a variety of unstable carbon compounds, such as organic acids
and amino acids that promote microbial metabolism and form
biofilms on the root surface (Figure 4; Rocha et al., 2015).
As a result, microbial population, quantity and metabolic rate
were improved. On the other hand, the metabolic process of
microorganisms in the system could be further studied in the
aspect of metabonomics, and the metabolic mechanism of the
microorganisms would be illustrated more clearly.

CONCLUSION

A novel integrated floating bed (PFM) with plants (Iris
pseudoacorus), fillers (volcanic rocks and zeolites), and
microbes achieved excellent NH4

+-N, TN, TP, and CODMn
removal performance, and most of the pollutants were
removed by microbes. In addition, the enrichment of
Acinetobacter in PFM enhanced the salt tolerance and
nitrogen removal performance of the system. The analysis
of the synergistic action of PFM indicated that the plants
and fillers could enrich more salt-tolerant microbes for
pollutant removal, which in turn promoted the growth and
salt-tolerance characteristics of plant. Plants and fillers had
synergistic actions with microbes in the process of eutrophic
brackish water purification. Finally, the novel integrated

floating bed system for high-efficiency pollutants removal
performance of eutrophic and brackish water bodies purification
was established.
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