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Climate change may impact ocean ecosystems through a number of mechanisms,

including shifts in primary productivity or plankton community structure, ocean

acidification, and deoxygenation. These processes can be simulated with global Earth

system models (ESMs), which are increasingly being used in the context of fisheries

management and other living marine resource (LMR) applications. However, projections

of LMR-relevant metrics such as net primary production can vary widely between

ESMs, even under identical climate scenarios. Therefore, the use of ESM should be

accompanied by an understanding of the structural differences in the biogeochemical

sub-models within ESMs that may give rise to these differences. This review article

provides a brief overview of some of the most prominent differences among the most

recent generation of ESM and how they are relevant to LMR application.

Keywords: living marine resources, earth systemmodels, modeling, primary production, biogeochemistry, CMIP6,

climate change

INTRODUCTION

Environmental conditions can affect living marine resources (LMRs) through a number of
mechanisms. Physical and chemical properties such as temperature, salinity, oxygen concentration,
and pH can directly influence the vital rates of many organisms. These direct effects may manifest
themselves within specific populations through increasing or decreasing growth, reproduction, and
mortality (Pörtner, 2012); changes in geographic distribution as populations shift toward more
favorable habitat; or shifts in the phenological timing of environmentally influenced events such as
phytoplankton blooms (Karp et al., 2019). Food web interactions further complicate the potential
influence of even small changes within one population (Ainsworth et al., 2011; Fay et al., 2017;
Marshall et al., 2017; Masi et al., 2018).
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The integration of these environmental and ecological
processes has become an explicit aim of regional ecosystem-
based fisheries management (EBFM) frameworks (Marshall et al.,
2017; Holsman et al., 2020), and global Earth system models
(ESMs) offer an enticing tool to the regional fisheries scientist
to potentially quantify these many impacts of environmental
change on LMRs. The representation of the biosphere within
these coupled models has expanded rapidly over the past several
iterations of the Intergovernmental Panel of Climate Change
(IPCC) assessment reports. Most general circulation models
(GCMs) that participated in the CoupledModel Intercomparison
Project Phase 3 (CMIP3) (Meehl et al., 2007) coupled only
physical ocean and atmosphere components and did not include
any representation of ocean or land biology. By CMIP5 (Taylor
et al., 2012), a dozen modeling centers included an ESM
variant (i.e., a GCM that also simulates chemical and biological
components of the Earth system) with some form of ocean
biogeochemistry (Bopp et al., 2013). The recent simulations
released under CMIP6 (Eyring et al., 2016) continue this
trend, with most modeling centers further developing their
biogeochemical models to quantify the impact of biogeochemical
and lower-trophic-level processes on both the carbon cycle and
on LMRs (Kwiatkowski et al., 2020).

However, there are several complexities involved in
connecting ESM output to the regional marine ecosystem
models that support LMR management. Similarly to GCMs,
ESMs are designed to emphasize global scale dynamics over
regional processes (Stock et al., 2011). Bias correction and/or
downscaling may, therefore, be required before ESMs can
sufficiently capture regional patterns of greatest relevance to
LMRs, particularly in productive coastal waters (Holt et al.,
2009; Brown et al., 2016; Muhling et al., 2018; Xiu et al., 2018;
Echevin et al., 2020; Drenkard et al., 2021). The taxonomic
diversity of phytoplankton and zooplankton in ESMs may
also be insufficient to represent characteristics important
to higher-order consumers, such as energy density or lipid
content of various zooplankton assemblages or the relative
effects of ocean acidification on different plankton communities
(e.g., Rose et al., 2010; Miller et al., 2017; Gao et al., 2019).
In addition, even in downscaled ESMs the spatio temporal
resolution may be insufficient for linking life stage-specific,
highly localized responses of higher-trophic-level LMRs to
their biophysical environment (Petitgas et al., 2013; Hollowed
et al., 2020). As marine ecosystem models are built to capture
different aspects of these responses, they can also have different
theoretical frameworks, objectives, and modeling structures,
leading to difficulties in the direct comparison of projections
among different models (Tittensor et al., 2018; Lotze et al.,
2019). Projections from marine ecosystem models coupled
to ESMs can, therefore, be widely divergent, incorporating
considerable uncertainty from both model types (Lotze et al.,
2019). Lastly, projections of managed resources such as fish
stocks are complicated by the effects of fishing removals and
management structures that interact with bottom-up drivers
of stock size (Woodworth-Jefcoats et al., 2015; Barange,
2019; Lotze et al., 2019). Successfully working through these
issues typically requires multidisciplinary collaborations with

expertise from physical and biological oceanography up through
resource assessment and management (Stock et al., 2011;
Hollowed et al., 2020). Despite these challenges, ESMs offer an
opportunity to provide LMRmanagers with projections of future
ecosystem states, facilitating the development of climate-resilient
management strategies.

While a number of existing studies discuss, in comprehensive
detail, the predicted changes in lower trophic level variables
across the suite of CMIP5 and CMIP6 ESM model simulations
and the potential mechanisms underlying both the mean trends
and variations between models (Bopp et al., 2013; Laufkotter
et al., 2015; Kwiatkowski et al., 2020), these comparisons typically
focus on large-scale patterns in nutrient cycling and are primarily
targeted toward a biogeochemistry audience. For the reasons
detailed above, the LMR end user typically approaches these
models from a different perspective (Rose et al., 2010), and the
output variables in which they are most interested may show
different trends, variabilities, and skills across the spatiotemporal
scales of interest (Table 1). In this study, we follow in the
footsteps of these existing reviews, particularly Laufkotter et al.
(2015) and Séférian et al. (2020), but from the point of view of a
regional fisheries end user. The performance of each model may
vary widely depending on the region of focus and the scientific
question under consideration, and attempting to perform a full
intercomparison of global ESM simulation output on a regional
scale is well beyond the scope of this study. Instead, we highlight
key structural differences within the CMIP6 suite of ESMs and
discuss the ways in which these differences may lead to variability
among the predicted ecological indicators most relevant for
higher trophic levels. We hope that by highlighting these
structural differences, we provide an entry point for LMR end
users to better diagnose the potential drivers of biogeochemical
and ecosystem uncertainties within their regions of interest.

ACCESS TO, USE OF, AND
INTERPRETATION OF GLOBAL-SCALE
ESMS

While an ESM is often referred to as a single entity, each
ESM is made up of many coupled sub-models representing
the different components of the Earth system. Within modern
ESMs, these components typically include the atmosphere,
ocean, land, ocean biogeochemistry, and sea ice. While the
primitive equations governing the atmospheric and ocean
components of ESMs are well established, ocean biogeochemical
models are less mature, often based on empirical relationships
and with far fewer observations constraining the underlying
equations and parameters than in their physical counterparts.
As a result, the state variables and process equations included
in both global and regional scale biogeochemical models
vary widely, with model complexity ranging from three- to
four-box nutrient/phytoplankton/zooplankton/detritus models
to complex multi resource, multiple-plankton functional type
models with dozens of state variables (Friedrichs et al., 2007).
Even within model intercomparison experiments, there is
little standardization of prognostic biogeochemical models;
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TABLE 1 | Biogeochemical model output variables of interest for purposes of constraining fish processes.

Fish process BGC variable demand Timeframe

Recruitment (egg/larval development) T, O2, pH in larval habitat during spawning period Days-weeks

Recruitment (critical phase survival) Plankton biomass in larval habitat during metamorphosis Days

Juv+Adult growth/consumption Plankton production and composition in feeding habitat, T Months

Migration cues Seasonal dynamics of T and plankton blooms Days-weeks

Reproduction T seasonality Weeks

Spatial distribution T, O2, prey (approximated using primary/secondary production) Days-weeks to decades

for example, only gas exchange and carbonate chemistry are
standardized within the CMIP6 protocol, with all other processes
(e.g., primary production, nutrient cycling, and plankton
community composition) left to the discretion of individual
modeling centers (Orr et al., 2017). Substantial differences also
exist in the parameterization of unresolved physics among
models (due to their computationally limited spatial/temporal
resolution) with potentially strong impacts on biogeochemistry.

Table 2 includes a comprehensive list of all models that
contributed at least one ocean biogeochemical output variable
to the CMIP5 or CMIP6 experiments. The coupled model
acronyms listed in this table correspond to the data set
names used by the Earth System Grid Federation (ESGF)
data portal where the model data for the CMIP experiments
can be found (https://esgf-node.llnl.gov/search/cmip6/). The
biogeochemical models used within this collection range from
the carbonate chemistry OCMIP protocol (Orr et al., 2017),
without any explicit simulation of biotic processes, to the
full ecosystem models. Given time and resource constraints,
using this entire suite of ESMs is impractical for a regional
application. Therefore, the first step in using global ESMs
in a regional context typically involves choosing the subset
of ESMs best suited to answering the research question of
interest. However, making an informed choice on this front
can be a daunting task due to the high complexity of the
numerous ESMs.

A variety of best practices have been suggested regarding
choosing global ESMs to address regional questions, either
through direct use or via statistical or dynamical downscaling
(Drenkard et al., 2021). One suggestion is to choose models
whose outputs span the envelope of uncertainty for a key variable
(Cheung et al., 2016; Pozo Buil et al., 2021). Alternatively,
one may limit use to models that faithfully capture the
historical observed state of a particular quantity that is known
to affect the ecosystem of interest, e.g., seasonal sea ice
in the Bering Sea (Overland et al., 2011), upwelling and
horizontal transport off the California coast (Combes et al.,
2013; Di Lorenzo et al., 2013), or hypoxia due to riverine
influence in the Gulf of Mexico (de Mutsert et al., 2016;
Fennel et al., 2016). Between these two alternatives is a
model choice based on emerging constraints (Eyring et al.,
2019; Hall et al., 2019), which is a process-based approach
that acknowledges that some models are likely better suited
than others for a given climate change application but also
that historical model fidelity does not necessarily translate to

accurate climate sensitivity under future forcing (Pierce et al.,
2009).

Consideration of the broad array of biogeochemical model
specifications can be beneficial when using ESMs within an LMR
context, both for informing the choice of which models can
best address the relevant questions and interpreting the potential
underlying mechanisms leading to inter-ESM differences in
output. This is particularly important given the large influence
of biogeochemical model structure and parameterization on an
long-term predictions of LMR-relevant variables of ESM such
as pH, oxygen, and net primary productivity. Within long-
term climate change simulations, Frölicher et al. (2016) found
that while uncertainties related to ESM internal variability and
emissions scenario choice dominate the predicted end-of-century
uncertainty range for physical ocean variables like temperature
and carbon chemistry variables like pH, biological output
variables like net primary production were far more sensitive
to model uncertainty (i.e., uncertainty resulting from the use
of different numerical formulations and parameterizations for
physical and biological processes).

However, from a practical standpoint, making an informed
choice regarding which ESMs to use for a regional application
can be difficult. While global model documentation has become
more common and more cohesive in recent years (Journal
of Advances in Modeling Earth Systems, 2018–2020), and
model cross-comparisons are available in the literature (e.g.,
Kwiatkowski et al., 2020; Séférian et al., 2020), this model
documentation is often disconnected from common data access
points and, therefore, difficult for end users unfamiliar with the
biogeochemical literature to locate. Major modeling experiments
(e.g., CMIP3, CMIP5, and CMIP6) do not include “release notes”
to highlight how models have changed from one iteration to the
next, and often the specific details of a model are spread over
numerous publications, reflecting the iterative development of
each model. The lack of centralized documentation or cross-
comparison of the many ESM options available to LMR end
users often presents a barrier to making an informed choice
regarding model selection. Additionally, LMR researchers often
encounter challenges in accessing model output. The storing
and sharing of very large datasets is a challenge for the major
modeling centers; their choices of which variables to archive
and at what resolution are often driven by limited space
and do not always meet LMR needs for high spatiotemporal
resolution. Public datasets often include only a small subset
of the depth-resolved ocean and biogeochemical variables at
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TABLE 2 | A list of global earth system models from the 5th and 6th Coupled Model Intercomparison Projects (CMIP5 and CMIP6).

Center Coupled model Dataset Ecosystem model Citation

Acronym Full Acronym Full

Commonwealth

Scientific and Industrial

Research Organisation

(CSIRO), Australia

ACCESS-ESM1-5 Australian Community

Climate and Earth System

Simulator

CMIP6 WOMBAT Whole Ocean Model with

Biogeochemistry and

Trophic-dynamics

Oke et al., 2013

Canadian Centre for

Climate Modelling and

Analysis (CCCMA)

CanESM2 Canadian Earth system

model

CMIP5 CMOC Canadian Model of Ocean

Carbon

Zahariev et al., 2008

Canadian Centre for

Climate Modelling and

Analysis (CCCMA)

CanESM5 Canadian Earth system

model

CMIP6 CMOC Canadian Model of Ocean

Carbon

Zahariev et al., 2008

Canadian Centre for

Climate Modelling and

Analysis (CCCMA)

CanESM5-CanOE Canadian Earth system

model with CanOE

CMIP6 CanOE Canadian Ocean Ecosystem Christian et al., in prep

(in Hayashida, 2018

Appendix A.3.2);

Hayashida et al., 2019

Centro

Euro-Mediterraneo sui

Cambiamenti Climatic

(CMCC), Italy

CMCC-CESM Centro Euro-Mediterraneo

sui Cambiamenti Climatici

Carbon Earth System Model

CMIP5 PELAGOS PELAgic biogeochemistry

for Global Ocean

Simulations

Vichi et al., 2007

National Meteorological

Research Centre

(CNRM), France

CNRM-CM5 National Meteorological

Research Centre earth

system model

CMIP5 PISCES Pelagic Interactions Scheme

for Carbon and Ecosystem

Studies

Aumont and Bopp,

2006

National Meteorological

Research Centre

(CNRM), France

CNRM-CM5-2 CMIP5 PISCES Pelagic Interactions Scheme

for Carbon and Ecosystem

Studies

Aumont and Bopp,

2006

National Meteorological

Research Centre

(CNRM), France

CNRM-ESM2-1 National Meteorological

Research Centre earth

system model

CMIP6 PISCES 2.0 Pelagic Interactions Scheme

for Carbon and Ecosystem

Studies volume 2

Aumont et al., 2015

NOAA Geophysical

Fluid Dynamics

Laboratory (GFDL),

USA

GFDL-ESM2G NOAA Geophysical Fluid

Dynamics Laboratory Earth

System Model with

Generalized ocean layer

dynamics

CMIP5 TOPAZ Tracers of Ocean

Phytoplankton with

Allometric Zooplankton

Dunne et al., 2013

NOAA Geophysical

Fluid Dynamics

Laboratory (GFDL),

USA

GFDL-ESM2M NOAA Geophysical Fluid

Dynamics Laboratory Earth

System Model with Modular

Ocean Model

CMIP5 TOPAZ Tracers of Ocean

Phytoplankton with

Allometric Zooplankton

Dunne et al., 2013

NOAA Geophysical

Fluid Dynamics

Laboratory (GFDL),

USA

GFDL-CM4 NOAA Geophysical Fluid

Dynamics Laboratory

Coupled Physical Model

CMIP6 GFDL-

BLINGv2

Biogeochemistry-with-Light-

Iron-Nutrients-Gas

Galbraith et al., 2010;

Dunne et al., 2020

NOAA Geophysical

Fluid Dynamics

Laboratory (GFDL),

USA

GFDL-ESM4 NOAA Geophysical Fluid

Dynamics Laboratory Earth

System Model

CMIP6 GFDL-

COBALTv2

Carbon, Ocean

Biogeochemistry and Lower

Trophics

Stock et al., 2014,

2020

NOAA Geophysical

Fluid Dynamics

Laboratory (GFDL),

USA

GFDL-OM4p5B NOAA Geophysical Fluid

Dynamics Laboratory

ocean-only with

flux-anomaly-forcing

CMIP6 GFDL-

BLINGv2

Biogeochemistry-with-Light-

Iron-Nutrients-Gas

Galbraith et al., 2010;

Dunne et al., 2020

NASA Goddard

Institute for Space

Studies (GISS), USA

GISS-E2-H-CC NASA Goddard Institute for

Space Studies ModelE2

Earth System Model with

carbon cycle coupled to the

HYCOM ocean model

CMIP5 NOBM NASA Ocean

Biogeochemistry Model

Gregg, 2008;

Romanou et al., 2013

NASA Goddard

Institute for Space

Studies (GISS), USA

GISS-E2-R-CC NASA Goddard Institute for

Space Studies ModelE2

Earth System Model with

carbon cycle coupled to the

Russell ocean model

CMIP5 NOBM NASA Ocean

Biogeochemistry Model

Gregg, 2008;

Romanou et al., 2013

(Continued)
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TABLE 2 | Continued

Center Coupled model Dataset Ecosystem model Citation

Acronym Full Acronym Full

NASA Goddard

Institute for Space

Studies (GISS), USA

GISS-E2-1-G-CC NASA Goddard Institute for

Space Studies ModelE2.1

Earth System Model with

carbon cycle coupled to the

Russell ocean model

CMIP6 NOBM NASA Ocean

Biogeochemistry Model

Gregg, 2008;

Romanou et al., 2013

Met Office, UK HadGEM2-CC Hadley Global Environment

Model 2 - Carbon Cycle

CMIP5 diat-HadOCC diat-Hadley Centre Ocean

Carbon Cycle

Totterdell, 2019

Met Office, UK HadGEM2-ES Hadley Global Environment

Model 2 - Earth System

CMIP5 diat-HadOCC diat-Hadley Centre Ocean

Carbon Cycle

Totterdell, 2019

Met Office and National

Environment Research

Council (NERC), UK

UKESM1-0-LL UK Earth System Model CMIP6 MEDUSA2 Model of Ecosystem

Dynamics, nutrient

Utilization, Sequestration

and Acidification, ver. 2

Yool et al., 2013, 2021

Institute of Numerical

Mathematics, Russian

Academy of Sciences

INM-CM4 Institute of Numerical

Mathematics Climate Model

CMIP5 Volodin et al., 2010

Institut Pierre-Simon

Laplace (IPSL), France

IPSL-CM5A-LR Institut Pierre-Simon

Laplace Low Resolution

CM5A

CMIP5 PISCES Pelagic Interactions Scheme

for Carbon and Ecosystem

Studies

Aumont and Bopp,

2006

Institut Pierre-Simon

Laplace (IPSL), France

IPSL-CM5A-MR Institut Pierre-Simon

Laplace Medium resolution

CM5A

CMIP5 PISCES Pelagic Interactions Scheme

for Carbon and Ecosystem

Studies

Aumont and Bopp,

2006

Institut Pierre-Simon

Laplace (IPSL), France

IPSL-CM5B-LR Institut Pierre-Simon

Laplace Low resolution

CM5B

CMIP5 PISCES Pelagic Interactions Scheme

for Carbon and Ecosystem

Studies

Aumont and Bopp,

2006

Institut Pierre-Simon

Laplace (IPSL), France

IPSL-CM6A-LR Institut Pierre-Simon

Laplace Low resolution

CM6A

CMIP6 PISCES Pelagic Interactions Scheme

for Carbon and Ecosystem

Studies

Aumont and Bopp,

2006

Institut Pierre-Simon

Laplace (IPSL), France

IPSL-CM5A-LR Institut Pierre-Simon

Laplace Low Resolution

CM5A

MAREMIP PlankTOM5.3 Buitenhuis et al., 2013

University of Tokyo,

National Institute of

Environmental Studies

(NIES), and Japan

Agency for

Marine-Earth Science

and Technology

(JAMSTEC)

MIROC-ESM Model for Interdisciplinary

Research on Climate

CMIP5 NPZD Oschlies, 2001 NPZD model Oschlies, 2001;

Watanabe et al., 2011

University of Tokyo,

National Institute of

Environmental Studies

(NIES), and Japan

Agency for

Marine-Earth Science

and Technology

(JAMSTEC)

MIROC-ESM-CHEM Model for Interdisciplinary

Research on Climate

CMIP5 NPZD Oschlies, 2001 NPZD model Oschlies, 2001;

Watanabe et al., 2011

University of Tokyo,

National Institute of

Environmental Studies

(NIES), and Japan

Agency for

Marine-Earth Science

and Technology

(JAMSTEC)

MIROC-ES2L Model for Interdisciplinary

Research on Climate, Earth

System version 2

CMIP6 OECO ver.2.0 Ocean Ecosystem

Component

Hajima et al., 2019

(Continued)
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TABLE 2 | Continued

Center Coupled model Dataset Ecosystem model Citation

Acronym Full Acronym Full

University of Tokyo,

National Institute of

Environmental Studies

(NIES), and Japan

Agency for

Marine-Earth Science

and Technology

(JAMSTEC)

MIROC5 Model for Interdisciplinary

Research on Climate

MAREMIP NSI-MEM Nitrogen Silica Iron Marine

Ecosystem Model

Shigemitsu et al., 2012

University of Tokyo,

National Institute of

Environmental Studies

(NIES), and Japan

Agency for

Marine-Earth Science

and Technology

(JAMSTEC)

MIROC5 Model for Interdisciplinary

Research on Climate

MAREMIP REcoM2 Regulated Ecosystem

Model, version 2

Hauck et al., 2013

Max-Planck-Institute

fur Meteorologie (MPI),

Germany

MPI-ESM-LR Max-Planck-Institute fur

Meteorologie Earth System

Model low resolution

CMIP5 HAMMOC5.2 Hamburg ocean carbon

cycle model, v5.2

Ilyina et al., 2013

Max-Planck-Institute

fur Meteorologie (MPI),

Germany

MPI-ESM-MR Max-Planck-Institute fur

Meteorologie Earth System

Model medium resolution

CMIP5 HAMMOC5.2 Hamburg ocean carbon

cycle model, v5.2

Ilyina et al., 2013

Max-Planck-Institute

fur Meteorologie (MPI),

Germany

MPI-ESM-1-2-HAM CMIP6 HAMOCC6 Hamburg ocean carbon

cycle model, v6

Paulsen et al., 2017

Max-Planck-Institute

fur Meteorologie (MPI),

Germany

MPI-ESM1-2-HR Max-Planck-Institute fur

Meteorologie Earth System

Model high resolution,

version 1.2

CMIP6 HAMOCC6 Hamburg ocean carbon

cycle model, v6

Paulsen et al., 2017

Max-Planck-Institute

fur Meteorologie (MPI),

Germany

MPI-ESM1-2-LR Max-Planck-Institute fur

Meteorologie Earth System

Model low resolution,

version 1.2

CMIP6 HAMOCC6 Hamburg ocean carbon

cycle model, v6

Paulsen et al., 2017

Max-Planck-Institute

fur Meteorologie (MPI),

Germany

MRI-ESM1 Meteorological Research

Institute Earth System

Model Version 1

CMIP5 NPZD Oschlies, 2001 NPZD model Nakano et al., 2011

Meteorological

Research Institute

(MRI), Japan

MRI-ESM2-0 The Meteorological

Research Institute Earth

System Model Version 2.0

CMIP6 NPZD Meteorological Research

Institute Community Ocean

Model

Nakano et al., 2011

National Center for

Atmospheric Research

(NCAR), USA

CESM1-1-CAM5-

CMIP5

Community Earth System

Model, version 1.1

CMIP5 BEC Biogeochemical Elemental

Cycling Model

Moore et al., 2002,

2004, 2013

National Center for

Atmospheric Research

(NCAR), USA

CESM2 Community Earth System

Model, version 2

CMIP6 MARBL Marine Biogeochemistry

Library

Moore et al., 2004;

Long et al., 2021,

https://marbl-ecosys.

github.io

National Center for

Atmospheric Research

(NCAR), USA

CESM2-FV2 CMIP6 MARBL Marine Biogeochemistry

Library

Moore et al., 2004;

Long et al., 2021,

https://marbl-ecosys.

github.io

National Center for

Atmospheric Research

(NCAR), USA

CESM2-WACCM Community Earth System

Model, version 2 with

high-top atmosphere

CMIP6 MARBL Marine Biogeochemistry

Library

Moore et al., 2004;

Long et al., 2021,

https://marbl-ecosys.

github.io

National Center for

Atmospheric Research

(NCAR), USA

CESM2-WACCM-FV2 CMIP6 MARBL Marine Biogeochemistry

Library

Moore et al., 2004;

Long et al., 2021,

https://marbl-ecosys.

github.io

(Continued)
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TABLE 2 | Continued

Center Coupled model Dataset Ecosystem model Citation

Acronym Full Acronym Full

National Center for

Atmospheric Research

(NCAR), USA

CESM1-BGC Community Earth System

Model

MAREMIP BEC Biogeochemical Elemental

Cycling Model

Moore et al., 2004,

2013

Norwegian Climate

Center (NCC)

NorESM1-ME Norwegian Earth System

Model

CMIP5 HAMOCC5.1 Hamburg ocean carbon

cycle model, v5.1

Maier-Reimer et al.,

2005; Tjiputra et al.,

2013

Norwegian Climate

Center (NCC)

NorCPM1 The Norwegian Climate

Prediction Model (with data

assimilation)

CMIP6 HAMOCC5.1 Hamburg ocean carbon

cycle model, v5.1

Maier-Reimer et al.,

2005; Tjiputra et al.,

2013

Norwegian Climate

Center (NCC)

NorESM1-F Norwegian Earth System

Model, fast version

CMIP6 HAMOCC5.1 Hamburg ocean carbon

cycle model, v5.1

Maier-Reimer et al.,

2005; Tjiputra et al.,

2013

Norwegian Climate

Center (NCC)

NorESM2-LM Norwegian Earth System

Model, version 2, low

resolution atmos land

CMIP6 HAMOCC Hamburg ocean carbon

cycle model

Maier-Reimer et al.,

2005; Tjiputra et al.,

2013

Norwegian Climate

Center (NCC)

NorESM2-MM Norwegian Earth System

Model, version 2, medium

resolution atmos land

CMIP6 HAMOCC Hamburg ocean carbon

cycle model

Maier-Reimer et al.,

2005; Tjiputra et al.,

2013

Details include the modeling center associated with each model, the full ESM model name, the ecosystem model name, and the primary citation(s) for the ocean ecosystem component

of the model.

a monthly temporal resolution. Even monthly resolution may
not be sufficiently fine to resolve phenological patterns in
biologically relevant fields; for example, Asch et al. (2019) used
8-day resolution ESM output to resolve sub-monthly shifts
in mean phytoplankton bloom timing under climate change.
In the past, LMR scientists have needed to establish personal
relationships within major modeling centers in order to get
access to non-publicly archived variables. In cases where the
variables of interest were not archived, either at all or at
sufficient resolution, new ESM simulations may be needed,
increasing the need for direct collaboration even further. This
level of collaboration is difficult to maintain with even one
modeling center, much less multiple; this high barrier to access
further complicates the process of making an informed selection
of ESMs.

In the following sections, we compare and contrast how key
biogeochemical processes are represented within the CMIP6
models with explicit biogeochemical models. We choose this
subset from the full list in Table 2 as a practical consideration,
given that these models are most likely to be of interest to
LMR end users in the coming years. We do not attempt to
analyze differences in output values or how skillfully each
model performs when compared to observations. Particularly
when extracting results within a small region, as is typical in
LMR applications, which models are most appropriate can be
dependent on the exact research question being asked. For an
overview of model performance across the CMIP5 and CMIP6
generations of models, we instead refer readers to Séférian et al.
(2020). This study instead is intended to demystify some of the
key processes being simulated within complex ESMs, allowing
LMR end users to make more informed choices with regard to
the models that may best suit their applications and to diagnose

potential sources of model spread that influence predictions of
LMR-relevant metrics.

A COMPARISON OF CMIP6 ESMS

We focus on a few common features of the CMIP6 ESMs for
this intercomparison: the structure of each model (i.e., the state
variables and biological processes included), the formulations
used to calculate primary production, the role of temperature
in mediating various biological rates, zooplankton predator-prey
function responses, detrital remineralization formulations, and
river runoff implementations. These particular features were
chosen as key components shared across themodels that aremost
likely to influence the metrics, such as primary and secondary
production, zooplankton biomass and community composition,
and trophic transfer efficiency, that LMR end users may be
most interested in. These metrics are typically those that can
be used to predict species biomass, recruitment, and survival;
shifts in spatial distribution; and trophic interactions, particularly
with respect to target species of commercial, recreational, and
subsistence harvest (Tommasi et al., 2021). The highlighted
dissimilarities between models may play varying roles in
contributing to inter-model spread, depending on the particular
region, ecosystem, and metric of interest, but we hope that
highlighting these model differences will provide a starting point
for the often complex task of connecting model uncertainty to
specific physical and biogeochemical drivers.

We note that there are also a few processes that may be
of potential interest to LMR researchers that we chose not to
highlight. We do not address processes related to gas exchange
or carbonate chemistry; these processes are explicitly specified
as part of the CMIP6 Ocean Model Intercomparison Project
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FIGURE 1 | Schematic for the BLING model. Figures 1–12. Schematics for the CMIP6 ESMs. Boxes indicate state variables, and solid arrows represent fluxes

between state variables; dashed lines indicate that the rate of change of one state variable is calculated proportionately to another. Colors indicate the base element

for each state variable, with blue, green, pink, orange, and gray representing nitrogen, phosphorous, silicon, iron, and carbon, respectively. State variable boxes are

positioned vertically based on functional role, indicating whether the functional group includes producers (and within that, subcategories of nitrogen fixers, Si-users,

and CaCO3-users), consumers, or detritus. Horizontal position indicates the approximate mean size of the cells/bodies/particles represented by each state variable.

biogeochemical (OMIP-BGC) simulation protocols (Orr et al.,
2017) and as such are implemented in the same way across
all models within the CMIP6 suite. We also do not address
certain processes that involve the coupling of the biogeochemical
model components to other parts of the earth system, such
as atmospheric deposition of iron. We avoid these processes
primarily as a practical consideration, since they are not part of
the biogeochemical models themselves, but rather a function of
the other model components (such as the atmospheric and land
models) that each biogeochemical model may be coupled to. We
make an exception for river runoff, given its often large impact on
the near-shore ecosystems that are of interest to LMR scientists.

Functional Groups and Processes
The CMIP6 models vary widely in structural complexity.
This variety reflects the numerous applications for which
different models were designed. Many ESMs were originally
designed primarily to “close” the carbon cycle, i.e., to allow
the full inventory of the oceanic processes influencing oceanic
sequestration of carbon emissions. As such, their focus was less

on resolving the ecosystem components themselves but rather on
constraining the biologically mediated fluxes of carbon between
the surface waters and deep ocean. More recently, ESMs have
developed a dual role, serving both the original carbon system
closure purpose and the ability to resolve energy transfer within
more realistic and complex planktonic food webs. In terms of
structural complexity, the CMIP6 biogeochemical models can be
loosely grouped into a few categories.

At the simple end of the spectrum lies BLING, the
biogeochemical model that runs within the CM4 model of
GFDL (Figure 1). With only three explicitly tracked state
variables and implicit treatment of the living biota, the
low complexity of BLING aims to capture the impact of
biology on global nutrient cycles while adding minimal
computational overhead (Galbraith et al., 2010; Dunne
et al., 2020). Its lack of explicitly resolved primary or
secondary producers likely limits its use in the living marine
resource context. The tradeoff, though, is that it can be
run within higher-resolution simulations than its more
complex and computationally heavy counterparts. This,
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FIGURE 2 | Schematic for the CMOC model. See Figure 1 caption for details.

along with its diagnostic estimates of biologically relevant
outputs like chlorophyll and carbon-system quantities, may
be useful to coastal regional applications where increased
horizontal resolution outweighs the need for greater state
variable resolution.

The second category of models includes traditional NPZD
models that include single phytoplankton, zooplankton, and
detrital compartments. This category includes CMOC of
CCCMA (Figure 2), WOMBAT of CSIRO (Figure 3), and MRI-
NPZD model of the Japanese Meteorological Research Institute
(Figure 4). The HAMOCC model (Figure 5), variants of which
are run within the models of Norwegian Climate Center
and Max Planck Institute, also uses a single state variable
each for phytoplankton and zooplankton but separates detritus
into dissolved and particulate detritus. The OECO of MIROC
model (Figure 6) uses two phytoplankton functional groups
to distinguish nitrogen-fixing diazotrophs from non-nitrogen-
fixing producers but otherwise falls into this simpler category of
model. While several models in this category consider multiple
limiting macronutrients (nitrogen, phosphorous, and silicon)
and micronutrients (iron), they assume constant stoichiometric
ratios of these nutrients within the food web.

On the more complex end of the spectrum, the remaining
models partition phytoplankton, zooplankton, and detritus into
multiple state variables. This group of models includes PISCES
(Figure 7), which is used in both the CNRM and IPSL models;
COBALT of GFDL (Figure 8); CanOE of CCCMA (Figure 9);
NOBM of NASA Goddard (Figure 10); MEDUSA of the UK
(Figure 11); and MARBL of the CESM model (Figure 12).
Phytoplankton within these models are separated into 2–4
functional groups; functional groups are typically defined based
on their interactions with different nutrient pools, their size,
and their accompanying influence on metabolic rates, and in
the case of the NOBM model, by optical properties. Size is
also one of the primary features used to separate zooplankton
functional groups due to the role of body size in determining prey
preferences, metabolic rates, and the partitioning of mortality
and metabolic byproducts into the different detrital pools. Non-
living organic material is categorized by either size or lability.
This more complex category of models typically allows for
variable stoichiometry within the primary producer and detrital
state variables; most assume a fixed stoichiometry for consumers,
though the MARBL model is an exception to this. Allowing
for variable vs. fixed stoichiometry has been demonstrated

Frontiers in Marine Science | www.frontiersin.org 9 August 2021 | Volume 8 | Article 622206

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Kearney et al. Using ESMs for Regional Fisheries

FIGURE 3 | Schematic for the WOMBAT model. See Figure 1 caption for details.

to significantly impact simulated trophic transfer efficiency
under climate change scenarios (Kwiatkowski et al., 2019), so
this additional complexity may be particularly important for
LMR applications.

With an increase in the number of state variables in a
model comes an increase in the complexity of connections
between those state variables, and the number of parameters
(each with its own uncertainty) necessary to constrain them.
These connections include both the pathways that pass biomass
and energy to higher trophic levels and the pathways that
lead to export from or recycling of nutrients in the surface
waters. A more complex model may be better able to capture
the shifts in community composition and prey quality that
are key to simulating upper trophic level recruitment and
survival. For example, environmental conditions that favor larger
phytoplankton species often lead to higher transfer efficiencies
to upper trophic level species, while small phytoplankton
production is often directed toward smaller grazers and the
microbial loop (Azam et al., 1983; Armengol et al., 2019). These
potential shifts in energy pathways are of particular interest in
LMR applications that focus on plankton groups in their role as
“fish food” rather than as regulators of biogeochemical pathways
(Rose et al., 2010). Van Oostende et al. (2018) also found that

adding an additional phytoplankton group to their model of
the California Current system led to better resolution of both
chlorophyll maxima and coastal hypoxia. Likewise, explicitly
resolving different zooplankton size classes can increase the types
of ecosystem analyses that are possible based on ESM output.
For example, the GFDL COBALT model is essentially a more
ecosystem-heavy version of its predecessor, TOPAZ (Dunne
et al., 2013). By adding three explicit zooplankton groups (and
bacteria) in place of the implicit zooplankton parameterization
found in TOPAZ, COBALT has been able to be used for a diverse
set of LMR applications: to model and predict fisheries catch in
LMEs (Stock et al., 2017; Park et al., 2019), to couple to offline
models to examine distributions of fish functional types (Petrik
et al., 2019) and the impact of jellyfish on the global carbon cycle
(Luo et al., 2020), and to examine the impacts of migration and
light-dependent grazing on the vertical distribution of carbon,
nutrients, and chlorophyll (Bianchi et al., 2013; Moeller et al.,
2019). Greater resolution of detrital components may allow for
better resolution of the different time scales over which material
may be exported to deep water, transported into or out of
a region of interest, or returned to the nutrient pools. These
remineralization pathways can directly affect the local availability
of nutrients that, in turn influence rates of primary production.
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FIGURE 4 | Schematic for the MRI NPZD model. See Figure 1 caption for details.

This is particularly true in shallow shelf systems, where nutrients
exported below the mixed layer may be reintroduced to surface
waters by mixing events (Huang et al., 2015; Flynn et al., 2020).
Particle export ratios and fluxes to the benthic ecosystems have
also been shown to be better predictors of fisheries productivity
(Friedland et al., 2012; Stock et al., 2017) and of the composition
of fish communities (Van Denderen et al., 2018; Petrik et al.,
2019) than net primary productivity alone. It is important to note,
however, that while the state variables and processes included
in more complex models often reflect our best estimation
of the Earth system processes that influence both lower and
upper trophic level dynamics, the added complexity does not
necessarily impart greater skill (Séférian et al., 2020).

Phytoplankton Growth Limitation Terms
Primary productivity rates and phytoplankton biomass are some
of the most commonly extracted ESM variables of interest
to LMR end users. As the base of the food web, plankton
production often determines the characteristics of the food
web that can be supported in a given region. Changes to the
magnitude, community composition, or timing of spring and fall
blooms may impact the survival of upper trophic level species

(Platt et al., 2003; Durant et al., 2007; Schweigert et al., 2013;
Malick et al., 2015; Asch et al., 2019). Because the most important
process controlling interior ocean pH is organic matter cycling,
the processes limiting primary production also influence the pH
(Lauvset et al., 2020). Acid-base reactions involved in nutrient
uptake also have an impact on both pH and alkalinity (Wolf-
Gladrow et al., 2007). Therefore, model structure related to the
regulation of primary production may influence many of the key
properties of interest to LMR end users.

Phytoplankton growth rates vary based on a number of
factors, chief among them temperature, light, and availability
of both the macronutrients and micronutrients necessary for
growth. Within ESMs, maximum phytoplankton growth rate
is typically modeled as a temperature-dependent maximum
potential growth rate modulated by limitation terms (with values
ranging from 0 to 1) that reduce that rate based on limited
nutrient supplies and light. While this concept is consistent
across all CMIP6 models, the exact implementation of each
limitation term and the manner in which they interact vary from
model to model. We will address variations in the temperature-
dependent maximum growth rate in section 3.3 and focus here
on the light- and nutrient-limitation terms.
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FIGURE 5 | Schematic for the HAMOCC model. See Figure 1 caption for details.

Nutrient-limitation terms typically fall into one of two broad
categories. The first category calculates limitation as a function
of ambient nutrient concentration. The majority of the CMIP6
ESMs use this approach for limitation terms related to the
macronutrients (i.e., nitrogen and phosphate) (Tables 3, 4).
Monod curves (Monod, 1942), also referred to as Michaelis-
Menten curves due to their functional equivalence to the enzyme
kinetics equation (Michaelis andMenten, 1913), define limitation
in terms of a half-saturation constant (KX). This is the most
common nutrient-limitation term equation found in the CMIP6
ESMs. The MPI-NPZDmodel instead opts for an optimal uptake
kinetics approach (Smith et al., 2009) that accounts for tradeoffs
in nutrient encounter rates and assimilation rates; like theMonod
curve, this approach assumes growth rate is a function of external
nutrient concentration. The second category of limitation uses
an internal cell quota model. A quota-model limitation term
is based on the internally stored concentration of a particular
element rather than the ambient concentration, and it allows for
uptake and storage of one or more nutrients beyond immediate
needs. This style of limitation term can be more appropriate
when dealing with elements like silicon and iron; Fe:C and
Si:C ratios can vary much more widely within cells relative to

macronutrients like N and P. Within the CMIP6 suite, COBALT
and PISCES use quota models for iron limitation. BLING also
uses a variant on the quota model for iron limitation, adapted to
infer cell quota from uptake rates. CanOE uses a quota model for
both nitrogen and iron uptake.

Phytoplankton can acquire nitrogen from a variety of
different organic and inorganic compounds, and the sources that
contribute to the nitrogen limitation term of each model provide
additional potential for model structural divergence (Table 3).
Non-nitrogen-fixing phytoplankton typically acquire nitrogen
from two primary forms: nitrate or ammonium. The relative
use of new (nitrate-based) vs. regenerated (ammonium-based)
nutrient sources for production reflects whether an ecosystem
is dominated by larger phytoplankton species that pass energy
up the food chain and contribute to higher export ratios of
carbon from surface to deep water, or whether the ecosystem is
dominated by smaller phytoplankton with production primary
recycled within the microbial loop (Dunne et al., 2005). Due
to its reduced state, ammonium is more readily utilized by
phytoplankton for growth (Gruber, 2008). In addition, the
presence of high concentrations of ammonium can directly
inhibit the uptake of nitrate (O’Neill et al., 1989; Dortch, 1990;
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FIGURE 6 | Schematic for the OECO model. See Figure 1 caption for details.

Frost and Franzen, 1992; Paulot et al., 2015). Therefore, the
limitation terms of many of the CMIP6 ESMs are formulated
to favor ammonium uptake over nitrate uptake and to adjust
nitrate uptake in the presence of ammonium. PISCES, COBALT,
CanOE, MARBL, and NOBM track the separate use of NH4

vs. NO3, with total nitrogen limitation being a sum of the two
individual limitation terms. COBALT and PISCES account for
both ammonium preference and its inhibition on nitrate, as well
as inhibition of ammonium uptake of nitrate in the presence
of very high concentrations of nitrate (O’Neill et al., 1989).
NOBM and CanOE impose a preference for NH4 over NO3

but do not apply any inhibition terms to the uptake of either
nutrient. OECO, HAMOCC5.1, andHAMOCC6 track NO3 only.
CMOC and MEDUSA, meanwhile, track only a single pool of
nitrogen. A number of the ESMs also account for nitrogen
fixation. Nitrogen fixers are able to transform N2 gas into fixed
nitrogen (NH4), and in models they are typically differentiated
from other phytoplankton groups through the elimination
of an N-limitation term in their growth equation. COBALT,
OECO, HAMOCC6, and MARBL all simulate nitrogen-fixing
diazotrophs in this manner. The NOBM model instead uses an
additional factor to increase the N-limited growth rate of the
cyanobacteria group when N is low, representing a shift within

the functional group from non-nitrogen-fixing to nitrogen-fixing
cyanobacteria. CMOC simulates only a single nutrient pool and
single phytoplankton group but provides a flux of nitrogen into
its surface nutrient pool based on implicit parameterizations of
diazotrophic bacteria. Likewise, CanOE parameterizes nitrogen
fixation as an input source to the ammonium field, dependent on
light, temperature, and iron concentration and inhibited by high
inorganic nitrogen.

Phytoplankton growth rates can also be very sensitive to
even small variations in light and light sensitivity (e.g., Walsh
et al., 2003). A number of different empirical curves, known
as photosynthesis-irradiance (PI or PE) curves, have been
proposed to quantify the relationship between solar irradiance
and photosynthesis (e.g., Jassby and Platt, 1976; Platt and Jassby,
1976; Platt et al., 1980). Within the CMIP6 suite, NOBM uses the
simplest form, identical to its Monod nutrient-limitation terms,
with a functional-group-specific light half-saturation parameter.
MEDUSA, OECO, and MPI-NPZD use a hyperbolic tangent
curve (Smith, 1936; Jassby and Platt, 1976):

µmax(T)αI
√

(µmax(T))2 + (αI)2
(1)
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FIGURE 7 | Schematic for the PISCES model. See Figure 1 caption for details.

where µmax(T) is the light- and nutrient-replete growth rate at
temperature T, α describes the initial slope of the PI curve, and I
is the solar irradiance.

The remaining models base their PI curves on that of Geider
et al. (1997):

1− exp

(

−αchlθchlI

µmax(T,N)

)

(2)

where αchl is the chlorophyll-specific initial slope of the PI
curve, θchl is the chlorophyll-to-carbon (chl:C) ratio, and
µmax(T,N) is temperature- and nutrient-mediated growth rate
under light-replete conditions. In this form, the light-limitation
curve is a function of nutrient and temperature limitation,
such that nutrient concentration and temperature play both a
direct and indirect role in modulating growth. The WOMBAT
model simplifies this relationship by using µmax(T) in place
of µmax(T,N). By introducing a chl:C parameter, this function
captures the process of photoadaptation, where phytoplankton
increase their chlorophyll levels to compensate for low light
levels. COBALT and BLING account for the effects of both

irradiance and nutrient limitation when calculating the θchl value.
MARBL and CanOE compute a prognostic chlorophyll with
chlorophyll biosynthesis calculated as a function of light and
nutrient availability (after Geider et al., 1998). Within CMOC,
PISCES, NOBM, and MEDUSA2, θchl is a function of irradiance
only. WOMBAT, OECO, and HAMOCC do not account for
variation in chl:C ratios in their light-limitation factors.

A final structural difference arises in how each model
applies colimitation from nutrients, light, and temperature. In
general, primary productivity models use one of two models:
a minimum limiting factor model (Liebig and Playfair, 1843)
or a multiplicative model. All models in the CMIP6 suite
use a minimum model across nutrients but vary regarding
the colimitation with light. PISCES, COBALT, MARBL, and
HAMOCC calculate a separate minimum limiting nutrient factor
and light limitation factor, both applied multiplicatively to a
temperature-dependent maximum uptake rate [note that for
the models that use the Geider et al. (1997) nutrient-mediated
light formulation, and this implementation in effect determines
whether there is enough light to reach the nutrient-limited rate].
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FIGURE 8 | Schematic for the COBALT model. See Figure 1 caption for details.

CanOE uses a similar implementation but with the nutrient-
limitation factor calculated as the minimum of N- and Fe-
based cell quota terms rather than using the same limitation
term as for uptake. CMOC, NOBM, OECO, MRI-NPZD, and
WOMBAT calculate a single limiting factor across both nutrient
and light limitation and apply this to a temperature-dependent
uptake rate.

Temperature Influence on Biological Rates
Variations in temperature dependence at various trophic levels,
both within a single model and across models, can play a key
role in determining how primary and secondary production rates
in each ESM respond relative to each other both seasonally
and under long-term climate change scenarios. This in turn can
influence whether an increase in temperature leads to higher or
lower trophic transfer efficiencies (i.e., fraction of production
at one trophic level relative to one below it), which is of
particular interest when quantifying how changes affect upper
trophic level species. For example, Reum et al. (2020) found

that temperature dependency assumptions were a key source of
intermodel uncertainty in their examination of the impact of
climate change on the Bering Sea food web.

The exponential scaling of maximum plankton growth rate
with temperature was first reported by Eppley (1972), and the
resultant “Eppley-curve” is an empirical function widely used
to estimate primary productivity from satellites (Morel, 1991;
Behrenfeld and Falkowski, 1997) and incorporated in models
(e.g., Stock et al., 2014). The majority of the CMIP6 models
formulate their temperature-dependent factors using an Eppley-
style exponential curve, with coefficients that reflect updated data
compilations (e.g., Brush et al., 2002; Bissinger et al., 2008).

The Arrhenius-Van’t Hoff equation (Arrhenius, 1915) is an
alternative to the Eppley function that has traditionally been
used to describe the rates of chemical reactions. However, it
can also be used to describe biological rates, as metabolic
rates are typically limited by a rate-limiting biochemical step,
such as Rubisco carboxylation for autotrophic growth and
adenosine triphosphate (ATP) synthesis for heterotrophic growth
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FIGURE 9 | Schematic for the CanOE model. See Figure 1 caption for details.

(Gillooly et al., 2001; Brown et al., 2004). These ideas have
been incorporated into the metabolic theory of ecology (MTE;
Brown et al., 2004) that broadly describes how metabolic
rates scale with biomass and temperature. MTE uses the
activation energy (Ea) of the rate-limiting enzymatic reaction
to describe the temperature dependence of metabolic rates.
This mechanistic derivation of temperature limitation leads
to a similarly-shaped temperature vs. rate curve as the more
empirically derived Eppley formulation; though within the
temperature range of most biological processes (0–40C), there
can be up to a 10–15% difference in rates when using the
Eppley formulation vs. the Arrhenius (or MTE) equation
(Gillooly et al., 2002). Within the CMIP6 suite, CMOC and
CanOE rely on the Arrhenius-Van’t Hoff equation for their
temperature sensitivities.

The sensitivity of the various temperature curves used within
the CMIP6 models can be compared by looking at the Q10 value,
i.e., the acceleration of a given reaction when the temperature
is increased by 10◦C. While the exact equations used vary, all
models within the CMIP6 suite apply a similar temperature

dependence to phytoplankton growth rate, with similar Q10
values (Table 5).

However, the models differ when it comes to the effect
of temperature on other processes. In PISCES, COBALT,
NOBM, and MARBL, zooplankton grazing rates are also
temperature dependent. Within PISCES, the zooplankton
grazing rate is more strongly influenced by temperature
than phytoplankton nutrient uptake, while in NOBM, the
reverse is true; COBALT and MARBL apply the same Q10
factors to both processes. In the remaining models, the
zooplankton grazing rate is unaffected by temperature. Detrital
remineralization is also temperature dependent in all models
except for MRI-NPZD and HAMOCC. Within CMOC, CanOE,
and PISCES, the detrital remineralization Q10 values are
higher than those for phytoplankton uptake rate, while in
the remaining models the Q10 factors are the same. The
temperature dependence of nutrient recycling and the microbial
loop have been highlighted as a key source of uncertainty in
projections of both the magnitude and direction of net primary
productivity under climate change (Taucher and Oschlies, 2011).
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FIGURE 10 | Schematic for the NOBM model. See Figure 1 caption for details.

Finally, phytoplankton and zooplankton mortality rates are
temperature dependent in a handful of models. WOMBAT,
MARBL, BLING, and COBALT include temperature
terms in their phytoplankton mortality rates, while
PISCES, COBALT, and MARBL apply similar terms to
zooplankton mortality.

From the perspective of modeling of higher trophic
levels such as fish, the assumptions regarding temperature
effects are critical. While warming may increase overall
primary productivity, limits on the zooplankton grazing
rate and increases in zooplankton mortality may serve as
bottlenecks that prevent increased primary production from
reaching fish and higher trophic levels. Likewise, the relative
response of remineralization processes may alter the balance
between benthic vs. pelagic energy pathways. Laufkötter et al.
(2017) found that changes to the temperature dependence of
remineralization rates within an ESM could strongly influence
surface nutrient concentration and the extent of oxygen
minimum zones. Therefore, assumptions of the ESM can
strongly influence predictions when coupled to higher trophic
level models.

Zooplankton Functional Response
Zooplankton functional response is one area where the CMIP6
models tend to converge structurally, with all models using
either a type 2 or type 3 functional response (Table 6). A type
2 functional response, which is used in the NOBM, CanOE,
MARBL, and HAMOCCmodels, is defined as one where grazing
rate increases linearly at low prey biomass and approaches a
threshold rate at high prey biomass; the functional form is
concave down everywhere (Gentleman et al., 2003). A type
3 functional response is similar, except for the presence of
an inflection point that decreases predator grazing rates at
low prey biomass relative to a type 2 function (Gentleman
et al., 2003). Sigmoidal type 3 functional responses are used
in WOMBAT, CMOC, MEDUSA, OECO, and MRI-NPZD;
PISCES uses a type 3 threshold model instead. COBALT falls in
between, using a type 2 response but with a small prey biomass
adjustment to limit grazing at very low prey concentrations.
This limited number of functional response forms contrasts
with the many functional responses applied in ecosystem
models for higher trophic levels, such as those summarized in
Hunsicker et al. (2011).
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FIGURE 11 | Schematic for the MEDUSA model. See Figure 1 caption for details.

Where grazers can feed on multiple prey groups (including
either phytoplankton, zooplankton, or detrital prey sources),
many of themodels calculate grazing rates using a single-resource
model, where the grazing rate on a particular prey species is
determined independently of whether other prey are present.
PISCES, COBALT, NOBM, MEDUSA, and CanOE do consider
total prey availability when calculating grazing rates. NOBM
and CanOE calculate grazing as a function of total prey, with
predation distributed across the prey species proportional to prey
availability. MEDUSA and PISCES both use prey preferences,
such that grazing rate is a function of both prey availability and
the relative preference of predator for each prey species. COBALT
uses a similar preference-based model but adds a switching
function such that predator preference for prey increases when
that prey is abundant.

Detrital Remineralization
The biological carbon pump is a collection of processes
that determine the export and associated remineralization of
particulate organic carbon (POC) produced by biological activity

at the ocean surface (Passow and Carlson, 2012). These processes
play a key role in the global carbon cycle; because carbon
is assimilated by biological processes in the surface waters
and then sequestered at depth, through both the soft-tissue
pump (sinking of organic matter) and carbonate pump (sinking
of carbonate mineral shells), the ocean takes up far more
atmospheric CO2 (Sarmiento and Gruber, 2006, and citations
within) than through the solubility pump alone. The strength
of the biological pump is estimated to be between 5 and 13
Pg C yr−1 (Laws et al., 2000; Dunne et al., 2007; Henson
et al., 2011), though models from the CMIP5 era ranged in the
lower end of those estimates (5–8 Pg C yr−1) (Laufkötter et al.,
2016).

In addition to the role this process plays in the global

carbon cycle, detrital remineralization can affect regional patterns

in nutrient concentration. The speed at which material is
transported from the surface waters to below the mixed

layer may affect nutrient limitation and, therefore, primary
production. Particularly in shallow coastal environments, how
detrital remineralization is simulated and parameterized may
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FIGURE 12 | Schematic for the MARBL model. See Figure 1 caption for details.

influence whether organic material is recycled within the water
column, is fed into a benthic food web, or is subject to burial.

Aside from the models that treat organic matter
remineralization in a highly generalized fashion (e.g.,
BLING, CMOC, MRI-NPZD), CMIP6 models generally
treat detrital remineralization in similar ways, though specific
implementation may vary. In general, particulate organic
matter in models is produced through a combination of
phytoplankton loss and aggregation processes, and zooplankton
grazing and mortality (Laufkötter et al., 2016). The specific
type of detrital particle impacts the particle sinking speed
or remineralization rates, which are correlated quantities.
Particles that sink faster and/or are protected from bacterial
remineralization have lower remineralization rates and, thus,
longer remineralization length scales (defined as the depth at
which 63% of the organic matter has been converted to inorganic
forms). A key factor determining whether a detrital particle is
protected or is faster-sinking is the presence of ballast materials
(lithogenic particles, biogenic silica, and calcium carbonate),
originating from organisms such as diatoms, coccolithophores,
and foraminifera, and dust deposition (Armstrong et al.,
2002; Francois et al., 2002; Klaas and Archer, 2002; Dunne
et al., 2007). ESMs focus on characterizing ballast materials

properly in order to achieve a representation of both ballasting
and non-ballasting POM remineralization at depth, often
relying on a variant of the Klaas and Archer (2002) mineral
ballasting model.

The treatment of ballasting and non-ballasting particulate
organic matter in CMIP6 models can then be divided into those
that use a flux attenuation scheme (MARBL, HAMOCC, and
OECO) and those that have sinking particles, whether in one
or multiple size classes (COBALT, CanOE, PISCES, MEDUSA,
and NOBM; also see the categorization of Séférian et al., 2020).
In a flux attenuation scheme, organic material losses such as
non-predatory mortality, egestion, and aggregation are collected
into an implicit detrital pool that is then redistributed across
depth to various inorganic nutrient pools based on depth profiles
of remineralization rates. Treatment of ballast materials in
this case results in the “hard POM” distributing more evenly
throughout deeper depths, associated with their (implicitly)
faster sinking speeds (e.g., Abell et al., 2000). In the remaining
schemes, the organic material losses flow to one or more detrital
state variables within the model grid cell in which the loss
process occurs; the detrital state variables are then subject to
vertical sinking. For the size-differentiated detrital models, loss
fluxes are typically categorized based on the size and type of
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TABLE 3 | Nitrogen nutrient-limitation factors across all CMIP6 ESMs.

Model Group LN LNO3
LNH4

WOMBAT Phytoplankton

CMOC Phytoplankton N
KN+N

CanOE Small phytoplankton

Large phytoplankton

PISCES 2.0 Misc. phytoplankton LNO3
+ LNH4

KNH4NO3

KNO3
KNH4+KNH4NO3+KNO3NH4

KNO3
NH4

KNO3
KNH4+KNH4NO3+KNO3NH4

Diatoms LNO3
+ LNH4

KNH4NO3

KNO3
KNH4+KNH4NO3+KNO3NH4

KNO3
NH4

KNO3
KNH4+KNH4NO3+KNO3NH4

BLING Diagnostic chl only

COBALT Small phytoplankton LNO3
+ LNH4

NO3
KNO3

+NO3+(KNO3 /KNH4 )NH4

NH4
KNH4+NH4+(KNH4 /KNO3

)NO3

Large Phytoplankton LNO3
+ LNH4

NO3
KNO3

+NO3+(KNO3 /KNH4 )NH4

NH4
KNH4+NH4+(KNH4 /KNO3

)NO3

Diazotrophs

NOBM Diatoms LNO3
+ LNH4

min
(

NO3
KNO3

+NO3
, 1− LNH4

)

NH4
KNH4+NH4

Chlorophytes LNO3
+ LNH4

min
(

NO3
KNO3

+NO3
, 1− LNH4

)

NH4
KNH4+NH4

Cyanobacteria LNO3
+ LNH4

min
(

NO3
KNO3

+NO3
, 1− LNH4

)

NH4
KNH4+NH4

Coccolithophores LNO3
+ LNH4

min
(

NO3
KNO3

+NO3
, 1− LNH4

)

NH4
KNH4+NH4

MEDUSA 2.0 Non-diatoms N
KN+N

Diatoms N
KN+N

OECO Phytoplankton NO3
KNO3

+NO3

Diazotrophs

HAMOCC6 Phytoplankton NO3
KNO3

+NO3

Diazotrophs

MRI-NPZD Phytoplankton 0.5

(

1+
√

α
KNO3

)

· NO3

NO3+2
√

αNO3+α

MARBL Small phytoplankton LNO3
+ LNH4

NO3
KNO3

1+
NO3
KNO3

+
NH4
KNH4

NH4
KNH4

1+
NO3
KNO3

+
NH4
KNH4

Diatoms LNO3
+ LNH4

NO3
KNO3

1+
NO3
KNO3

+
NH4
KNH4

NH4
KNH4

1+
NO3
KNO3

+
NH4
KNH4

Diazotrophs

HAMOCC5.1 Phytoplankton NO3
KNO3

+NO3

CanOE Small phytoplankton LNH4
+ (1− LNH4

)LNO3

NO3
KNO3

+NO3

NH4
KNH4+NH4

Large phytoplankton LNH4
+ (1− LNH4

)LNO3

NO3
KNO3

+NO3

NH4
KNH4+NH4

N, NO3, and NH4 indicate concentrations of total nitrogen, nitrate, and ammonium, respectively. LX refers to the limitation term associated with tracer X. KX refers to a half-saturation

constant for tracer X. α is a fitting constant associated with optimal uptake kinetics.

source material, with larger and ballasted particles sinking more
quickly than smaller and non-ballasted ones. In the majority of
models, these size- and type-specific sinking speeds are constants
though some models also take the effect of temperature on
sinking speed and/or remineralization into account (e.g., NOBM
and COBALT).

River Runoff
For regional LMR applications, river runoff can be important
due to its impact on a coastal circulation, vertical stratification,
salinity, nutrient and dissolved organic matter concentration,
biological production, and carbon chemistry (e.g., Dagg and
Breed, 2003; Lohrenz et al., 2008; Gomez et al., 2019). Physical
impacts include buoyancy-driven coastal currents such as the
Alaska Coastal Current and associatedmesoscale eddies (Stabeno
et al., 2016). Large riverine inputs of nutrients can lead to
coastal eutrophication, and the subsequent remineralization of
organic matter can promote hypoxia and enhanced acidity

near bottom, especially in regions with poor ventilation and
weak buffer capacity (Bianchi et al., 2010; Cai et al., 2011,
2017; Fennel et al., 2016). In addition, the biogeochemical
signature of land-influenced river water is distinct from that
of ocean-derived water. The usually more acidic water from
rivers determines decreased aragonite saturation levels (Duarte
et al., 2013), increasing the vulnerability of coastal regions to
ocean acidification. Riverine input of dissolved iron can have a
substantial impact on coastal production (Coyle et al., 2019).

Within the CMIP6 suite of models, a wide variety of
approaches are used to resolve riverine processes (Table 7).
Freshwater fluxes in many models are calculated as part of
the coupled ESM. When this is the case, the river fluxes
are a function of processes within the atmosphere, ocean,
and land components of the model, and they respond to
changes in the simulated climate. In other models, freshwater
fluxes are derived from an external data set, such as the
river runoff climatologies of Dai and Trenberth (2002) and
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TABLE 4 | P, Fe, and Si nutrient-limitation factors across all CMIP6 ESMs.

Model Group LPO4
LFe LSi

WOMBAT Phytoplankton X
KX+X

Fe
KFe+Fe

CMOC Phytoplankton LFe

CanOE Small phytoplankton

Large phytoplankton

PISCES 2.0 Misc. phytoplankton PO4
KPO4

+PO4
min

(

1,max
(

0, θ−θmin
θopt

))

Diatoms PO4
KPO4

+PO4
min

(

1,max
(

0, θ−θmin
θopt

))

Si
KSi+Si

BLING Diagnostic chl only PO4
KPO4

+PO4

θuptake
Kθ+θuptake

· Kθ+θ0
θ0

COBALT Small phytoplankton PO4
KPO4

+PO4

θ2

K2
θ +θ2

Large phytoplankton PO4
KPO4

+PO4

θ2

K2
θ +θ2

Diazotrophs PO4
KPO4

+PO4

θ2

K2
θ +θ2

NOBM Diatoms Fe
KFe+Fe

Si
KSi+Si

Chlorophytes Fe
KFe+Fe

Cyanobacteria Fe
KFe+Fe

Coccolithophores Fe
KFe+Fe

MEDUSA 2.0 Non-diatoms Fe
KFe+Fe

Diatoms Fe
KFe+Fe

OECO Phytoplankton PO4
KPO4

+PO4

Fe
KFe+Fe

Diazotrophs PO4
KPO4

+PO4

Fe
KFe+Fe

HAMOCC6 Phytoplankton PO4
KPO4

+PO4

Fe
KFe+Fe

Diazotrophs PO4
KPO4

+PO4

Fe
KFe+Fe

MRI-NPZD Phytoplankton 0.5

(

1+
√

α
KPO4

)

· PO4

PO4+2
√

αPO4+α

MARBL Small phytoplankton

PO4
KPO4

1+
PO4
KPO4

+ DOP
KDOP

DOP
KDOP

1+
PO4
KPO4

+ DOP
KDOP

Fe
KFe+Fe

Diatoms

PO4
KPO4

1+
PO4
KPO4

+ DOP
KDOP

DOP
KDOP

1+
PO4
KPO4

+ DOP
KDOP

Fe
KFe+Fe

SiO3
SiO3+KSiO3

Diazotrophs

PO4
KPO4

1+
PO4
KPO4

+ DOP
KDOP

DOP
KDOP

1+
PO4
KPO4

+ DOP
KDOP

Fe
KFe+Fe

HAMOCC5.1 Phytoplankton PO4
KPO4

+PO4

Fe
KFe+Fe

CanOE Small phytoplankton Fe
KFe+Fe

Large phytoplankton Fe
KFe+Fe

PO4, Fe, Si, and DOP indicate concentrations of total phosphate, iron, silica, and dissolved organic phosphorus, respectively. LX refers to the limitation term associated with tracer X.

KX refers to a half-saturation constant for tracer X. α is a fitting constant associated with optimal uptake kinetics. θ represents an Fe:X ratio, where X is either N, P, or C.

Dai et al. (2009). Many of the global models add runoff as
a surface flux to the ocean within a specified distance from
the coast (Griffies et al., 2016). This technique only partially
compensates for the severely limited resolution of the true
estuarine circulation and mixing (and consequent boundary
currents) by coarse ocean model grids. Some of the CMIP6
models include significant improvements to the surface flux
approach used in CMIP5. These include the following: (1)
the estuarine box model technique (Sun et al., 2017) now
incorporated into CESM2 (Danabasoglu et al., 2020) and (2)
enhanced vertical mixing in coastal grid cells receiving riverine
input, now incorporated into MOM6 of GFDL (R. Hallberg,
pers. comm.).

Biogeochemical riverine inputs, when included, primarily
rely on external river export models, including the Integrated
Model to Assess the Global Environment-Global Nutrient Model
(IMAGE-GNM) (Beusen et al., 2015, 2016), the Global Nutrient

Export from Watersheds (NEWS) model (Seitzinger et al., 2005;
Mayorga et al., 2010), and the Global Erosion Model (GEM)
(Ludwig and Probst, 1996).

Overall, the CMIP6 suite of ESMs does not represent the
spatiotemporal variability in regional-scale riverine fluxes of
either freshwater or of nutrients, DIC, and alkalinity well;
they are typically designed to capture global-scale trends that
may not be appropriate when focusing on smaller regional
scales. For example, the GFDL ESM4 input forcing (coupled
to COBALT) assumes a river DIC of 320 mmol m−3 and a
river total alkalinity (TA) of 420 meq m−3; these values are
defined to compensate for global DIC and TA losses such
that mass balance within the biogeochemical model domain is
maintained. However, observations suggest that river DIC is
usually greater than river alkalinity (see Figure 8 in Moore-
Maley et al., 2018). With respect to global river discharge
datasets, Kearney (2019) found that the algorithms used to fill
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spatiotemporal gaps in river gauge measurements within the
Dai and Trenberth (2002) dataset were inappropriate for snow-
influenced rivers like those emptying into the Bering Sea. Fully
coupling the biogeochemical processes connecting the ocean and
land systems, including those associated with rivers, the benthic

TABLE 5 | Q10 factor associated with various model processes for a given ESM.

Model P growth Z grazing D remineralization P mortality Z mortality

WOMBAT 1.895 1 1.895 1.895 1

CMOC 1.619 1 1.93 1 1

PISCES 1.895 2.139 1.9 1 2.139

COBALT 1.878 1.878 1.878 1** 1.878

NOBM 1.895 1.325 1.895 1 1

MEDUSA 1.895 1 1.895 1 1

OECO 1.895 1 1.895 1 1

MARBL 1.7 1.7 1.7 1.7 1.7

MRI-NPZD 1.895 1 1 1 1

HAMOCC 1.895 1 1 1 1

BLING 1.878 * 1.878

CanOE 1.719 1 2.168 1 1

A factor of 1.0 indicates that the process is unaffected by temperature, while a blank value

indicates that the process is not explicitly resolved in a model. *Particulate production in

BLING is temperature dependent but implicit and, therefore, difficult to quantify via a Q10

factor. **COBALT includes temperature dependence for viral loss and basal respiration

but not for aggregation. Note: for models using the Arhennius equation, where Q10 varies

slightly with temperature, we have indicated the mean Q10 over 10–20◦C.

ecosystem, and the continental shelf, remains an outstanding
task that ESMs have not yet been implemented. When applying
global ESM results to highly river-influenced areas, LMR end
users may need to carefully consider potential limitations
like these.

TABLE 6 | Per unit biomass grazing functional responses of predator j on prey i,

with other available prey groups k.

Model Functional response

WOMBAT
gjǫP

2
i

gj+ǫP2
i

CMOC
gjP

2
i

K2
i
+P2

i

PISCES F (Pk )
gj (T )qi jmax(Pi−Pthresh,i )

Ki+
∑

k qkPk

COBALT
gj (T )8ijPi

Kij+
∑

k 8kjPk

NOBM gj (T )
(

1− exp
(

3
∑

k Pk
))

Pi
∑

k Pk

MEDUSA
gjqjP

2
i

K2
i
+

∑

k qkP
2
k

OECO
gjǫP

2
i

gj+ǫP2
i

MARBL
gj (T )P

2
i

K2
i
qi+P2i

MRI-NPZD
gjǫP

2
i

gj+ǫP2
i

HAMOCC
gjPi
Ki+Pi

CanOE gj
(

1− exp
(

3
∑

k Pk
))

Pi
∑

k Pk

Parameters include gj = maximum grazing rate (per time), gj (T ) = maximum grazing rate

as a function of temperature, ǫ = capture rate (biomass−1 time−1 ), Pi = biomass of prey,

qij = preference for prey i, Ki = half-saturation constant (biomass),8ij = switching function,

3 = Ivlev constant (biomass−1 time−1), Pthresh = prey threshold (biomass), and F (Pk ) =

total prey threshold function.

TABLE 7 | River runoff treatment in the CMIP6 ESMs.

Model (BGC, Ocean) Reference Freshwater fluxes Chemistry fluxes

MARBL Long et al., 2021 CESM2 MAGEGNM for DIN and DIP; GlobalNEWS for other nutrients, carbon and

alkalinity

NOBM Ito et al., 2020 GISS ModelE2.1 POC, DOC, DIC, nirate, silicate, and iron use climatological concentrations of

major rivers da Cunha et al., 2007, modulated by modeled freshwater discharge

PISCES-v2 Aumont et al., 2015 NEMO GlobalNEWS for nutrients; Global Erosion Model (GEM) for DIC and alkalinity;

POC delivery was neglected; DON, DOC, and DOP were assumed to

remineralize instantaneously at river mouths; dissolved iron was derived from

DIC, assuming constant Fe:DIC ratio

COBALT Stock et al., 2020 ESM4.1 GlobalNEWS for DIN, DON, DIP, DOP; phosphorus concentration were scaled to

achieve global balance with phosphorus burial; dissolved iron was set to 40

µmol m−3; DIC and alkalinity were calibrated to balance DIC burial and alkalinity

losses, resulting in characteristic river concentrations of 320 mmol m−3 and 420

meq m−3, respectively; silicon inputs were not considered

HAMOCC 5.2 Paulsen et al., 2017 Derived from runoff

model

CanOE Hayashida et al., 2019 Dai and Trenberth,

2002

WOMBAT Oke et al., 2013 Dai and Trenberth,

2002; Dai et al., 2009

MEDUSA2.0 Yool et al., 2013 River inputs were not included

OECO Hajima et al., 2019 MIROC-ES2L Nitrogen was derived from the land-biogeochemical model; phosphorous was

assumed to be in Redfield ratio

Note that we list the models by biogeochemical module for consistency with other tables in this study, even though river input forcing is simulation-specific rather than being an intrinsic

part of the biogeochemcial model.
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CONCLUSIONS

Projections of changing climate, across both short and long
timescales, are playing an increasingly important role in
many LMR management strategies (Link et al., 2015). The
ability of management frameworks to use ESM output
may be dependent on the complexity of the ecosystem
models used to support decision-making that can range from
population dynamics models with no environmental covariates
included, through to complex end-to-end ecosystem models
incorporating movement, bioenergetics, and fishing fleet
dynamics (Fulton et al., 2011; Marshall et al., 2019). However,
as Ecosystem-Based Fishery Management becomes more widely
implemented, assessment and management processes will
likely become more able to ingest ecosystem indicators and
ESM projections. Even if current frameworks are not able
to easily include environmental covariates, they can still be
considered using Management Strategy Evaluation or scenario
planning (Haward et al., 2013; Punt et al., 2016; Surma et al.,
2018).

To support this endeavor, LMR scientists and managers
must not only have access to climate and biogeochemical
model output but also understand the differences among
models in terms of simulating key processes, resolution, etc.
The complexity of the suite of models and the constraints
on getting needed model output have thus far been a
hindrance for using the model output for LMR science and
management. This study provides a summary of some of the
key points LMR end users may need to consider when using
the CMIP6 suite of biogeochemical model output and also

provides an entry point to the more in-depth descriptions
found in the primary documenting literature for each model
(see Table 2).
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