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Oceans Canada, Dartmouth, NS, Canada

An R package named argofloats has been developed to facilitate identifying,
downloading, caching, and analyzing oceanographic data collected by Argo profiling
floats. The analysis phase benefits from close connections between argoFloats and
the oce package, which is likely to be familiar to those who already use R for the
analysis of oceanographic data of other kinds. This paper outlines how to use argoFloats
to accomplish some everyday tasks that are particular to Argo data, ranging from
downloading data and finding subsets to handling quality control and producing a variety
of diagnostic plots. The benefits of the R environment are sketched in the examples, and
also in some notes on the future of the argoFloats package.
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1. THE ARGO PROGRAM

The ocean is not a uniform, static fluid. Rather, its properties vary with both space and time,
and these variations are important not just for the ocean itself, but also for ocean-atmosphere
interactions. For this reason, measuring variations of seawater properties and currents is a critical
prerequisite to understanding and predicting the ocean and its place in the climate system.

Sampling the ocean with ships has proved to be somewhat problematic. Despite the high
accuracy of ship-based measurements, the spatial and temporal coverage is limited, with large
areas remaining unexamined for decades at a time. At particular isolated locations, the temporal
issue is addressed well by moorings. However, traditional moorings provide no data until
they are recovered, and so moorings are of little utility in data-assimilative modeling efforts.
Satellite imagery provides another alternative to ships, providing good geographical and temporal
resolution. However, sensors aboard satellites provide information mainly about surface properties,
yielding little direct information about the underlying waters.

These and other limitations of ships, moorings, and satellites have been addressed by the Argo
Program of drifting profiling floats, which was initiated in 1999 (see e.g., Roemmich et al., 2009).
Argo floats can control their depth by altering their buoyancy, and this is key to their utility. The
usual protocol is for a float to remain at a parking depth that is 1 km below the surface (or less,
depending on water depth) for approximately 9 days. Then the buoyancy is reduced so that the
float descends to 2km (water depth permitting), after which buoyancy is increased, causing the
float to ascend to the surface. The drift-profile pairs are a component of what are called “cycles” in
Argo nomenclature.

Argo floats are typically deployed from ships and thereafter drift freely for about 4 years (Carval
et al., 2019), making approximately 150 ocean profiles. During those profiles, instruments record
pressure, temperature, and electrical conductivity (through which salinity is computed), with the
optional addition of other quantities to be described below. These data, along with location inferred
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FIGURE 1 | Number of Argo cycles executed annually, revealing an early steep rise followed by a plateau in recent years.

Year

21762 CTD profiles

FIGURE 2 | Comparison of spatial sampling during the year 2018 using ship-born CTDs (Left) and Argo floats (Right). The CTD data were obtained from the World
Ocean Database and plotted with the oce package, and the Argo data were downloaded and plotted using argoFloats. The respective profile counts (for CTD) and

cycle counts (for Argo) are indicated above the panels.

174139 Argo cycles

by GPS, are transmitted by the Argos, Iridium, or Orbcomm
communication systems to receiving stations (Schmid et al.,
2007). (Other, less precise, positioning systems were used in
past years.) Thus, Argo floats provide profiling data at the
transmitting sites, and an analysis of those site locations permits
inferences about currents at the parking depths (Ollitrault et al.,
2013).

The original Argo Program (now called the “Core” Program)
was extended to address the evolving needs of the research
community, forming what is now known as the biogeochemical
(“BGC”) Argo Program, which began by deploying optical and
oxygen sensors on Argo floats (Roemmich et al., 2019). Today,
BGC-Argo floats may carry additional sensors including oxygen,
pH, nitrate, downward irradiance, chlorophyll fluorescence, and
optical backscattering (Bittig et al., 2019), providing insight about
biogeochemical processes in the upper 2km of the ocean. The
BGC initiative was then followed by the “Deep” Argo Program,
with floats descending as far as 6 km below the surface, starting
with a pilot phase in 2014 (Gasparin et al., 2020). As Figure 1
shows, there has been a marked increase in Argo sampling since
the onset of the program, with a plateau in recent years. As of
November 2020, over 16000 Core Argo floats had been deployed,

along with over 1400 BGC floats and over 100 Deep floats (see
Argo (2020) for notes on data availability).

By virtue of the large number of floats and the short time
between their profiles, the Argo Program provides a valuable
supplement to traditional ship-based Conductivity Temperature
Depth (“CTD”) instruments. In 2018, for example, there were
8 times as many Argo profiles as there were ship-based CTD
profiles recorded in the World Ocean Database (see Boyer et al.
(2018) for an introduction to this database). However, this
is an underestimate of the significance of the Argo Program,
because the ship-based CTD profiles tend to be acquired only
in selected regions. This is illustrated in Figure 2, which reveals
dense Argo sampling in large expanses of the ocean that received
little ship coverage. (Although the Arctic is presently sampled
poorly by both methods, efforts are underway to develop Argo
floats suitable for the Arctic; see e.g., Nguyen et al. (2020)
for a discussion.)

The dense spatio-temporal sampling made available by
the Argo Program has not gone unnoticed in the scientific
community. Increasingly, Argo specialists are being joined by
general oceanographers and climate scientists, who see the Argo
Program as providing just one of many datasets that they need
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to deal with. This opens up a need for new tools for analyzing
Argo data both as a particular focus, for example, the Argovis | Get an index of profiles from an argo server. | | getindex( |

(Tucker et al., 2020) and Euro-Argo fleet monitor! web systems,
and the argopy Python package (Maze and Balem, 2020), and as a
subcomponent of more expansive research programs that employ
a spectrum of measurement technologies. In the latter category
are analysts who may need more than the standardized plots and
analyses that tend to be offered by online Argo tools, particularly
when it comes to integrating diverse datasets and performing
specialized analyses. These analysts are among those for whom
the argoFloats package was designed.

2. THE ARGOFLOATS PACKAGE

Increasingly, oceanographers are relying on the R language
(R Core Team, 2020) for their data analysis. There are five
main reasons for this. First, R offers a comfortable interactive
environment, supported by easy linkage with compiled languages
for speed and with other interpreted languages, such as Python,
for convenience. Second, R provides a vast and unrivaled suite
of statistical functions, supported with detailed documentation
provided within R itself and in dozens of textbooks. Third,
R packages are tested stringently, both when they are first
accepted to the system and also at regular intervals thereafter,
with the testing being carried out across co-dependent packages,
on multiple versions of R and on multiple computing systems.
Fourth, R is an inherently cross-disciplinary tool, frequently
used by chemical and biological oceanographers. And, fifth, the
oce package supports many aspects of oceanographic analysis,
with specialized functions for computing seawater properties,
for reading many native instrument formats, and for creating
specialized graphical representations that meet oceanographic
conventions. See Kelley and Richards (2020) for more on oce and
Kelley (2018) for more details of general oceanographic analysis
with R.

Although the oce package provides tools for dealing with Argo
data, it does not identify detailed paths to datasets, nor support
the integration of data spread across several downloaded files.
This motivated the development of another R package, named
argoFloats. The prime goal of argoFloats is to eliminate the gap
between the Argo data and the end user. It allows the user
to choose from multiple data sources, to download and cache
Argo data files, and to sift through those downloaded data based
on float ID, time, geography, variable, profile, etc. It also has
tools for producing a range of practical graphical representations,
including temperature-salinity diagrams and profile plots, and
for handling Quality Control (“QC”) information, as will be
highlighted in the following sections.

It is worth noting that argoFloats was designed from the start
to be suitable for users with widely-ranging coding expertise. For
this reason, a number of learning tools were created alongside
the package. These include (1) detailed documentation on the
functions and datasets within the package, (2) vignettes that
sketch using the package in practical applications, (3) a developer
website (Kelley et al., 2020a) that has tools for reporting bugs,

Thttps://fleetmonitoring.euro-argo.eu/dashboard.

)
(

| Focus on a subset of profiles. I

getProfiles()

readProfiles()
C-]

FIGURE 3 | Typical work flow of the argoFloats package with description of
the steps on the left, and names of the relevant functions on the right.

| Get profile data files from the server. |

v

| Read profile data files. |

é

requesting features, and viewing changes in the code, (4) a user
website (Kelley et al., 2020b) that requires less expertise than the
developer website, and (5) Youtube tutorials (links to which are
provided in the websites) that offer step-by-step instruction on
using the package.

Figure 3 shows the basic steps involved in working with the
argoFloats package. The procedure normally starts with a call to
the get I ndex() function, which either acquires an index of
float files from an Argo server, or gets a pointer to a locally cached
index, depending on the age of such a cached index. The default
is to limit downloads to once per day, but this can be changed by
using an optional argument in the get | ndex() call. The main
item in these index files is a URL fragment that tells where to
get the netCDF data files containing float profile data. There are
three types of index files that can be acquired by get | ndex() :
one that holds Core and Deep data, a second that holds BGC
data, and a third that holds a combination (“synthetic,” in Argo
nomenclature) of the first two. These are specified by one of
the get | ndex() arguments, with Core data being the default.
Other arguments control the server that will be queried to get the
index, the name of a local directory in which to store downloads,
and parameters controlling whether the function ought to act
silently. Reasonable defaults are set for all of these, e.g., if a
server is not specified, get | ndex() tries the Ifremer server 2,
switching to the USGODAE server ? if the former fails to respond.

Once an index has been downloaded, the next step is usually
to subset it according to some criterion. This is accomplished by
using a function called subset () that specializes a generic R
function. (The scheme of specializing generic functions is one
of the reasons for the popularity of R, since it makes it easy to
guess how to work with new types of data in familiar ways.) The
subset () operation can be done in many different ways. These
include isolating data by float ID, by cycle number, by time, by
location, by institution, or by Deep category, etc. It is common
to subset sequentially, often performing statistical analyses or
producing graphs of the data at each step. To help an analyst keep
track of the winnowing that occurs with each subset () call, the

2ftp.ifremer. fr.
3usgodae.org.
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FIGURE 4 | Trajectory of Argo float 6900388 circulating in the northwest Atlantic Ocean. Water depth is indicated in the color underlay, and sampling time is indicated
with colored dots. Cycle numbers are labeled at regular intervals, indicating that this float made well over 200 cycles during its 5-year lifetime.

function prints a note on the fraction of data that were retained.
It should be noted that finding subsets is a fast operation, because
it does not involve file downloads.

Once a subset of interest has been specified, the next step is to
download the netCDF files containing the data of interest, using
get Profil es(). This function takes as primary input the
return value of either get | ndex() orsubset () . Since the file
sizes are of order 100 KB, this step can be slow if many files are
needed. For this reason, get Prof i | es() follows the pattern
set by get | ndex( ), caching downloaded files, so that future
calls can use local files if they meet an age criterion. Therefore,
get Profil es() tendsto be a fast operation, except at the start
of a new project.

The next step, accomplished with r eadPr of i | es(), is to
read the local data. In most cases, this function uses the output of
get Profil es(), but it is also possible to specify netCDF file
names, skipping the previous steps.

Once data have been read, the user has an object in the R
session that can be analyzed in a wide variety of ways. Generic
functions are provided for some common tasks, with the prime
components being as follows.

1. The sunmary() generic function provides an overview of
the object.

2. The [[ generic function retrieves data from within an
argoFloats object. For example, if A is an object returned by
readProfiles(),then A[["tenperature"]] returns

an R list object with one element for each profile stored in A.
At this stage, the user can use standard R methods to perform
a profile-by-profile analysis, to string the data together to get
an overall view, etc.

3. The pl ot () generic function creates a variety of graphical
displays of the data, e.g., maps of the positions of the Argo
float(s), temperature-salinity diagrams, time-series plots of
QC flags and data, and profile plots. Simple calls to pl ot ()
created most of the figures that follow in this paper, although
some of them are further modified by adding features
(extracted with [ [ ) using standard R graphical functions for
drawing symbols, lines, polygons, text, images, etc.

Further to the last point, it is worth noting that the use of [ [ to
extract data from argoFloats objects gives the user the freedom
to use any of the statistical and other functions provided by R
and its many thousands of contributed packages. Thus, although
it might seem to be simple, the [ [ function is actually a central
contributor to the power and scope of argoFloats.

3. ARGOFLOATS WORKFLOW EXAMPLES

3.1. Analysis of Float Trajectories

Figure 4 shows the path of the float 6900388 (that is, the float with
World Meteorological Organization number 6900388) in the
North Atlantic. Its construction followed the pattern outlined in
Figure 3, although there was no need for the get Prof i | es()
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or readProfil es() stage because Argo index files contain
float sampling times and locations, and together these things are
all that is required to construct Figure 4. A simpler version of the
plot, skipping the indication of time, is obtained with

I'i brary(argoFl oats)

i ndexl <- getlndex()

i ndex2 <- subset (i ndex1l, |D="6900388")
pl ot (i ndex2, bat hymetry=TRUE)

and readers who run this code will find that the subset () call
reveals that there are 223 cycles for this float. Two files will be
downloaded in the process, one for the Argo index, and another
(from a NOAA server) for a bathymetry file tailored to this
geographical view. In many applications, the user will already
have a local bathymetry file, so the second argument to pl ot ()
can be altered to use that, speeding up the process.

The main difference between the results of the preceding four-
line operation and Figure4 is the use of colored symbols to
indicate float sampling times and the labeling of cycle numbers at
some locations. The relevant information may be obtained with

tinme <- index2[["tinme"]]

and similar steps, after which standard R functions (including
col ormap() and drawPal ette() from the oce package)
may be used to add other elements of Figure 4. This illustrates
how argoFloats provide basic functionality for common tasks,
while also making it easy for users to extend that functionality
to meet their own needs.

It would be simple to extend this with the geodXy()
function in oce, to learn more about ocean velocities at the float
parking depth. Some smoothing or regression analysis might be

required to achieve the desired results, and readers who are new
to R may be pleased to learn how easy it is to carry out such
analyses with standard R functions.

This first example has dealt only with index data, i.e., it has
skipped the third and fourth steps in Figure 3. Many analyses
will be similar to this (see e.g., the later section about a GUI
application), but it is also important to illustrate how to download
Argo netCDF data files with get Pr of i | es() and how to read
those data files with r eadPr of i | es( ), as will be done in the
next section.

3.2. Watermass Analysis

Temperature-salinity diagrams are a useful tool for watermass
analysis, and a common first step is to prepare such diagrams
showing water samples obtained in different areas. Figure 5 is
a case in point. The first step in its construction was to use
subset () to isolate a circle within a 150 km radius of Panama.
The region was then subdivided into polygons separating the
Atlantic and Pacific waters. The polygons were determined
using pl ot (..., whi ch="map") to get a map of the region,
then using | ocat or () to determine vertices on these selected
polygons. (Note that subset () can choose data by ocean basin,
but this is not accurate in this region, evidently owing to the
limited resolution of the polygons used by the Argo processing
system to designate ocean basins.) The fact that none of these
steps takes more than a minute is an illustration of why people
are drawn to R for interactive work. It is also worth noting that R
makes it easy to follow such exploratory steps with algorithmic
schemes, e.g., defining subsets that trace bathymetric contours
or the boundaries of marine protected areas, or that establish
Argo-based virtual moorings or ocean transit sections.
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The right-hand panel of Figure5 was made with
pl ot (ar gos, whi ch="TS", col =col Basi n), where
ar gos holds data obtained by applying r eadPr of i | es() to
the output of get Profil es() for the relevant geographical
regions and col Basi n was defined to colorize by region. The
resultant temperature-salinity diagram should make sense to
readers with oceanographic experience, who are aware of a large
contrast between Atlantic and Pacific watermass types. However,
readers who try the procedure summarized above will find that
there are many outliers that make no physical sense. This is
because argoFloats works with the data as specified in the official
data files, and these data are subject to error. As with many
oceanographic datasets, Argo data are typically accompanied
by QC flags. Using appl yQC() on an ar go object containing
profiles turns questionable data into NA (missing) values, so they
do not appear on the plot. This step was taken in the creation
of Figure5. The argoFloats package has several tools for the
handling of QC flags, and it is important that users become
familiar with them, because the official QC flags are not always
entirely accurate.

3.3. Quality Control Analysis

Core, BGC, and Deep Argo data all undergo testing to ensure
the data found at the Data Assembly Centers (“DACs”) are
reasonably accurate. This is done on both “real-time” and
“delayed” data. As is explained in the Argo User’s Manual (Carval
et al,, 2019), real-time measurements are assigned a QC flag
within a 24-48 h time frame, and delayed-mode are reexamined
within 1-2 years by scientists who apply additional procedures to
check the quality. In addition to the designation of QC flags, some
data sets may be changed in recognition of the QC analysis or in
light of improvements to instrument calibrations, etc., with the
results being referred to as “adjusted” data.

It is important to note that even with vigorous testing
procedures, QC flags cannot be considered perfect. As described
in section 1.3 of the Argo User’s Manual (Carval et al., 2019), the
user assumes all risk using Argo data and, as will be demonstrated
presently, careful analysts should consider applying their own QC
checks to their data.

A three-step process can help with such work. First, use
plot(...,which="QC") to plot an overview of the QC
flags for the parameters of interest. In addition to showing QC
flags, this function can also show the dat aSt at el ndi cat or
designation, which reveals the level of QC processing performed
on individual float cycles. Second, use appl yQC() to replace
suspicious data with NA values, so they will not appear in plots or
be considered in calculations, and create some diagnostic plots
(e.g., temperature-salinity diagrams, profiles of temperature,
salinity, and density) to assess whether appl yQC() failed
to remove some questionable data. Third, if there are such
questionable data, use ShowQCTest s() to get a summary of
the QC tests (if any) that were performed on the data. (Perhaps
surprisingly, different QC procedures are sometimes applied to
different cycles for a given float.) The first and third of these steps
might be skipped for quick work, but they should be carried out
for in-depth analysis.

For example, Figure 6 shows a QC plot for float 1901584.
Cursory examination indicates that, although the float reported
data for nearly 5 years, the quality of those data declined seriously
in its final 2 years. Another variant of the plot (not shown) reveals
that the “data state indicator” was 2B for each profile made with
this float, which according to Reference Table 6 of the Argo User’s
Manual (Carval et al., 2019) indicates that automated testing has
been done, without additional scrutiny by scientists.

To this end, Figure 7 shows the impact of removing the “bad”
data from this float using appl yQC() . It will be obvious to
anyone with oceanographic experience that the uncorrected data
(left-hand panel) are heavily polluted with erroneous values.
Indeed, the water properties are so far from typical oceanic
values that the oce function that produces this plot does not even
attempt to draw isopcynal curves across the whole panel. The
coloring in this figure indicates that the wildest outliers have been
flagged as questionable. The right-hand panel, which is cleared
of flagged data, is more reasonable. However, and importantly, it
also contains some points that are far from the main data cloud,
and that would likely catch the attention of a experienced analyst.

One way to investigate such outliers on a temperature-salinity
diagram is to consider the dependence of the seawater property
called “spiciness,” which is in some sense orthogonal to density
on such a diagram (Flament, 2002; McDougall and Krzysik,
2015). Figure 8 shows the results of such an analysis, in which
a smoothing cubic spline was used to summarize the dependence
of spiciness on potential density anomaly. The standard deviation
8 of the difference between data and spline was computed, and
then points that departed from the spline by more than 58 were
colored. This seems to identify outliers well, as can be seen when
the data are redrawn in temperature-salinity space. A reasonable
next step might be to compute density-dependent deviation,
to account for the (expected) thickening of the data cloud for
waters near the surface. There again, the standard R functions
will greatly reduce the analysis effort.

Having identified a set of outlying points, either with an
algorithm as in Figure 8 or by any other means, it is easy to
determine which profiles contain those points, and then to use
showQCTest s() to learn which QC tests had been performed
in each case. This can provide useful clues as to why suspicious
data made their way onto the Argo data servers without being
flagged. Another good practice is to produce profile plots for each
case, highlighting the questionable points as a way to diagnose
possible problems with existing QC procedures, and to help
frame ideas for new tests, such as our new spiciness test.

3.4. Using Adjusted Data

Some data sets undergo adjustments that are made in recognition
of the QC analysis or improved calibration, with the adjusted
values being stored within data files alongside the raw (original)
values. Adjustments tend to be more common with BGC data
than with Core data, perhaps owing to issues relating to sensor
maturity (Thierry et al., 2018).

The argoFloats function named useAdj ust ed() providesa
convenient way of dealing with such data. It works by optionally
copying adjusted data into the locations that normally store raw
data. This causes subsequent calls to pl ot and [[ to focus
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FIGURE 6 | Quality Control plot for Argo float 1901584 near the Bahamas. The top panel shows the percent of data that are likely to be trustworthy, being described
with QC flag codes 1 (meaning good data), 2 (probably good), 5 (changed), or 8 (estimated). Cycles are indicated with ticks at the top margin of this panel. The
bottom panel shows the depth-averaged value of the parameter in question (temperature, in this example) regardless of the flag value, with red dots indicating cycles
in which more than half the data are flagged as bad.
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FIGURE 7 | Effect of handling Argo QC flags for float 1901584 using appl yQC() . (Left) temperature-salinity diagram showing all data, colored red if the QC flags
indicate “bad” values with QC flag codes 3 (Probably bad data that are potentially correctable), 4 (Bad data), 6 (Not used), or 7 (Not used). (Right) similar diagram, but
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on the adjusted data, as opposed to the raw data. By default, that causes it to replace only adjusted-and delayed-mode
useAdj ust ed() carries out replacement for all fields thathave ~ data, skipping over real-time data. This option can useful,
adjusted values. However, the function has an optional argument ~ because real-time adjusted data are always equal to missing
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FIGURE 8 | Demonstration of non-standard QC analysis based on scatter from the data cloud, using the same dataset as in Figure 7. (Left) covariation of potential
density anomaly, oy, and spiciness parameter, I1. The thick blue line is a smoothing spline expressing IT as a function of oy, and the thinner lines indicate plausibility
boundaries defined by 5 times the standard deviation of the model misfit. Points outside this boundary are colored red. (Right) temperature-salinity diagram as in
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FIGURE 9 | Demonstration of the useAdj ust ed() function for oxygen measurements (in umol/kg) made during cycle 001 of Argo float 5903586.

values, leaving spatial/temporal gaps that raw data can help
to fill in.

An example of using adjusted values is provided in Figure 9,
which displays raw and adjusted oxygen profiles for cycle
001 of float 5903586, which sampled for about 2.5 years
along the coast of Saudi Arabia. The diagram was made in
two steps. First, raw data were read in and plotted with
the argoFloats version of pl ot (), supplied with arguments
indicating to show a profile of oxygen. Second, a new object
was created with adj ust ed <- useAdj usted(raw), so
that [[ would return adjusted values. Then, the adjusted
pressure and oxygen concentration were accessed with [ [, and

plotted on the diagram, along with a legend, using standard R
function calls. As in the preceding temperature-salinity example,
it is worth noting that argoFloats is designed to provide only
basic plots, with the user relying on standard R functions to
add extra features. This eases the burden on users who are
familiar with R, and helps to teach others how to use R for
general tasks.

4. INTERACTIVE FLOAT MAPPING TOOL

The mapApp() function launches a GUI-based application for
examining float locations, using the powerful R-shiny system
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FIGURE 10 | The mapApp() application, showing the trajectory of BGC float 6901181 in the North Atlantic. The elements in the top part of the interface are user
controls, e.g., this view shows the float path, with the final position highlighted with a box.
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(Chang, 2020). Initially, this shows a world view, with dots
representing the locations of Argo float profiles within a selected
time interval. Different colors are used for Core, BGC, and
Deep profiles.

Multiple GUI elements make it easy to explore the data.
Buttons control which float styles to display, whether to display
bathymetry, whether to use low- or high-resolution coastlines,
whether to draw line segments joining successive float locations,
whether to draw starting and ending points on float trajectories,
and so forth. There are also buttons to move the focus view
around the earth, and to control the size of the display area.
Text-entry fields are used to select a time interval to display,
and there is a field in which the user can enter the ID of a
particular float of interest. In addition, the system monitors
the mouse location, with a click-slide action causing zooming
to the indicated region, a hovering action causing a display of
information about the nearest float profile, and a double-clicking
action causing a float ID to be entered into the ID selection box.
There is a simple way to switch from a multi-float view in a
given time range to a view of the historical trajectory of a selected
float, which can be quite helpful in finding datasets of interest for
further exploration.

Other controls permit other actions, all of which are both
documented and reasonably self-evident. Of particular note is a
button that displays the argoFloats code that would produce the
indicated view, starting from a get | ndex() call, followed by
subset () calls to isolate the data in question, and followed
by hints on further actions that the user might undertake,
including plots similar to those shown in previous sections of
this document.

For example, Figure 10 shows a view of BGC float 6901181.
Entering that float number in the float-ID box will reveal that
this float was deployed in November 2015, near the western
end of the trajectory, at the 43.6W and 51.0N. The black
square by one of the points toward the European continent
indicates the latest position of the float, at 20.9W and 43.3N.
The complexity of the ocean circulation is revealed clearly
in the complex shape of the trajectory between these two
locations. Readers interested in exploring this float in more
detail might find it helpful to start by using nmapApp()
to reproduce Figure 10, after which clicking on the Code
button will reveal the argoFloats function calls needed to
isolate the data, and, for example, plot a temperature-
salinity diagram.
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5. THE FUTURE OF ARGOFLOATS

As sketched above, argoFloats already provides a variety of
tools for advancing Argo data analysis. However, it is still in
a phase of active development, during which the developers
are responding to community needs. The core functions,
get I ndex(),subset (), and[[, have proven to be suitable
for everyday work, and are unlikely to change greatly. The same
cannot be said of pl ot (), which is likely to continue to gain
significant new features soon, to accommodate the fairly wide
variety of oceanographic plot styles. Similarly, there are plans to
complement the mapApp() tool with other tools that provide
more in-depth analysis of Argo data.

From the start, argoFloats has taken a practical approach to
most problems. Newcomers to Argo data tend to find it difficult
to download data using FTP tools or the server websites, so
get | ndex() was created to help in this task. Isolation of
particular floats for a given purpose is also challenging, and
so subset () was created. Reading the files that store Argo
profile data demands skills not just in reading netCDF but also in
linking the actual data elements with their associated metadata,
such as QC flags and units. Users are relieved of such burdens
by readProfil es(), which in itself relies on lower-level
functions provided by the oce package. Similarly, oce is relied
upon for the various oceanography-specific operations such as
the handling of QC flags, computation of Absolute Salinity
and Conservative Temperature from measured properties, the
construction of temperature-salinity diagrams, etc.

At this time, argoFloats handles many practical tasks that
are required by a research team of university and government
scientists. While this is a good start, we feel certain that the
package will benefit from a wider base of users and developers.
For this reason, we are employing an open-source model for both
coding and collaboration, and we hope this paper will get others
interested in this community project.
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