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Coral reef restoration is an attractive tool for the management of degraded reefs;
however, conventional restoration approaches will not be effective under climate
change. More proactive restoration approaches must integrate future environmental
conditions into project design to ensure long-term viability of restored corals during
worsening bleaching events. Corals exist along a continuum of stress-tolerant
phenotypes that can be leveraged to enhance the thermal resilience of reefs through
selective propagation of heat-tolerant colonies. Several strategies for selecting thermally
tolerant stock are currently available and range broadly in scalability, cost, reproducibility,
and specificity. Different components of the coral holobiont have different utility to
practitioners as diagnostics and drivers of long-term phenotypes, so selection strategies
can be tailored to the resources and goals of individual projects. There are numerous
unknowns and potential trade-offs to consider, but we argue that a focus on thermal
tolerance is critical because corals that do not survive bleaching cannot contribute to
future reef communities at all. Selective propagation uses extant corals and can be
practically incorporated into existing restoration frameworks, putting researchers in a
position to perform empirical tests and field trials now while there is still a window to act.
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INTRODUCTION

Like many natural resources, coral reefs are facing the consequences of climate change. Regardless
of contemporary reductions in emissions, Earth is committed to several degrees of warming
(Sherwood et al., 2020) that will impact a wide range of ecosystems. Ocean warming is causing
increasingly frequent and severe thermal stress events on coral reefs, triggering bleaching that
results in physiologically and metabolically impaired corals. When corals become so severely
compromised that they are unable to recover from temperature stress, reef ecosystems degrade
with immediate and latent consequences (Hughes et al., 2018). Climate change has already
caused dramatic losses in coral cover worldwide (Wilkinson, 2004). Without intervention, the
rate of change in environmental conditions will likely soon outpace natural flexibility and
adaptive capacity (Bay et al., 2017; Matz et al., 2018) to maintain functional coral reefs and the
ecosystem services they provide. The serious implications for food security, coastal protection, and
biodiversity have compelled the search for active management solutions and expanded interest in
reef restoration projects (van Oppen et al., 2017).

Resource managers are increasingly aware that win-win outcomes that conserve biodiversity
and maintain human interests may be impossible (McShane et al., 2011). Many research groups
and management agencies are calling for immediate exploration of non-conventional management
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strategies and dramatic human interventions for coral reefs
while they can still be effective (Hardisty et al., 2019; National
Academies of Sciences Engineering and Medicine, 2019; Anthony
et al., 2020). Strategies involving reef restoration are attractive
because they offer a direct intervention using physical and
logistical techniques that are already established. However, under
climate change, conventional restoration approaches must be
modified to be more proactive, accounting for future conditions,
because restoration using coral stock that is intolerant of climate
change will likely be inefficient and ineffective.

These proactive restoration efforts must be conceptually
reasonable, have manageable or scalable risk, and be logistically
feasible. Here we argue that coupling coral propagation and reef
restoration practices with methods for identifying heat-tolerant
corals meets these criteria and should be assiduously explored.
Selective propagation of local thermally tolerant coral stocks
uses existing corals and techniques, can be readily integrated
with ongoing restoration programs, and theoretically enhances
the temperature resilience of the outplant site. To establish the
efficacy of the approach while it still has relevance, field-testing
should be performed now.

AIMS AND PRACTICES OF CORAL REEF
RESTORATION

Ecological restoration is defined as “the process of assisting the
recovery of an ecosystem that has been degraded, damaged,
or destroyed” and a successfully restored ecosystem “contains
sufficient biotic and abiotic resources to continue its development
without further assistance or subsidy” (Society for Ecological
Restoration International Science and Policy Working Group,
2004). Since scleractinian corals are the foundation of the
coral reef ecosystem, interventions to increase the amount of
living hard coral cover are a primary focus in reef restoration
projects (Precht and Robbart, 2009), which typically target
degradation traceable to anthropogenic activities for which
mitigation measures exist (e.g., ship grounding, dredging,
localized runoff). Coral reef restoration is still an emerging
field undergoing technological and conceptual innovation
(Omori, 2019). Improving restoration techniques and furthering
ecological knowledge have been the main motivations for reef
restoration projects over the past several decades (Bayraktarov
et al., 2019) and best practices are emerging with the
lessons learned.

The majority of coral reef restoration projects currently
involve direct outplanting of whole or fragmented corals
chosen opportunistically and transplanted. Fragmentation of
hard corals was pioneered and developed by the commercial
aquarium trade (Delbeek, 2001) and is utilized extensively
by reef restoration practitioners to asexually propagate coral
stock for transplantation (Rinkevich, 2014; Boström-Einarsson
et al., 2020). The “coral gardening” approach has adapted this
technique to include an intermediate nursery phase (either in situ
or ex situ). Coral gardening allows time for fragments to recover
and grow to an adequate size before outplanting (Rinkevich,
1995, 2005) and represents a “sustainable” source of material

for restoration that minimizes continuous harvest from the
broader population.

Sexual propagation of corals is also being explored as
a potential restoration tool either through directly seeding
reef areas with larvae (Doropoulos et al., 2019; Cameron
and Harrison, 2020) or using settled spat (from controlled
crosses or large-scale wild spawning events) to obtain stock for
outplanting (Nakamura et al., 2011; Villanueva et al., 2012).
Sexual reproduction allows selective breeding of particular traits
and increased genotypic diversity in wildtype crosses, which
may improve adaptive and evolutionary potential (Bay et al.,
2017; Quigley et al., 2020a). The vast numbers of coral larvae
resulting from spawning events and their small individual size
means sexual reproductive approaches have the potential to be
scaled up in ways that fragmentation cannot. However, sexual
reproduction is less tractable than asexual propagation because
approaches require more extensive effort and expertise, can vary
widely in methodology by species, and are often dependent on
seasonal events.

Sexual or asexual approaches to obtaining source material
for outplanting could be combined with other proposed
restoration strategies (e.g., artificial or augmented substrates
meant to convey a settlement or growth advantage to desirable
species, thermal preconditioning, heterotrophic feeding,
probiotics) to gain synergistic benefits. Regardless of the
particular strategy, theoretical consideration of the techniques,
consequences, and limitations is crucial to the effectiveness of
any restoration project. Practical concerns of resource managers
and stakeholders, such as preserving ecosystem services,
maintaining biodiversity, retaining or increasing coral cover, and
preventing phase shifts, necessitate the ongoing development of
restoration techniques.

CORAL REEF RESTORATION UNDER
CLIMATE CHANGE

Climate change presents a major challenge to traditional
resource management because increasing atmospheric CO2 is
a pan-global driver whose mitigation is outside the purview
of any single resource management agency. The inevitability
and enormity of the problem has led resource managers and
stakeholders to reconsider traditional conservation goals and
to start planning for climate change adaptation—managing
change rather than maintaining conditions (Palmer et al., 2004;
Stein et al., 2013). Climate change is increasingly considered
in forestry management planning and the control of terrestrial
invasive species (Nagel et al., 2017; Beaury et al., 2020) and
interest in resilience-based management of coral reefs is growing
(Mcleod et al., 2019).

While it has been assumed that local management actions
help mitigate coral bleaching effects by reducing additive and
synergistic stressors (Anthony, 2016), recent evidence suggests
that recurring incidences of more extreme heat stress may
limit the benefits (Hughes et al., 2017). In the past 50 years,
approximately 50% of the Great Barrier Reef (Dietzel et al., 2020)
and >80% of the Caribbean (Gardner et al., 2003) has been
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degraded. It is estimated that only 10% of the world’s reefs will
persist past the year 2050 (Burke, 2011), as bleaching becomes a
nearly annual occurrence (van Hooidonk et al., 2013). Even under
best-case emissions trajectories, coral reefs will continue to be
negatively transformed by climate change (Hughes et al., 2018;
Anthony et al., 2020).

Conventional coral reef restoration is unsuitable under
climate change because increasing temperature stress must now
be accepted as an established parameter of the environment
which will continue to impact newly outplanted corals during
restoration (Drury et al., 2017a; Drury and Lirman, 2021).
Without the introduction of meaningful adaptive variation there
is a mismatch in the speed of adaptation relative to climate change
(Matz et al., 2020), leading to local extirpation and limiting
the long term persistence of reefs (Bay et al., 2017). Returning
a degraded coral reef to its pristine state was once a realistic
goal, but in many locations it now appears that priorities must
shift to supporting ecosystems that are more resilient to climate
change even if they represent modified versions of the ideal
state. Fortunately, the existing coral restoration toolbox is diverse
and potentially adaptable to proactive restoration objectives
(Rinkevich, 2019).

PROACTIVE CORAL REEF
RESTORATION

The terms “proactive restoration” and “preemptive restoration”
appear occasionally in terrestrial resource management literature
(Schweitzer et al., 2014; Muzika, 2017; Schoukens, 2017;
Schweiger et al., 2018) especially in fields where there are
strong anthropocentric concerns, such as endangered species
compliance or timber management. In Foundations of Restoration
Ecology (Falk et al., 2006), the authors state, “By proactive, we
mean restoration projects that are designed to accomplish more
than returning a system to some prior state.” Perhaps the term
is not used more frequently, despite the concept being evident in
many studies, because there is already a foregone conclusion in
terrestrial systems that we will be factoring climate change into
the design of management plans for the foreseeable future. We
suggest the term “proactive restoration” is applicable to coral reef
restoration undertaken in anticipation of environmental change
and accounting for expected future conditions.

We advocate combining methods for identifying heat-tolerant
coral stock with existing best practices in propagation and
outplanting as a viable proactive reef restoration strategy that
should be explored in earnest. Using coral stock selected
to persist under anticipated future climate conditions should
enhance the long-term survivorship of the individual outplanted
colonies and consequently reduces wasted effort by practitioners.
Transplantation of thermally tolerant individuals can also
support adaptation (Bay et al., 2017), with models that include
migration and selection for optimal genotypes predicting coral
reefs in specific geographic ranges could persist for 100–200 more
years (Matz et al., 2020).

Our focus is on the propagation of heat-tolerant colonies
selected from a local population for use in restoration projects

in the same locale, but less conservative formulations are also
possible. Practitioners faced with insufficient thermal-tolerance
in a local coral population could consider applying a “climate
adjusted provenancing” approach (Prober et al., 2015; Baums
et al., 2019) that includes selecting heat-tolerant corals from
more distant reefs, representing a hybrid strategy of assisted
gene flow (Aitken and Whitlock, 2013) and selective propagation.
In contrast to the conventional objective of repairing damage,
selective propagation and outplanting could hypothetically be
implemented prior to any evidence of degradation in order
to preemptively support resilience of coral populations in
anticipation of an imminent decline. While integrating thermal
resilience in coral populations using this proactive restoration
approach is largely untested and subject to issues of scale, reef
restoration without climate change planning is already untenable.

PERSISTENCE OF HEAT-TOLERANCE

Many strategies proposed for human intervention in coral
conservation involve moving individual corals along with their
algal, bacterial, and viral symbionts, taking advantage of intrinsic
adaptive variation within and among populations (Figure 1).
Proactive restoration using selected heat-tolerant coral stock
requires that the extant thermal tolerance available in local coral
populations is sufficient to persist under more stressful future
conditions and that propagated individuals retain a significant
portion of the heat-tolerance identified in source colonies.
Multiple components of the coral holobiont drive phenotypes of
interest, but their utility for practitioners may vary.

Genetic drivers of thermal tolerance in the coral host are
well-supported by experimental evidence on heritability (Dixon
et al., 2015; Kirk et al., 2018), the long-term persistence of
thermal tolerance after acclimatization (Schoepf et al., 2019),
transplantation (Palumbi et al., 2014; Kenkel and Matz, 2016),
environmental correlates (Jin et al., 2016), and reproducible
bleaching effects (Ritson-Williams and Gates, 2020; Voolstra
et al., 2020). This evidence suggests that host genetic effects have
the highest translatability of any component of the holobiont
and are most useful for practitioners, despite our limited
understanding of genotype by environment interactions (Howells
et al., 2013; Drury and Lirman, 2021). The utility of host genetic
effects does not require any actual data on genomic variants, but
can be established through broad-sense (clonal) heritability by
measuring phenotype(s) of known individuals.

Corals can also harbor multiple genera of Symbiodiniaceae
simultaneously (Silverstein et al., 2012), which can shift in
response to natural and experimental heat stress (Baker et al.,
2004; Berkelmans and van Oppen, 2006; Cunning et al., 2015b).
However, different coral genera have varying levels of tolerance
for diverse symbiont assemblages and flexibility in symbiont
associations may be genera specific or temporally unstable
(Goulet, 2006; Thornhill et al., 2006). Conversely, some corals
bleach and recover without shuffling symbionts (Cunning et al.,
2016) and recapitulate stress tolerance phenotypes through
multiple bleaching events (Fisch et al., 2019; Ritson-Williams
and Gates, 2020). There are also fine-scale differences within
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FIGURE 1 | Variation in the response of corals to heat stress. (A) Colonies of several species on a reef during a bleaching event. (B) Coral fragments of a single
species undergoing an artificial aquarium-based heat stress test.

symbiont genera (Sampayo et al., 2008) and potential genotype
level physiological implications (Baums et al., 2014). We suggest
that in certain instances symbiont community dynamics may
be a translatable factor that influences phenotype in a useful
manner for practitioners, but additional data on historical,
environmental, and species-specific factors is needed.

The evidence for bacterial translatability is equivocal.
Temperature stress is associated with shifts in the microbiome
(Bourne et al., 2008; Littman et al., 2011) and corals with
more stable microbiomes tend to be more thermally tolerant
(Hadaidi et al., 2017; Grottoli et al., 2018). Specific bacteria
(Ben-Haim et al., 2003; Thurber et al., 2009; Mouchka et al.,
2010) are correlated to bleaching response and specific bacterial
functions (Santos et al., 2014) have also been linked to thermal
tolerance. Bacterial probiotics used to supplement microbial
communities of corals can improve thermal tolerance in
laboratory experiments (Rosado et al., 2019). Conversely, corals
from different thermal environments have unique microbes
that may shift when moved to more stressful environments
(Ziegler et al., 2017) and bacterial communities are flexible during
development, aging, and bleaching (Littman et al., 2011; Williams
et al., 2015; van Oppen and Blackall, 2019). Although the
microbiome does play a role in thermal tolerance, the complexity
of this component makes it difficult to establish translatability for
restoration practitioners.

SCIENCE OF CORAL STOCK
SELECTION

Requisite in any program of selective propagation is the
identification of individuals or populations with the desired
phenotype. Heat-tolerance phenotypes may be derived from host,
algal symbiont, microbial, or synergistic holobiont effects (see
above) or inferred from the environment, and should be durable

across space and time to be useful to practitioners. Strategies for
identifying candidate coral colonies (Table 1) range dramatically
in scalability, cost, lag time between conceptualization and
usability, and technical dependencies.

There is evidence that each of these strategies has potential
to identify a more heat-tolerant stock of corals for propagation
than random or opportunistic sampling; however, there are pros,
cons, and major unknowns for each. We assume that in situ
methods will give more ecologically relevant information, but
may not be as scalable or tractable as ex situ methods. While tank-
based heat stress tests and molecular assays may be beneficial
to research groups or small-scale projects where the investment
in screening and tracking individual colonies is acceptable,
more scalable solutions are critical for human interventions to
have positive impacts on the long-term persistence of reefs.
For example, opportunistic selection of coral stock from an
area with documented elevated thermal history and/or an
above average proportion of non-bleaching corals could be
carried out with minimal additions to standard propagation
workflows, but may suffer from lower precision. While more
technically involved, remote sensing of individual corals across
an entire reef potentially combines rapid identification with
targeted selection. The most effective selection strategy for a
given restoration project will depend on many factors including
feasibility (resources, expertise), what prior data is available about
the coral populations and the source and outplant sites, which
particular coral species are included in the project, and the project
scale and timeline.

TRADE-OFFS IN PROACTIVE CORAL
REEF RESTORATION

The targeted selection of corals using any of these techniques
should be expected to come with trade-offs because there
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TABLE 1 | Approaches to identifying heat-tolerant coral stock.

Selection strategy Summary Limitations Advantages References

Local conditions Local adaptation to environmental
conditions increases likelihood of
phenotype of interest

Not individual-based (probabilistic), does not
account for plasticity, requires exploratory
research, limited ability to capture full range of
diversity

Logistically simple once established,
inexpensive, in situ

Palumbi et al., 2014; Howells et al., 2016;
Kenkel and Matz, 2016; Jury and Toonen,
2019; Schoepf et al., 2019; Quigley et al.,
2020b; Voolstra et al., 2020

Known performance Observed past performance of a colony
is predictive of future performance

Need pre-established individuals monitored
over time

Reliable, in situ, inexpensive, can be integrated
into nursery propagation

Drury et al., 2017a; Fisch et al., 2019;
Barott et al., 2020*; Matsuda et al., 2020;
Ritson-Williams and Gates, 2020; Drury
and Lirman, 2021

Stress tests A sample representing the source
colony undergoes heat stress, which is
predictive of future performance

Not fully representative of natural performance,
ex situ, requires aquaria infrastructure, limited
scalability

Fast, reproducible, inexpensive once
established

Barshis et al., 2013; Palumbi et al., 2014;
Thomas et al., 2018; Morikawa and
Palumbi, 2019; Voolstra et al., 2020

Host genetics Using adaptive variants, epigenetics, or
gene expression profiles to predict
performance

Requires molecular work, expensive, high
technical dependencies, unlikely to be single
large-effect genes, may be species-specific

Mechanistic, targeted (within species), scalable,
reproducible

Bay and Palumbi, 2014; Dixon et al.,
2015; Rose et al., 2015; Kirk et al., 2018;
Fuller et al., 2020; Quigley et al., 2020a;
Drury and Lirman, 2021

Algal symbiosis Algal symbiont communities influence
holobiont performance

Requires molecular work, may be transient,
some species do not harbor diverse
assemblages

Potentially scalable, well-studied system,
predictable tradeoffs

Rowan, 2004; Berkelmans and van
Oppen, 2006; Sampayo et al., 2008;
Cantin et al., 2009; Cunning et al., 2016

Biomarkers Data correlated with performance (e.g.,
color, spectroscopy, metabolomics,
lipidomics, proteomics, antioxidant
activity) collected from novel individuals

May require molecular/bench work, low
reproducibility, heavy developmental investment

Potentially scalable, fast with appropriate
resources

Barshis et al., 2010; Innis et al., 2018;
Mayfield et al., 2018; Majerova et al.,
2020*; Williams et al., 2020*; Majerova
and Drury, 2021*; Roach et al., 2021

*Indicates pre-prints available online.
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is an ultimate energetic budget allocated across the various
metabolic, reproductive, and stress response processes in any
organism (Lesser, 2013). Corals are exposed to multiple stressors
including high temperatures, acidifying oceans, disease, salinity
fluctuations, sediment, nutrients, algal overgrowth, and recurrent
storms. It is still unclear whether building coral resilience
to one stressor will in turn lead to resistance to multiple
stressors (“cross-tolerance”; van Oppen et al., 2017). Previous
work shows that growth in benign conditions was lower for
stress-tolerant corals (Bay et al., 2017) and faster growth was
inversely related to tissue loss after thermal stress (Ladd et al.,
2017). High temperature tolerance was also inversely related
to low temperature tolerance in transplanted corals (Howells
et al., 2013) and migrants from warm climates suffered health
consequences during winter (Schoepf et al., 2019). There is
also strong experimental support for slower growth in heat-
tolerant symbiont communities (Little et al., 2004; Jones and
Berkelmans, 2010), likely the result of lower carbon translocation
(Cantin et al., 2009), but this effect is diminished under
warmer conditions like those corals will face in the future
(Cunning et al., 2015a).

Muller et al. (2018) found no relationship between
temperature tolerance and disease susceptibility in Caribbean
Acroporids at ambient temperatures, but showed disease
tolerance was lost under thermal stress, suggesting that
a small proportion of the population is tolerant to both
stressors. Conversely, Wright et al. (2019) found support
for positive responses to multiple stressors. This study
showed high correlations between temperature tolerance,
calcification under ocean acidification conditions, and
disease resistance, suggesting a possible common genetic
architecture that could respond positively to selection, providing
a mechanism for persistence under multiple stressful conditions
(Wright et al., 2019).

At the population level, a potential cost of artificially
accelerating local adaptation is reduced genetic or genotypic
diversity. Selective propagation does not remove genotypes
or standing genetic diversity from a reef (unlike agricultural
monoculture), where relatively small numbers of coral genotypes
(on the order of dozens) used as focal stock can capture
nearly all the genetic diversity of a population (Drury et al.,
2017b; Baums et al., 2019). However, selective propagation
would shift the allele frequency spectrum, positively affecting
patterns of directional selection during heat stress (Bay et al.,
2017). Because heat-tolerance is a complex trait (i.e., there is
more than one way for a coral to be heat-tolerant), rather
than focusing on a single or small number of selected stock
genotypes, restoration practitioners can choose to select as
wide an assortment of corals as possible that meet the heat-
tolerance selection criteria established by an individual project
(Baums et al., 2019). This step will also likely result in
individuals with multiple interacting pathways and genetic
architectures that contribute to heat tolerance. To promote
additional genetic diversity, restoration projects may leave
substrate available for natural recruitment and emphasize coral
survival and reproductive competence to maintain gene flow with
other populations.

The evaluation of trade-offs in coral resilience is challenging
because of the difficulty in extensive measurement of the many
realistic phenotypes of interest, such as partial mortality, wound
healing, growth rate, and fecundity (Baums et al., 2019). Changes
at ecosystem scale may also be decoupled from experimental
trade-offs, such that outcomes defined in one or several genotypes
or species obscure broader functional dynamics on actual reefs.
Regardless, delaying new interventions because of uncertainty
around trade-offs could mean losing key species and functions
(Anthony et al., 2020), representing an opportunity cost of non-
intervention. A robust coral reef ecosystem is dependent on
many coral traits, but we contend that temperature tolerance
is of paramount importance in the face of ever-increasing
coral bleaching events. While greater fecundity, growth, and
structural complexity enhance ecosystem services and long-
term capacity for resilience, corals that do not survive cannot
contribute at all.

CONCLUSION

We argue that selection and propagation of heat-tolerant coral
stock is a rational option for proactive reef restoration under
climate change. We acknowledge risks and unknowns that
warrant attention and further exploration, but contend that given
the urgency of the situation, this strategy is feasible, relatively
conservative, and logistically practical within existing restoration
frameworks. Important areas for continued research include
developing high-throughput selection methods, investigating the
trade-offs in selecting heat-tolerant corals, and assessing the long-
term viability of those corals. We also advocate empirical field
tests to develop methodology, reveal unknown limitations and
drawbacks, and assess real-world performance in preparation
for implementing full-scale proactive restoration projects to
meet resource management objectives and prepare coral reefs to
face the future.
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