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Resource selection functions (RSFs) have been widely applied to animal tracking data
to examine relative habitat selection and to help guide management and conservation
strategies. While readily used in terrestrial ecology, RSFs have yet to be extensively used
within marine systems. As acoustic telemetry continues to be a pervasive approach
within marine environments, incorporation of RSFs can provide new insights to help
prioritize habitat protection and restoration to meet conservation goals. To overcome
statistical hurdles and achieve high prediction accuracy, machine learning algorithms
could be paired with RSFs to predict relative habitat selection for a species within and
even outside the monitoring range of acoustic receiver arrays, making this a valuable
tool for marine ecologists and resource managers. Here, we apply RSFs using machine
learning to an acoustic telemetry dataset of four shark species to explore and predict
species-specific habitat selection within a marine protected area. In addition, we also
apply this RSF-machine learning approach to investigate predator-prey relationships
by comparing and averaging tiger shark relative selection values with the relative
selection values derived for eight potential prey-species. We provide methodological
considerations along with a framework and flexible approach to apply RSFs with
machine learning algorithms to acoustic telemetry data and suggest marine ecologists
and resource managers consider adopting such tools to help guide both conservation
and management strategies.

Keywords: resource selection, space use, acoustic telemetry, machine learning, random forest, marine protected
area, sharks, predator-prey

Abbreviations: BIRNM, Buck Island Reef National Monument; BBMM, Brownian bridge movement model; COAs, centers
of activity; GLMM, generalized linear mixed model; MPA, marine protected area; RE, random forest; RSE, resource selection
function.
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INTRODUCTION

Habitat loss and degradation are two of the largest drivers
of loss in global biodiversity (Hoekstra et al,, 2005), making
identifying important habitats critical for resource managers to
prioritize habitat protection for species of concern (Morris and
Kingston, 2002; Chetkiewicz and Boyce, 2009; Heinrichs et al.,
2017). Habitat selection is driven by the physical, chemical, and
biological composition and condition of an area that is occupied
by a given animal (Block and Brennan, 1993). Thus, behavioral
choices related to selection are ultimately determined by a wide
range of coupled and uncoupled abiotic and biotic factors, such
as energetic demands and tradeoffs from foraging opportunities,
predation risk, and competition (Rosenzweig, 1974; Craig and
Crowder, 2002). Understanding how species select habitats across
heterogeneous landscapes provides key information regarding
occupancy patterns that contribute to survival and reproductive
success (Kramer et al, 1997; McGarigal et al, 2016). Such
information could then be used to identify, protect, and restore
specific ecologically valuable habitats and corridors (Kramer
and Chapman, 1999; Beier et al., 2008; Fraschetti et al., 2009;
Zeller et al., 2017).

Resource selection functions (RSFs), defined as a function
that produces values that are proportional to the probability
of use by an animal (Manly et al, 2007), are a popular
method to determine and predict relative habitat selection
by animals (e.g., Nielsen et al., 2003; Johnson et al., 2004;
Ciarniello et al., 2007). These functions evaluate the relationships
between resource use (i.e., the units of area selected by an
animal) and the environmental characteristics associated with
each unit of area (Boyce et al, 2002). Animal spatial data,
from sources such as telemetry, can be incorporated into RSFs
to define the relative habitat selection strengths among animal
space use and a given set of environmental covariates, such
as habitat type, substrate, elevation, or water depth (Boyce
and McDonald, 1999). When the true absences are unknown,
as generated by presence only data derived from sources
such as telemetry approaches, RSFs are implemented within
a use/availability framework where known presences (1) are
compared with a random sample across ‘available’ resource
units, also known as pseudo-absences or background points
(0) (Boyce, 2006; Pearce and Boyce, 2006). Alternative to
use/availability (e.g., from telemetry), data from observations
collected from survey methods, often without timestamps, are
typically referred to as presence-background and are fitted as
species distribution models (Fieberg et al.,, 2018). Using RSFs
to derive the relative probability of selection, rather than the
absolute probability (see Lele et al., 2013; Avgar et al., 2017),
telemetry data are then typically fitted using logistic regression
models (Johnson et al, 2006; Manly et al., 2007) or, as of
more recently, with machine learning algorithms [e.g., random
forest (RF), boosted regression trees] (Shoemaker et al., 2018;
Heftelfinger et al., 2020).

While RSFs have been largely applied in terrestrial ecology,
such as with wolves (Ordiz et al., 2020), birds (Meager et al.,
2012), grizzly bears (McLoughlin et al., 2002), and deer (Godvik
etal., 2009), the application of RSFs within aquatic environments

has been limited comparatively, likely due to technological
challenges related to continuously tracking animals through
water (Hussey et al., 2015). Today, passive acoustic telemetry
has become one of the most common practices to quantify
aquatic animal space use (Cooke et al., 2004; Donaldson et al,,
2014; Hussey et al, 2015). This technique involves tagging
an animal with an acoustic transmitter that periodically emits
an ultrasonic ping with a unique identification number (ID
code). When in range and with sufficient detection efficiency
the ping is detected by an acoustic receiver that registers both
the unique ID code and the time the transmitter was detected
(Hussey et al., 2015). Depending on the scope and extent of
both research questions and available funding, acoustic receivers
are strategically arranged in fixed locations with either non-
overlapping detection ranges (Heupel et al., 2006; Brownscombe
et al,, 2019b), or with overlapping detection ranges that can
produce high resolution positioning estimates of space use
(Espinoza et al., 2011). While both methods are limited to the
available detection coverage (presence only data), the former is
often used to examine space use across a given study area at
much larger spatial extents (Carlisle et al., 2019) and, thus, is well
catered to exploring relative habitat selection.

Although the application of RSFs in combination with
acoustic telemetry has been limited (see Freitas et al., 2016;
Harrison et al, 2016; Gutowsky et al., 2017; Selby et al,
2019; Griffin et al., 2020), much needed information on
animal habitat selection in the marine environment can be
derived. For example, Selby et al. (2019) and Griffin et al.
(2020) applied RSFs to acoustic telemetry data for hawksbill
(Eretmochelys imbricata) and juvenile green turtle (Chelonia
mydas), respectively, from St. Croix, United States Virgin Islands,
and determined that the size and extent of a marine protected
area (MPA) being used by these sea turtles was sufficient to
meet conservation goals. In addition to providing insights on
potential drivers of relative habitat selection, RSFs were also
extended to predict movements in areas that did not have
acoustic receivers to provide potential locations where fine-
scale habitat protection may be further prioritized (Griffin
et al., 2020). Such results have important implications within
marine environments especially for resource managers seeking
to incorporate animal movement data to generate effective
conservation strategies (Cooke, 2008; Knip et al., 2012; Allen
and Singh, 2016; Hays et al,, 2016, 2019; Lea et al, 2016).
Since management and conservation efforts often rely on spatial
management techniques (Peel and Lloyd, 2004; Sequeira et al.,
2019), including MPAs (Gell and Roberts, 2003; Lubchenco et al.,
2003; Gleason et al., 2010; Lubchenco and Grorud-Colvert, 2015;
Weeks et al., 2017; Feeley et al., 2018; Keller et al., 2020; Gallagher
et al., 2021), habitat selection predictions should help managers
meet conservation endpoints and play a role in evaluating
management alternative strategies for both species and for the
habitats on which they rely on.

In this study, we provide a framework to implement
RSFs using machine learning algorithms to examine and
accurately predict relative habitat selection for tracking data
collected using acoustic telemetry. Specifically, we apply RSFs
to evaluate the relative habitat and resource selection of four
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shark species: Caribbean reef (Carcharhinus perezi), lemon
(Negaprion brevirostris), nurse (Ginglymostoma cirratum), and
tiger (Galeocerdo cuvier) sharks within a Caribbean MPA. In
the Caribbean Sea, these four species occupy a wide range
of environments from nearshore reef and seagrass habitats to
offshore pelagic habitats (Pikitch et al., 2005; Legare et al., 2015;
Pickard et al., 2016; Casselberry et al., 2020; Gallagher et al., 2021).
Considering Caribbean reef sharks are listed as “Endangered”
by the IUCN Red List (Carlson et al., 2021a), lemon and
nurse sharks are listed as “Vulnerable” (Carlson et al., 2021b,c),
and tiger sharks are listed as “Near Threatened” (Ferreira and
Simpfendorfer, 2019), all with decreasing population trends,
conservation and management efforts would benefit from
understanding and incorporating findings surrounding their
spatial ecology.

Successful management is especially needed since it has been
suggested losses in shark abundance may disrupt food web
dynamics that would lead to reduced ecosystem health (Baum
and Worm, 2009; Ferretti et al., 2010; Heupel et al., 2014;
Hammerschlag et al., 2019). Indeed, food web simulations for
Caribbean coral reefs show sharks, as top predators, are members
of strongly interacting tri-trophic food chains whose loss could
result in trophic cascades (Bascompte et al., 2005). This is
supported by in situ studies of mesopredator fish populations
in Australia that found shark-depleted coral reefs have reduced
fish diversity, species abundance, and biomass, with individual
species showing changes in diet and body condition when
compared to reefs with healthy shark populations (Barley et al.,
2017a,b). Information about shark habitat use and selection
could lead to proactive management strategies to mitigate non-
sustainable or illegal harvest (White et al., 2017; Jacoby et al,
2020) and/or protect and restore important habitat (Speed et al.,
2016; Daly et al., 2018). Because spatial management techniques,
such as MPAs, can provide protection for multiple species across
a variety of life stages, understanding resource selection across
species should help to tailor effective conservation strategies
and, specifically, ensure adequate coverage of ecologically vital
habitats and areas (Lea et al., 2016).

Considering MPA design may benefit from the inclusion
and understanding of predator-prey dynamics (Micheli et al.,
2004; Cashion et al., 2020), we also demonstrate how RSFs can
be extended to examine spatially explicit relationships between
marine predators and their prey. This was accomplished by
deriving and averaging overlapping selection values from tiger
sharks and from their potential prey, including juvenile green
turtles, juvenile Caribbean reef sharks, juvenile lemon sharks,
great barracuda (Sphyraena barracuda), horse-eye jack (Caranx
latus), yellowtail snapper (Ocyurus chrysurus), and mutton
snapper (Lutjanus analis) (Lowe et al., 1996; Simpfendorfer et al.,
2001; O’Shea et al,, 2015; Aines et al., 2018; Gallagher et al., 2021).
Herein, we provide a framework for studies wishing to investigate
animal relative habitat selection and predator-prey relationships
with acoustic telemetry in marine environments.

Ultimately, these collective RSF findings provide insights
into shark spatial ecology and is useful for the conservation
of Caribbean reef, lemon, nurse, and tiger sharks and their
habitats. In addition, we have included an R code vignette

(Appendix A), to improve accessibility and application of RSFs
and machine learning.

MATERIALS AND METHODS

Study Area and Field Data Collection

Buck Island Reef National Monument (BIRNM), a 77 km?
no-take MPA, is located on the northeast shelf of St. Croix,
United States Virgin Islands (Pittman et al., 2008). Buck Island is
an uninhabited, 0.7 km? island that is situated in the middle of the
MPA, and 2.5 km northeast of St. Croix. This MPA ranges from
shallow-water habitats (<10 m) near the island to deep-water
habitats (>1,000 m) off the continental shelf. Generally, benthic
habitats range from lagoon habitat (50-150 m wide, around the
island excluding the west and southwest sides of the island),
linear reef (south side of island and wrapping toward northwest
corner), patch reef systems (northwest and north of the island,
and south of the southern linear reef), seagrass patches (Thalassia
sp., Syringodium sp., and Halophila sp.) and sand flats (south and
southwest) (Pittman et al., 2008; Costa et al., 2012).

Between 2011 and 2019, a total of 147 VEMCO VR2W
receivers (Innovasea Systems Inc., Nova Scotia, Canada) were
deployed as a passive acoustic receiver array within BIRNM to
study multiple species (Becker et al., 2016, 2020; Bryan et al.,
2019; Selby et al., 2019; Casselberry et al., 2020; Griffin et al.,
2020; Novak et al.,, 2020a,b) (Supplementary). Receivers were
deployed, in depths ranging from 2 to 40 m, either on sand
screws or cement block anchors around the island with receiver
downloads occurring twice a year (see Becker et al, 2016;
Selby et al., 2016; Casselberry et al., 2020 for mooring details).
Among years, the receiver array design changed in extent through
the addition of new receiver stations or decommissioning old
stations, due to the availability of receivers and evolving project
goals, while maintaining a core set of receiver stations through
the duration of the project. The array began with 17 receivers
in 2011 and reached its greatest coverage with 147 receivers
in 2017. For this study, we collected and analyzed acoustic
telemetry data from only 2013-2019 when detection coverage
and tag deployment was most substantial across BIRNM. Animal
tracking data were collected from surgically implanted V13 or
V16 transmitters (delay 60-180 s, battery life 360-3,217 days,
Innovasea Systems Inc., Nova Scotia, Canada) in 14 Caribbean
reef sharks (between 2013 and 2019), 10 lemon sharks (between
2013 and 2019), 11 nurse sharks (between 2013 and 2019),
and eight tiger sharks (between 2015 and 2019). In addition,
to examine prey habitat selection in relation to tiger shark
selection, data were also collected from 58 juvenile green turtles
(between 2013 and 2014), 25 great barracuda (hereinafter referred
to as barracuda) (between 2014 and 2015), five horse-eye jack
(between 2016 and 2017), eight yellowtail snapper (between 2015
and 2017), and four mutton snapper (between 2015 and 2016).
All detection data were reviewed and filtered to remove false
detections (Simpfendorfer et al., 2015), including detections that
occurred within 60 s of each other for a given individual, singular
detections occurring within 12 h, and detections that indicated
unrealistic movements (>3 m per second). Tagging locations
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and methods, including additional specific detection filtering
processes, can be found for sharks in Casselberry et al. (2020),
barracuda in Becker et al. (2016), horse-eye jack in Novak et al.
(2020a), yellowtail snapper in Novak et al. (2020b), and for green
turtles in Griffin et al. (2020).

Framework to Apply RSFs Using
Acoustic Telemetry and Machine

Learning

To derive and predict relative selection values of each species,
we describe four important components that include defining
available resource units, aggregating habitat information,
implementing, evaluating, and interpreting RSFs with machine
learning algorithms, and, ultimately, predicting habitat selection
for sharks across BIRNM. All analyses were conducted in R
version 3.6.2 (R Core Team, 2019). We describe each step in
detail below and in the included R code vignette (Appendix A).

Defining Available Resource Units and
Presence/Background Points

To estimate fine resolution space use away from the exact location
of receivers, detection data was first converted into short-term
centers of activity (COAs) using the mean position algorithm
(Simpfendorfer et al., 2002). To disaggregate detection data
from receiver locations, this method, using the detections across
multiple receivers, provides position estimates that are based
on the weighted means of the number of detections among
each receiver during a specified time window (Simpfendorfer
et al, 2002). Here, using the VITRACK package (Campbell
et al., 2012), this algorithm was implemented with 90-min time
bins to provide animal positioning data across BIRNM (Selby
et al,, 2019; Griffin et al., 2020). In addition to disaggregating
data from receiver locations, constructed COAs provide an
approach to potentially reduce issues with autocorrelation by
subsampling data into defined time steps (e.g., 90-min bins)
(Matley et al., 2017). Autocorrelation, an inherent problem with
tracking data, occurs when sequential locations are obtained from
the same individual and can lead to biased parameter estimates
of animal habitat/space use (Legendre, 1993; Johnson et al., 2013;
Fleming et al., 2015).

Consistent with Selby et al. (2019) and Griffin et al. (2020),
we defined our available resource units by deriving 400 m
buffers around each receiver for each year it was deployed (i.e.,
2013-2019) (Supplementary Figure 1). While detection range
was variable across BIRNM habitats with an average of 58.2%
(95% confidence interval: 44-73% CI) probability of detection
at 100 m distance from a receiver (Selby et al., 2016), we
decided to extend the buffer size to 400 m since COAs are able
to provide approximate positioning estimates even outside of
receiver detection range.

To implement RSFs within a use/availability framework
and to account for variable receiver coverage across years,
we restricted both the COAs (presences) and the randomly
distributed background points (pseudo-absences) to our defined
available resource units (400 m receiver buffers at the year level)
only. Background points were randomly distributed equal to

the number of observed COAs (see Barbet-Massin et al., 2012)
per individual, diel period (night vs. day), and year across all
available resource units (Figure 1). Diel period was calculated
using the maptools package (Bivand and Lewin-Koh, 2013).
Only using COAs and background points that were within the
400 m buffer from any receiver, they were then collapsed into
200 m x 200 m raster cells.

Aggregating Habitat Information

Using habitat mapping data provided by the National Oceanic
and Atmospheric Administration (NOAA) (Costa et al,
2012), we converted available and relevant shapefile data into
200 m x 200 m raster cells using the raster (Hijmans et al,
2015) and the sp (Pebesma et al, 2012) packages. Derived
habitat raster files included classifications aggregated by zone
(fore reef, reef flat, lagoon, etc.) (Supplementary Figure 2A),
fine-scale structure (aggregate reef, sand, pavement with sand
channels, etc.) (Supplementary Figure 2B), fine-scale cover
[seagrass patchy (10%-<50%), seagrass patchy (50-<90%),
seagrass continuous (90-100%), etc.], broad-scale cover (algae,
live coral, seagrass, etc.), and percent coral cover (i.e., 0-<10%,
10-<50%). In addition, we generated two relevant habitat raster
files including distance to land (m) (Buck Island) and depth (m)
(Supplementary Figure 3).

Subsequently, corresponding habitat and depth information
were extracted from each raster cell and assigned to each COA
and background point using the rasterize function from the
raster package (Hijmans et al., 2015) (see Appendix A). Habitat
information was converted into factors with depth (m) and
distance to land (m) remaining as continuous variables.

Applying RSFs With Machine Learning

Resource selection functions were applied using RF models,
a commonly utilized machine learning algorithm, to evaluate
the relative habitat selection of each species within BIRNM.
RE, using binary recursive partitioning to fit multiple data
trees with randomly selected predictor subsets (Breiman,
2001), effectively reduces variance and model overfitting while
optimizing predictive accuracy (James et al., 2013; Hengl et al,,
2018; Schratz et al., 2018). To increase the prediction of the
response variable (presences/background points), RF models
were fit for each species with 500 trees, replacement, and with
60% of the data. The 40% remainder of each dataset, known as
the holdout dataset, were then used to test model performance.
RF models were implemented in the ranger (Wright and Ziegler,
2015) and mlr (Bischl et al., 2016) packages.

Characteristic of RF models, a user may tune how trees are
generated and fitted from the data. These controls, referred
to as hyperparameters, are set prior to fitting an RF by
running multiple iterations of values (see Probst et al.,, 2019).
While default values for hyperparameters lead to relatively
high performance alone, tuning can often lead to overall
model improvement (Lovelace et al, 2019; Probst et al,
2019). Ultimately, hyperparameter settings control the degree
of randomness across trees and may include the number
of predictors that should be used in each tree (mtry), the
fraction of observations to be used in each tree (sample.fraction)
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FIGURE 1 | Conceptual diagram to implement resource selection functions with acoustic telemetry and machine learning algorithms; from generated centers of
activities and background points, deriving available resource units, model development, model performance and interpretation, and, ultimately, predicting and
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with lower fractions leading to lower correlation across trees,
and the number of observations a terminal node (within a
tree) should at least have (min.node.size) (Lovelace et al,
2019). To find the optimal hyperparameter values, we first

partitioned the training dataset into five distinct geographic
sections and then for each partition, we generated 50 random
combinations of hyperparameters and subsequently chose the
optimal combination (see Lovelace et al., 2019) using the
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tuneParams function from the mlr package (Bischl et al., 2016).
Thus, 50 iterations of random hyperparameter values across each
of the five partitions resulted in 250 models in total. Subsequently,
the optimal hyperparameter combinations were used to tune and
train the final RF for each species, using the 60% training dataset.

Performance, Interpretation, and Prediction

With the trained model, we predicted across the 40%
holdout dataset to evaluate performance. The functions
calculateConfusionMatrix and calculateROCMeasures from the
mlr package (Bischl et al., 2016) were used to determine overall
and class (present versus background point) accuracy, error
rate, and performance of each RF. Specifically, performance
measures were derived from the confusion matrix table that
compared the true observations versus the model predictions,
these metrics included overall accuracy, i.e., correct number of
predictions/total number of predictions, sensitivity (true positive
rate), specificity (true negative rate), fall-out (false positive rate),
miss rate (false negative rate), and precision (positive predictive
value). Predictor, also known as feature, importance was also
assessed using the permutation importance method (mean
decrease in accuracy) where predictors were evaluated based on
the increase or decrease in prediction error after permutation
(Breiman, 2001). For interpretation across RF models, all
importance values were normalized (min-max normalization).
To identify which variables generated the greatest two-way
interaction strengths, we derived the H-statistic (Friedman and
Popescu, 2008) using the Interaction function from the iml
package (Molnar et al., 2018). This calculation, which can be
extremely computationally intensive when examining every
possible interaction, was implemented after rerunning each RF
model but with only 25% of the training dataset. After identifying
the top three variables that led to the greatest interaction
strengths, this function was used again to assess those other
variables with which each top variable interacted. However,
this was performed using the original model, with the entire
training dataset, since computation times were greatly reduced
when examining single two-way interactions as opposed to each
possible interaction.

To assess the marginal effect of covariates on the predicted
outcome (y), i.e., predictor probabilities for each RE we
constructed partial dependency plots, using the pdp package
(Greenwell, 2017), for the most important feature as identified
by the mean decrease in accuracy approach. Partial dependency
plots were also generated for the top three two-way interactions
as identified from the calculated H-statistic values. Discrete
and continuous predictors were shown with 95% confidence
intervals. To visualize marginal effect variation within each
continuous predictor, we used a generalized additive model
smoother via the ggplot2 package (Wickham, 2011). All partial
dependency plots were restricted to depths of 50 m or less
so to avoid extrapolating outside the shelf of BIRNM where
no receivers were located. Finally, the trained RFs were then
used to predict relative habitat selection at the species level in
BIRNM. Model extrapolation across the MPA was constrained
to the maximum depth observed for the given species based on
acoustic detections.

RSFs and Predator-Prey Relationships
Resource selection functions were also extended to explore
selection overlap values between large juvenile and mature tiger
sharks (n = 8, >200 cm FL) and their potential prey species,
including juvenile green turtles, juvenile Caribbean reef sharks
(n = 12, <120 cm FL), juvenile lemon sharks (8, <120 cm
FL), barracuda, horse-eye jacks, yellowtail snapper, and mutton
snapper. First, relative habitat selection values were calculated
and extrapolated across BIRNM for each potential prey species
following the steps outlined in Sections “Defining Available
Resource Units and Presence/Background Points,” “Aggregating
Habitat Information,” “Applying RSFs With Machine Learning,’
and “Performance, Interpretation, and Prediction.” Second, to
explore areas of potential predator-prey overlap, relative habitat
selection values across BIRNM were averaged between tiger
sharks and each potential prey species. Lastly, by removing raster
cells where relative selection values of potential prey were <0.5,
we examined specific high overlap areas between tiger sharks and
each potential prey species.

Kernel Density Estimates

To compare the predicted relative habitat selection values to
observed animal space use, we fit kernel utilization distributions
to the COAs at the species level. Each species’ kernel utilization
distribution, representing a bivariate probability density function
of animal use (Worton, 1989; Lichti and Swihart, 2011), was
then used to extract the 50 and 95% kernel density estimates to
produce space use estimates. Kernel utilization distributions and
subsequent kernel density estimates were constructed using the
adehabitatHR package (Calenge, 2006) with 200 m smoothing
parameters. While species level kernel density estimates were
plotted along with all predicted relative habitat selection values, it
should be noted these estimates were used for broad comparison
since they are likely biased to some extent due to unequal sample
sizes across individuals.

Additional Methodological

Considerations

To explore model sensitivity to varying parameter inputs,
we also implemented RF models using COA data binned
at 60-min timesteps. These models and their outputs were
derived from using the same procedures as outlined in Sections
“Defining Available Resource Units and Presence/Background
Points,” “Aggregating Habitat Information,” “Applying RSFs
With Machine Learning, and “Performance, Interpretation,
and Prediction.” To examine how models performed under
different available habitat extents, we again ran RF models
but with available habitat defined using either 200 or 600 m
buffers. Hyperparameter inputs were kept consistent with
original respective models. Further, to avoid extrapolating
predictive models beyond the range of our measured data
(Mesgaran et al., 2014), we explored and mapped extrapolation
reliability in BIRNM using the dsmextra package (Bouchet
et al, 2020). Using the presence/background locations and
their depth (m) and distance to land (m) values, the
compute_extrapolation function evaluated areas across BIRNM
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TABLE 2 | Confusion matrix performance metrics derived from using the trained random forest model to predict across the 40% holdout dataset.

Species Accuracy Sensitivity (true Specificity (true Fall-out (false Miss rate (false Precision (positive
positive rate) negative rate) positive rate) negative rate) predictive value)
Caribbean reef 0.90 0.90 0.89 0.11 0.10 0.89
Lemon 0.94 0.97 0.91 0.09 0.03 0.92
Nurse 0.85 0.91 0.79 0.21 0.09 0.81
Tiger 0.83 0.91 0.76 0.24 0.09 0.79
Caribbean ref (juv.) 0.89 0.90 0.89 0.11 0.10 0.89
Great brracuda 0.87 0.85 0.89 0.11 0.15 0.89
Green turtle 0.95 0.97 0.93 0.07 0.038 0.94
Horse-eye jack 0.80 0.89 0.72 0.28 0.1 0.76
Lemon (juv.) 0.94 0.97 0.91 0.09 0.03 0.91
Mutton snapper 0.88 0.98 0.78 0.22 0.02 0.81
Yellowtail snapper 0.92 0.92 0.93 0.07 0.08 0.93

Accuracy (i.e., correct number of predictions/total number of predictions), sensitivity (i.e., true positive rate), specificity (i.e., true negative rate), fall-out (i.e., false positive
rate), miss rate (i.e., false negative rate), and precision (i.e., positive predictive value) were reported for shark species and the potential prey species for tiger sharks,
including a subset of juvenile Caribbean reef and lemon sharks, monitored within Buck Island National Monument.

positive rate) from 85 to 98% (Table 2). Predictor importance
and rank varied across shark species, with depth (m) as either
the most important or within the top two most important
predictors for all four species (Figure 2). Overall, § values
generally decreased as depth increased for all sharks (Figure 3).
While § values decreased for Caribbean reef, nurse, and tiger
sharks in areas >3 km from Buck Island, tiger sharks appeared
to have higher § values farther away from the island at distances
approximately between 500 and 2,000 m. Lemon shark § values
decreased rapidly as distance from land increased, with lowest
values occurring >1,000 m.

Caribbean reef sharks were more likely to select for coral or
coral-containing habitats with higher § values observed within
coral habitats (sand with scattered coral and rock, aggregate
reef, and aggregated patch reefs) (Figure 3A). Caribbean reef
shark two-way predictor interactions highlighted relatively high
¥ values in depths of 20-30 m, areas <2 km away from land,
and in areas of sand with scattered coral and rock (Figure 4A).
Lemon sharks were more likely to select for shallow areas directly
adjacent to land, specifically in shallow (0-5 m) habitats classified
as channel, lagoon, and reef crest (Figures 3B, 4B). While nurse
sharks followed a similar pattern, ¥ values indicated they were
more likely to select for habitats between 0 and 2,000 m away
from land but within <15 and 25-30 m of depth. In addition, ¥
values were higher in areas of sand with scattered coral and rock
located within bank/shelf, bank/shelf escarpment, fore reef, and
reef crest zones (Figures 3C, 4C). Lastly, tiger sharks exhibited
the greatest y values away from land (500-2,000 m), in <30 m
depth, and in aggregate reef, sand, sand with scattered coral and
rock, and pavement habitats (Figures 3D, 4D).

Extrapolated relative habitat selection values across BIRNM,
as computed from the trained RF models, followed similar
patterns to kernel density estimates (Figure 5). Specifically, 50%
kernel density estimates largely overlapped with extrapolated
areas of high relative selection. However, for Caribbean reef,
nurse, and tiger sharks, levels of high extrapolated relative
selection also extended beyond 50% kernel density estimates
along the western shelf and the eastern side of BIRNM, where

receiver coverage was limited. While Caribbean reef, lemon, and
tiger sharks exhibited more targeted habitat selection with greater
affinities to specific areas and habitats, nurse sharks exhibited
a more generalist approach to relative habitat selection across
BIRNM (Figure 5). Caribbean reef sharks showed strong affinity
to habitats with reef-containing structure, including areas of
linear reef around the island and in the aggregated patch reef
system that is characteristic north of the island (Figure 5A).
In addition, Caribbean reef sharks exhibited higher relative
selection values along the western shelf near adjacent deep water
habitats (>50 m). Alternatively, lemon shark relative habitat
selection values were tightly located around the island, within
the reef sheltered lagoon, with lower values along the southwest
side of the island where less lagoon and structure habitat exist
(Figure 5B). Nurse shark extrapolated relative selection values
were wide ranging with the densest cluster of higher values
surrounding the island (reef habitats), to the southwest of the
island along the bank (sand and seagrass habitats), and to the
far eastern side of BIRNM (reef, pavement, and sand habitats)
(Figure 5D). Lastly, similar to nurse sharks, tiger sharks primarily
have highest selection values extrapolated south of the island
along banks containing both seagrass and sand habitats, leading
to the continental shelf break in the west. Relative selection values
were also expected to be high along the western shelf and in some
locations around the north/northwest shelf. While low relative
selection values were expected for tiger sharks in the network of
highly rugose patch reefs north of the island, higher selections
values existed on eastern side of BIRNM habitats containing
mainly reef, pavement, and sand (Figure 5D).

Predator-Prey Relationships

Resource selection functions were also extended to examine
potential areas of relative selection overlap between tiger sharks
and their potential prey sources. Depending on the species,
overlap selections varied in location and intensity. For example,
juvenile green turtles (Figure 6A) and tiger sharks were most
likely to overlap in selection south of the island where seagrass
beds along bank habitats were most abundant. For juvenile
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sharks, (C) nurse sharks, and (D) tiger sharks. Higher values and darker colors indicate greater relative importance. Values were calculated using the mean decrease
in accuracy method and, subsequently, all importance values were normalized from O to 1 for comparison across species.
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Caribbean reef sharks and tiger sharks, averaged overlap selection
values were greatest along the western shelf and in the southwest
portion of BIRNM (Figure 6B). Juvenile Caribbean reef sharks
also had high relative selection values north of the island,
averaged overlap was comparatively lower in this area to
the western shelf due to reduced tiger shark selection values
(Figure 5D). The averaged overlap selection values between
barracuda and tiger sharks followed a similar pattern with
higher barracuda relative selection values north of the island
but averages reduced due to lower tiger shark relative selection
values (Figure 6C). Horse-eye jacks, with the most similar
relative selection values of tiger sharks, had the greatest averaged
overlap values along the western shelf, south of the island,
and in the southeastern portion of BIRNM (Figure 6D). When
tiger shark relative selection values were averaged across the
other three species, including juvenile lemon sharks, mutton
snapper, and yellowtail snapper, they followed similar patterns
with higher averaged relative selection overlap values where
the potential prey species had higher selection values unless it
was directly north of the island where patch reef systems exist
(Supplementary Figure 4).

Additional Methodological Considerations
The RF models using COA data of 60-min bins produced
similar results to models that used COA data of 90-min
bins (Appendix B). The top two most important variables
remained unchanged for all shark species (Appendix Figure B1)
and pdps and associated § values only changed slightly
(Appendix Figure B2). Most notably, the new 60-min binned
RF models indicated § values generally increased (rather than
decreased) with depth for Caribbean reef sharks and § values
for aggregate reef were lower for tiger sharks (Appendix
Figures B2, B3). However, for Caribbean reef sharks, y values
related to depth remained similar across the interaction of depth
and distance to land.

While accuracy metrics were similar for all species across the
60- and 90-min RF models (~1-2% differences), some varied
substantially (e.g., 5-7%) (Table 2 and Appendix Table B1).
The use of 60-min time bins led to a decrease in overall
accuracy for nurse sharks (85-80%) but an increase in overall
accuracy for barracuda (87-92%), horse-eye jack (80-90%),
and mutton snapper (88-96%). Subsequently, model predictions
and extrapolations within BIRNM reflected these discrepancies
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with lower accuracy scores producing more homogenous
and generalized relative habitat selection patterns than when
models produced higher predictive accuracies (Figures 5, 6 and
Appendix Figures B4, B5).

RF models using 200 m buffers for available habitat
construction scored lower accuracy measurements and also
predicted higher relative selection homogeneously across
BIRNM (Supplementary Figure 5 and Supplementary
Table 1). Alternatively, models using 600 m buffers for available
habitat construction produced similar accuracy measures
and predictions across BIRNM as compared to the original
models (Supplementary Figure 5 and Supplementary Table 1).
Interestingly, relative selection predictions for tiger sharks
were higher along the northeastern shelf edge (Supplementary
Figure 5) than in the original model (Figure 5), matching
Casselberry et al. (2020) findings.

When assessing extrapolation reliability across BIRNM,
extrapolation space became unreliable (univariate extrapolation)
in areas off the shelf in deeper and further areas from land
(Appendix A). However, areas within the MPA that remained
in shallower water (<50 m) were analogous to the range of
our covariates as measured by depth (m) and distance to land
(m), confirming our approach to limiting extrapolations to the
maximum observed depth was warranted.

While BBMMs highlighted individual level variation in space
use across BIRNM (see examples, Supplementary Figure 6),

GLMMs and respective marginal and conditional R? values
indicated variance was largely explained by the fixed effects
(marginal R?) alone (Supplementary Table 2). However, the
GLMM involving lemon sharks appeared to have substantial
variance explained by both the fixed and random effects
combined (conditional R?), suggesting individual variation may
be higher within this species dataset. Interestingly, GLMM
accuracy for lemon sharks was also nearly as accurate as the
RF model (92% versus 94%, respectively). Accuracy metrics for
the other GLMMs were substantially lower than respective RF
models (Table 2 and Supplementary Table 2).

DISCUSSION

The Approach and Ecological

Implications

Using acoustic telemetry data for four shark species, we
demonstrate the utility of RSFs with machine learning to
accurately predict and understand complex environmental
drivers of marine species. Across species, we found variable
patterns of relative habitat selection within the MPA, ranging
from habitat specialists to generalists. Overall, as depth increased,
relative selection decreased for all shark species. While relative
selection probabilities for Caribbean reef, lemon, and nurse
sharks decreased as distances from land increased, tiger sharks
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showed highest affinities for areas between 500 and 2,000 m
away from land. Top interactions along with predicted relative
selection values highlighted the differences and preferences
across species in terms of habitat types, structures, and depths.
Finally, using the relative selection values of tiger sharks and
their potential prey, we highlight the ability of this framework
to generate multiple species selection values that could provide
insights into predator-prey relationships when averaged and
overlaid with one another.

The results for shark habitat selection presented herein
are largely consistent with those presented by Casselberry
et al. (2020) that used GLMMs and detection data from
fixed receiver locations to model presence in BIRNM habitats,
but with improved model accuracy (83-94%) and additional
covariates. While GLMMs in Casselberry et al. (2020) were
limited by unequal receiver distribution, requiring aggregation
across habitat types, the analyses presented here (use/availability
framework with COAs and background points) were able to
sample across multiple habitats and at finer scales. Further, while
GLMMs were limited to a single generalized habitat covariate
(factor levels including: unconsolidated sediments, submerged
vegetation, and coral, rock, and colonized hardbottom) and
depth, RSFs paired with machine learning algorithms were
able to easily assess five separate habitat covariates that ranged
from two and 10 factor levels each along with two additional
continuous predictors. Ultimately, RSFs confirmed use of
shallow water habitats near land for lemon sharks and the
use of sand and coral associated habitats at mid-depths for
nurse sharks, while highlighting tiger sharks’ affinity for the
continental shelf break and southern sand and seagrass beds.
The added analytical flexibility of RSFs and machine learning
greatly improved predictions of habitat use for Caribbean reef
sharks, whose space use changes dramatically with age across
BIRNM’s varied landscape (Casselberry et al.,, 2020). Previous
models showed low probability of presence in the acoustic array
across habitats and depths compared to the other three shark
species, while RSFs highlight specialized use of multiple highly
rugose reef habitats at mid-depths. However, GLMMs produced
in Casselberry et al. (2020) and the RSF models produced
here differed when predicting tiger shark depth preference.
Casselberry et al. (2020) showed probability of presence in the
acoustic array increasing with depth across habitat types (coral,
rock, and colonized hardbottom, submerged vegetation, and
unconsolidated sediments), while  values consistently decreased
with depths beyond 30 m in RSF models.

Examining the tiger shark partial dependency plots reveals
high interactions between depth and distance to land at depths
between 10-15 and 25-30 m (Figure 4). These same depth bins
(10-15 and 25-30 m) also had higher § values when combined
with aggregate reef, pavement, sand, and sand with scattered coral
and rock habitats (Figure 4). These habitat types and distance
to land achieved higher ¥ values alone than depth in tiger shark
models indicating that these variables have a stronger influence
on tiger shark habitat use (Figure 3). However, tiger sharks are
known to use depths greater than 50 m in and around BIRNM
that are beyond the depths of acoustic array coverage (Casselberry
unpublished data). This, again, highlighted the need to assess

extrapolation reliability (Mesgaran et al., 2014) of RSFs prior
to model interpretation since they may have limited ability to
extrapolate outside of observed conditions of a given array, for
example in areas of BIRNM where depths were greater than 50 m.

When predictions were made within our range of covariates
in analogous conditional space (less than 50 m depth), the
application of RSFs, as opposed to more traditional use of COAs
alone, kernel density estimates, or network analyses, highlighted
potentially favorable habitats in BIRNM with limited receiver
coverage. The eastern portion of BIRNM has had limited acoustic
receiver coverage in part because of the complexity of the
coral reef structure in the area. Receiver moorings were not
established there in order to avoid damaging the protected reef
structure. The RSFs show that favorable habitats exist in this
low coverage region for nurse, Caribbean reef, and tiger sharks,
particularly at intersections between reef, pavement, and sand
habitats. This further highlights the suitability of this MPA for
shark conservation and management in St. Croix (Figure 5;
Casselberry et al., 2020).

Examining overlapping RSFs between tiger sharks and their
potential prey highlights regions of potential foraging success
for sharks, high predation vulnerability for prey, and areas
of ecological importance for managers. Areas of high tiger
shark-prey overlap coincide mainly with the seagrass beds south
of Buck Island and the western continental shelf break, while
many potential prey species also have high selection potential
in areas north of Buck Island. This could be a reflection of tiger
sharks selectively using areas with higher potential for foraging
success (Heithaus et al., 2002). Areas north of the Buck Island are
occupied by highly complex coral reef habitats, offering ample
areas to refuge or escape from predators (Hixon and Beets, 1993),
while habitats south and west of Buck Island are more open at
depths of ~12 m. These waters could be more maneuverable for
large juvenile and adult tiger sharks when compared to more
structurally complex environments (Fu et al., 2016), perhaps with
an increased possibility of foraging success (Heithaus and Dill,
2002; Heithaus et al., 2007; Wirsing et al., 2007). Alternatively,
these areas could be a reflection of similar habitat preferences
and ecologies among apex and mesopredators in a tropical reef
system (Ledee et al., 2016; Heupel et al., 2019). Regardless, areas
of high averaged relative selection highlight important regions in
BRINM that could be used to inform future habitat monitoring
or restoration studies, particularly with the potential for habitat
degradation as the climate changes (Graham et al., 2020; Hastings
et al.,, 2020).

As technological tools continue to advance our ability to
monitor aquatic animal space use, ecologists are beginning
to answer some of the most pressing questions to help
direct and prioritize resource management and conservation
strategies. Habitat destruction remains on the forefront of
decreases in biodiversity, from climate change (Pratchett et al.,
2011; Descombes et al., 2015) to destructive landscape use
(Rothschild et al., 1994; Coverdale et al., 2013). With calls to
protect at least 30% of the ocean by 2030 through establishing
MPAs (O’Leary et al, 2016; Sala et al, 2018), an accurate
understanding of how marine animals use space and select
habitats is increasingly imperative for well informed and effective
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marine spatial planning (Foley et al., 2010; Ogburn et al., 2017;
Lowerre-Barbieri et al., 2019; Gallagher et al., 2021; Roberts
et al., 2021). The RSF modeling framework provided here can
produce high accuracy models of relative habitat selection for
multiple species of differing ecologies and can be averaged
across species to highlight overlapping potential space use or
selection. These models can then be used to extrapolate to
areas lacking acoustic receiver coverage, as long as within the
original measured parameters, accounting for a common issue
in acoustic telemetry with incomplete coverage of the study site
due to logistic or budgetary limitations. Assuming a sufficient
number of individuals are tagged for a given species and age
class, the outputs of these models can produce easily interpretable
maps for highlighting regions of importance and communicating
results to stakeholders, which could result in greater acceptance
of study findings given committed stakeholder engagement
(Nguyen et al., 2019).

Benefits, Challenges, and Considerations
As technological advancements (e.g., from remote sensing to
acoustic telemetry data) allow for high-resolution datasets,
machine learning approaches have become increasingly
adopted by ecologists because of their ability to handle large
datasets and complex non-linear hierarchical relationships and
statistical assumptions that are typically violated by conventional
parametric approaches, e.g., multiple correlated predictors
(Olden et al.,, 2008; Peters et al., 2014; Durden et al., 2017;
Brownscombe et al., 2020). While RSFs have typically been
applied within a classical statistical framework (e.g., logistic and
linear models) (Johnson et al., 2006; Manly et al., 2007), machine
learning does not require non-linear predictor relationships and
their interactions to be specified prior to implementing. Thus,
allowing for a flexible, realistic, and accessible application when
applying RSFs to animal space use in relation to multiple and
complex environmental gradients across a landscape (Shoemaker
et al, 2018). Further, implementing machine learning with
ecological data can also provide highly accurate predictive
models (Cutler et al., 2007; Elith et al., 2008; Olden et al.,
2008). For instance, Shoemaker et al. (2018) applying RSFs with
mule deer (Odocoileus hemionus) telemetry data demonstrated
machine learning algorithms outperformed the traditional
approach of logistic regression with higher prediction accuracy.
In another example, although not directly comparable, when
implementing a RF using the juvenile green turtle data in this
study, we found a higher accuracy compared to that as reported
by Griffin et al. (2020) (0.95 versus 0.77, respectively), who
also applied RSFs on juvenile green turtle acoustic telemetry
data from BIRNM but were fitted with GLMMs and fewer
predictor variables.

While machine learning algorithms offer some advantages as
an accurate non-parametric technique, the difficulty to account
for spatial-temporal autocorrelation and individual level effects
presents additional challenges. Whereas RF models are unable to
easily incorporate, RSF GLMMs can explicitly include individual
ID as a random effect (Gillies et al., 2006). Further, generalized
models can incorporate autocorrelation dependency structures
(Zuur et al.,, 2017; Winton et al., 2018a; Griffin et al., 2019;

Gutowsky et al., 2020), however, it is worth noting that defining
the correct correlation structure still remains challenging within
a use/availability (presences/pseudo-absences) sampling design
(see Koper and Manseau, 2009; Fieberg et al., 2010). In this study,
while BBMMs highlighted individual variation in space use,
simplified GLMMs indicated including individual as a random
effect contributed relatively less to explaining overall variance
than the fixed effects alone. However, this was not the case for
lemon sharks, suggesting larger potential differences in relative
habitat selection across individuals. Confirmed by individual
BBMMs and network analyses from Casselberry et al. (2020),
some lemon sharks were consistently close to the island while
others used areas farther away and at greater depths. While
approaches are being developed to incorporate mixed effects
into machine learning algorithms (Hajjem et al., 2014), it is
still relatively inaccessible due to its complexity. Future studies
using RSFs and machine learning algorithms should attempt
to measure or address random variation across individuals
and sample size biases either within the approach and/or with
complimentary analyses. For example, using test datasets that
contain individuals not used in the training dataset may better
help to assess model performance and transferability (Buston
and Elith, 2011; Raymond et al,, 2015). Further, running models
for each individual and, subsequently, collectively deriving the
95% confidence interval estimates across the computed marginal
effects for all individuals may be a viable approach to assess
population level effects. Alternatively, using both mixed effects
models and machine learning approaches in tandem may
be the most appropriate (see Shoemaker et al., 2018). With
consideration to this caveat, machine learning algorithms provide
useful and flexible advantages to deal with complex ecological
datasets and to obtain accurate results.

Beyond the application of RSFs with machine learning
algorithms, by design, passive acoustic telemetry arrays provide
an intuitive approach for implementing RSFs since available
resource units can easily be defined based upon receiver
positioning. Constraining COAs and background points to the
available resource units, defined by acoustic receiver location
at the year level, allows for the incorporation or removal of
additional receivers across a study period. This flexibility is ideal
as arrays often change over time due to funding constraints
or adapting research questions. However, to safeguard against
biased relative selection estimates, it is important to ensure
receiver arrays, including their modifications, are designed to
capture space use that is representative of the habitat available
(Selby et al., 2019; Griffin et al., 2020). For future studies aimed
at examining relative selection, we suggest grid array designs
(Heupel et al., 2006; Kraus et al., 2018) to achieve proportionally
representative coverage of areas rather than deployments guided
by a priori beliefs of animal space use (Brownscombe et al.,
2019b). In addition, detection range and efficiency, should
be considered during the array design (Brownscombe et al,
2019b), when constructing COAs (Winton et al., 2018b), when
defining available resource units around receivers, or even
explicitly in the modeling process (see Brownscombe et al.,
2019a). Detection efficiency and range, often limited by physical
structure, wind, currents, animal noise, or by human activities
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may vary greatly across a given study area (Gjelland and Hedger,
2013; Kessel et al., 2014).

Here, while potentially incorporating biases due to variable
detection ranges (see Selby et al., 2016), we chose a 400 m
buffer around each receiver to allow for COAs and associated
background points to extend beyond observed detection ranges.
However, we recommend testing a wide range of parameter
inputs from COA time bin selection to available habitat buffer
size. Such inputs should be guided by ecological knowledge,
acoustic telemetry coverage, and model accuracy metrics. While
COA time bins of 60-min provided more accurate measures
for some species and refined predictions, we opted for 90-min
bins for all species since this would potentially reduce issues
with autocorrelation by subsampling further (Swihart and Slade,
1985). Further, COA time bin selection should consider both
the programmed tag delay and the speed of tagged animals,
with smaller time bins for faster moving species and larger time
bins for slow moving animals. In this example, we found a
smaller available habitat buffer produced lower accuracy metrics
and led to unreliable predictions across BIRNM. Alternatively,
applying a larger available habitat buffer provided similar results
to the original models that used 400 m buffers and also captured
relative selection for tiger sharks in areas (northeast shelf)
where we expected higher values. While 400 m buffers were
chosen for consistency to Selby et al. (2019) and Griffin et al.
(2020), future researchers should explore and evaluate multiple
extents for a given species, study area, and array. Along with
variable detection range and efficiency, future RSF studies using
acoustic telemetry should also investigate the role of spatial
and/or temporal scales on selection modeling (McGarigal et al.,
2016); this is especially relevant when collapsing habitat and
presences/background points for model implementation.

Conclusion

In summary, we highlight the utility of combining acoustic
telemetry, RSFs, and machine learning to understand and
accurately predict the relative habitat selection of marine animals
across both monitored and unmonitored areas. While RSFs
have been used extensively within terrestrial environments, we
suggest marine ecologists should also adopt these methods to
improve resource management actions. Such applications could
help to prioritize habitat protection and restoration in the
face of continued anthropogenic threats (Millennium Ecosystem
Assessment, 2003). This may have particular advantages centered
around MPA design. Here, applied to four shark species within an
MPA, we found accurate models that could extrapolate to areas
where receiver coverage was limited. Further, when these RSF
values were extended to examine predator-prey relationships,
we found areas that varied in mutual selection, highlighting the
potential overlap of predators and their prey.
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