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Climate Projections for the Southern
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Temperature
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Vivian Pellizari and Ilana Wainer

Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil

Anthropogenic global warming can have strong impacts on marine ecosystems,
especially on climate-sensitive regions such as the Southern Ocean (SO). As key
drivers of biogeochemical cycles, pelagic microbial communities are likely to respond
to increases in sea surface temperature (SST). Thus, it is critical to understand how SST
may change in future scenarios and how these changes will affect the composition
and structure of microbial communities. By using a suite of Earth System Models
participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6), machine
learning, and 16S rRNA sequencing data, we investigated the long-term changes as
projected by CMIP6 simulations in SST throughout the twenty first century and the
microbial diversity responses in the SO. Four Shared Socioeconomic Pathways (SSP1-
2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) were considered to assess the SO surface
sensitivity to a warming climate. The SST changes across SSPs were ≈0.3, ≈0.7,
≈1.25, and ≈1.6oC between 2015 and 2100, respectively, and the high emissions
scenarios projected a much sooner emergence of the human-induced temperature
change throughout the SO. The impacts on Antarctic marine diversity of bacteria and
archaea are expected to be significant and persistent by the late twenty first century,
especially within the higher end of the range of future forcing pathways.

Keywords: Southern Ocean (Antarctica), climate change, microbial diversity, CMIP6, time of emergence, machine
learning

INTRODUCTION

Throughout the second half of the twentieth century, most of the Earth’s energy imbalance has been
stored in the ocean, primarily at the surface (Ishii and Kimoto, 2009; Lyman et al., 2010; Trenberth,
2010; Abraham et al., 2013), and more recently reaching deeper layers (Bilbao et al., 2019). The
resulting increase in ocean heat content has been reported to be largely due to anthropogenic
forcing (Barnett et al., 2005; Gleckler et al., 2012; Pierce et al., 2012; Bilbao et al., 2019). These
human-induced changes have already spread to about half (20–55%) of the world oceans (Silvy
et al., 2020), and the largest heat gain has occurred in the Southern Ocean (Roemmich et al., 2015;
Trenberth et al., 2016). However, the ice-insulated regions of the SO protect its sea surface waters
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from climate forcing (Gille, 2008, 2002; Fahrbach et al., 2011;
Tonelli et al., 2019). As a result, heat and carbon uptake happens
mostly through the formation and subduction of water masses
(Heuzé et al., 2013; Sallée et al., 2013), and the earliest detection
of the anthropogenic warming fingerprint in the SO occurs in the
ocean interior rather than in surface waters (Silvy et al., 2020).

Despite the ability of the ice-insulated regions of the SO to
delay the warming trends throughout the global ocean due to the
local circulation and the interaction with sea ice and ice shelves
(Fahrbach et al., 2011; Tonelli et al., 2019), warmer surface waters
lead to increased sea ice melting, loss of ice mass, and increased
surface water flux (Rignot et al., 2008), ultimately leading to a
slowdown of bottom water formation and the stalling of the
CO2 sink in the SO (Lovenduski et al., 2008; Lenton et al., 2009;
Purkey and Johnson, 2012). In particular, the surroundings of
the Antarctic Peninsula and the western Weddell Sea have been
exposed to intense warming and sea ice melting (Fan et al., 2014).

Climate change affects the growth, reproduction, and survival
of aquatic organisms (Kroeker et al., 2010; McFeeters and
Frost, 2011; Weydmann et al., 2012; Cripps et al., 2014). The
increase in ocean temperature will likely affect the structure and
dynamics of microbial community, but since microorganisms
show large population sizes and relatively fast reproduction, they
might be capable of adapting to global environmental changes
through phenotypic plasticity and adaptive evolution (Collins
et al., 2014; Hellweger et al., 2014; Doblin and van Sebille,
2016; Verde et al., 2016; Cavan et al., 2019). Microorganisms’
responses to climate change have strong implications for an
environmentally sustainable future (Cavicchioli et al., 2019), but
our understanding of how they respond to climate warming
remains limited.

Although the effect of climate change on microbial
functioning is still poorly understood, we know that marine
phytoplankton performs half of the global photosynthetic CO2
fixation and half of the oxygen production, and they can have
a fast response to climate variations (Arrigo, 2005; Teeling
and Glöckner, 2012; Buttigieg et al., 2018). Heterotrophic and
chemolithotrophic microorganisms are also important drivers
of ocean biogeochemical cycles and constitute the foundations
of many marine ecosystems, acting as an essential part of
the functioning of trophic levels (Arrigo, 2005; Teeling and
Glöckner, 2012; Buttigieg et al., 2018). The SO has shown
high and dynamic microbial diversity, with the community
composition strongly influenced by temperature (Signori et al.,
2014, 2018; Cavicchioli, 2015). Given that temperature increase
is expected to modify microbial diversity and distribution with
cascading effects at higher trophic levels, predicting how the
microbial diversity and community composition will respond
to climate change has become an important challenge (Thomas
et al., 2012; Toseland et al., 2013; Cavicchioli et al., 2019).

The main tools to investigate projections of global climate
change are state-of-the-art climate models designed to estimate
the progression of Earth’s climate system in the twenty first
century (21C; Eyring et al., 2016). These complex models,
however, are not able to represent the marine microbial
structure. It is, therefore, critical to make use of new
methodologies combined with real data to assess the impacts

of climate change on these sensitive pelagic microbiomes.
Machine learning (ML) techniques enable the analysis of
high-dimensional data, linking prediction and computational
intelligence methods based on in situ measured data, which
can be used to elucidate relationships between microorganisms
and environmental factors, such as temperature (Yu and Liu,
2003; Bishop, 2006; Qu et al., 2019; Thompson et al., 2019).
ML algorithms like random forest (RF) and neural networks
were reported to be one of the most effective tools for analyzing
microbiome data, with high accuracy in a range of 16S rRNA
sequencing data (Liu et al., 2011; Larsen et al., 2012; Statnikov
et al., 2013; Pasolli et al., 2016).

Here, we investigate the long-term sea surface temperature
(SST) changes throughout the 21C, as simulated by CMIP6
projections (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), as
well as the response of microbial diversity and composition
in the northwestern Antarctic Peninsula (NWAP) and the
northwestern Weddell Sea (NWWS) using an RF model available
from Python toolkit SciKit-Learn ML libraries.

MATERIALS AND METHODS

Climate and Earth System Models
The World Climate Research Program coordinates the
development of Climate and Earth System Models (ESM)
by major modeling centers under the scope of the Coupled
Model Intercomparison Project, now in its sixth phase (CMIP6;
Eyring et al., 2016). CMIP6 models simulate the climate under
different scenarios of future anthropogenic activity (Shared
Socioeconomic Pathways–SSP) within the scope of an endorsed
CMIP6 project named ScenarioMIP (O’Neill et al., 2016). These
SSPs are built upon the same radiative forcing range previously
used in CMIP5 (Taylor et al., 2012) described as Representative
Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, and RCP8.5),
and named after a possible range of radiative forcing values in the
year 2100: 2.6, 4.5, 7.0, and 8.5 W/m2, respectively (Meinshausen
et al., 2011). The tier 1 SSPs are SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5 (O’Neill et al., 2016).

The SSP narrative1 illustrates possible anthropogenic drivers
of climate change over the 21C (departing from the historical
runs), ranging from sustainable to fossil-fueled development
(Riahi et al., 2017):

• SSP1–Sustainability–Taking the Green Road: Low
challenges to mitigation and adaptation;
• SSP2–Middle of the Road: Medium challenges to mitigation

and adaptation;
• SSP3–Regional Rivalry–A Rocky Road: High challenges to

mitigation and adaptation;
• SSP4–Inequality–A Road Divided: Low challenges to

mitigation, high challenges to adaptation;
• SSP5–Fossil-fueled Development–Taking the Highway:

High challenges to mitigation, low challenges to adaptation.

1For a comprehensive description of the SSPs the reader is referred to Riahi et al.
(2017).

Frontiers in Marine Science | www.frontiersin.org 2 May 2021 | Volume 8 | Article 636226

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-636226 May 17, 2021 Time: 17:23 # 3

Tonelli et al. Antarctic Warming Impacts Microbial Diversity

Sea Surface Temperature Data
To quantify the projected changes in surface temperature over
the Southern Ocean (SO), we computed the area-weighted
SST annual means between 60◦S and 80◦S across four future
scenarios, ranging from the more sustainable scenarios (SSP1-
2.6 and SSP2-4.5) to high emissions trajectories (SSP3-7.0 and
SSP5-8.5). The SST data were retrieved from the Earth System
Grid Federation (ESGF2) CMIP6 archive (variable name “tos”;
native grid “gn”). Monthly mean outputs from 18 ESM (Table 1)
were available at the time of writing for the preindustrial control
experiment (piControl) and four ScenarioMIP 21C projections:
SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. CMIP6 models
are usually run multiple times for each experiment. Here,
one single run was used for each model (usually the variant
named “r1i1p1f1”).

For consistency, the SST outputs from each model were firstly
interpolated onto the same regular 360◦ × 180◦ grid using
bilinear filtering with the same land-ocean mask, excluding the
marginal seas and interior lakes like the Mediterranean Sea,
Red Sea, Arabian Gulf, Black Sea, Caspian Sea, Baltic Sea, and
Hudson Bay. The first-year annual mean (2015) is subtracted
from each time series yielding the actual SST change over each
SSP scenario projection. Although it has been suggested that
model drift is negligible when considering multimodel means
(Gupta et al., 2013), SST data were de-drifted based on each
model piControl run to remove trends potentially caused by
model equilibrium adjustment rather than by external forcing as
in Ferrero et al. (2021).

Microbial Diversity Data
Microbial community datasets were obtained by our group from
previously published studies (Signori et al., 2018; de Ferreira,
2019) under the Brazilian Antarctic Program, and comprised
a total of 105 samples from surface waters (∼5 m depth)
collected in the NWAP and NWWS. Sampling strategy and
sample processing are detailed in Signori et al. (2018) and de
Ferreira (2019). Briefly, approximately 3 L of seawater samples
were filtered onto 0.22 µm-membrane SterivexTM filters using
a peristaltic pump onboard the Brazilian polar vessel Almirante
Maximiano (Signori et al., 2018) or at Comandante Ferraz
Brazilian Antarctic Station (King George Island, Antarctica; de
Ferreira, 2019). After filtration, samples were frozen at −20 or
−80◦C for molecular analysis. DNA extraction of SterivexTM
filters was performed using the DNEasy Power Water Kit
(Qiagen, Hilden, Germany), following manufacturing protocols,
or according to specifications available in Signori et al. (2018).
Total extracted DNA was then sequenced using an Illumina
Miseq paired-end system 2 × 250 bp reads configuration,
with the primers 515F (5′-GTGCCAGCMGCCGCGGTAA-
3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′; Caporaso
et al., 2012), targeting the V4 region of the 16S rRNA
gene for both Bacteria and Archaea. Reads are available in
the NCBI database under the Bioproject IDs PRJNA383940
and PRJNA665033. The description of samples, coordinates,

2For a comprehensive description of the SSPs the reader is referred to Riahi et al.
(2017).

TABLE 1 | List of models used in this study.

Model # Model
name

Model
center

Model # Model name Model
center

1 ACCESS-
ESM1-5

CSIRO 10 GFDL-CM4 NOAA-
GFDL

2 BCC-
CSM2-MR

BCC 11 IPSL-CM6A-
LR

IPSL

3 CAMS-
CSM1-0

CAMS 12 MCM-UA-1-0 UA

4 CanESM5 CCCma 13 MIROC6 MIROC

5 CESM2 NCAR 14 MIROC-ES2L MIROC

6 CESM2-
WACCM

NCAR 15 MPI-ESM1-2-
HR

DKRZ MPI

7 CNRM-
CM6-1

CNRM-
CERFACS

16 MRI-ESM2-0 MRI

8 CNRM-
ESM2-1

CNRM-
CERFACS

17 NESM3 NUIST

9 EC-Earth3-
Veg

EC-Earth-
Consortium

18 UKESM1-0-
LL

MOHC

Expansions of institution acronyms are available at https://wcrp-cmip.github.io/
CMIP6_CVs/docs/CMIP6_institution_id.html.

environmental temperatures, and NCBI Bioproject IDs are
available in Supplementary Table 1.

We obtained a total of 8,538,820 reads distributed among the
105 water samples, which 5,968,201 were quality filtered and
then analyzed with QIIME2 (Quantitative Insights into Microbial
Ecology) and its plugins (Bolyen et al., 2019). Based on the
quality scores observed using qiime demux summarize and the
interactive quality plot, the forward reads were truncated at
position 270, and the reverse reads at 200, using the q2-dada2-
denoise script. This script uses DADA2 software to obtain a set
of observed amplicon sequence variants (ASVs), as described by
Callahan et al. (2016). Taxonomy was assigned through feature-
classifier classify-sklearn using SILVA database v.132 with a
confidence threshold of 0.7. Alpha diversity indices (Chao1 and
Shannon) were calculated using the Phyloseq (McMurdie and
Holmes, 2012) and vegan (Oksanen et al., 2020) packages in R
(R Core Team, 2019). Shannon index is calculated based on the
proportion of ASVs relative to the total number of ASVs and then
multiplied by the natural logarithm of this proportion (Shannon,
1948), accounting for both the abundance and evenness of
the ASVs. A map with the sampling regions is provided in
Supplementary Figure 1.

Time of Emergence
The Time of Emergence (ToE) is defined as the time at which
the signal of a forced response emerges from the noise of
internal variability (Hawkins and Sutton, 2012), thus providing
an indicator of the human-induced climate change for several
climate variables (Chadwick et al., 2019). The ToE was computed
for each model separately as the year when the SST time series at
each grid point exceeds two standard deviations of the monthly
mean SST from the piControl experiment, similar to previous
studies (Hawkins and Sutton, 2012; Bordbar et al., 2015; Lyu et al.,
2020; Ferrero et al., 2021). The results were averaged to obtain the
18-model mean ToE for each SSP future projection.
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Machine Learning Predictions
The RF model used to predict microbial diversity and
composition responding to SST in the NWAP and the NWWS
consists of a supervised machine learning algorithm available
from Python toolkit SciKit-Learn (Pedregosa et al., 2011). This
ML model is a classifier that combines multiple decision trees,
trains each one on a slightly different set of observations, and
its final prediction accords to the voting on each decision tree
(Svetnik et al., 2003; Chen et al., 2018).

The RF model was firstly trained with Chao1 and Shannon
indices and observed SST from oceanographic stations in the
NWAP and the NWWS. From a total of 105 samples, 80% were
used to train the model (84 samples) and the remaining 20% (21
samples) were used to test it.

In practical terms, each sample provides one value of observed
SST, one Chao1 index, and one Shannon index. These variables
are sorted by temperature values ranging from −1.6 to 2.3◦C
interval. The RF model is trained separately for each index
multiple times using the same SST input as the classifier for both
indices, which represent the ML targets. To avoid overfitting, the
dataset is randomly partitioned into subsets of 84 samples for
training, while 21 samples are kept for testing. Once validated for
both indices, the model is used to predict the spatial distribution
of Chao1 and Shannon using area-weighted SST annual means
outputs from the projected future scenarios. It should be noted
that, from a centennial-scale climate change perspective, the
entire study area is subject to roughly the same warming trends
within each SSP, therefore, the long-term SST time series used in
RF predictions differ only across SSPs.

A similar approach was used to perform the composition
analysis, where the participation percentage of each microbial
taxon identified within the sample community and the associated
SST observation were used to train the RF model. The projected
SST annual means for each SSP were used to predict the
composition percentage of each taxon and the results were

merged to provide a temporal evolution of the microbial
community composition. All RF trained models reached the
score range of 0.87–0.93, suggesting good accuracy.

RESULTS AND DISCUSSION

Consistent with Bracegirdle et al. (2020), warming trends
are projected to happen across all future climate scenarios,
where higher human industrial activity leads to higher surface
temperatures. The approximate SST change across these
scenarios is ≈0.3, ≈0.7, ≈1.25, and ≈1.6◦C between 2015
and 2100 (Figure 1). Variation within these scenarios increases
throughout the second half of the 21C, particularly for the
high forcing scenarios, mostly due to uncertainties arising from
internal variability, model structural differences, and radiative
forcing (Ferrero et al., 2021).

Our SSP1-2.6 simulations project mild warming in the SO
(Figure 1). Significant increases in SST are not expected to
happen in the northwestern Antarctic Peninsula (NWAP) coast
before 2080 nor until the end of the century in the northwestern
Weddell Sea (NWWS; Figure 2A). This is particularly relevant
to reassure the Weddell Sea (WS) ability to cushion the offshore
warming signal advected by the Weddell Gyre (Ryan et al.,
2016) due to the local dynamics and cryosphere-related processes
(Fahrbach et al., 2011; Tonelli et al., 2019).

The “Middle of the Road” outcome from SSP2-4.5 simulations
indicates a slightly sooner emergence of the climate change signal
across the NWAP, which is projected to take place during the
2060 decade (Figure 2B). Again, the NWWS is able to postpone
the anthropogenic warming until the last decade of the 21C, with
the inner WS still showing areas within the range of internal
variability (≈65◦S).

Due to greater environmental pressure, the results of SSP3-
7.0 and SSP5-8.5 yielded even earlier ToE around the NWAP

FIGURE 1 | Absolute sea surface temperature (SST) change in the Southern Ocean (annual means of the area-weighted SST between 60◦S and 80◦S) relative to
2015 for future scenarios. Thin dashed lines indicate individual ensemble members and solid lines indicate ensemble means for each SSP projection.
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FIGURE 2 | Sea surface temperature Time of Emergence around the Northwestern Antarctic Peninsula and the Northwestern Weddell Sea: the decade when the
SST time-series at each grid point exceeds the range of internal variability (defined by two standard deviations of the monthly mean SST simulated in the piControl
experiment). The illustrated time of emergence (ToE) corresponds to the averaged ToE from all 18 models. (A) SSP126. (B) SSP245. (C) SSP370. (D) SSP585.

sea surface (Figures 2C,D). Close to coastal areas, rising SST
exceeds the internal variability envelope in the early 2050 decade
in these high forcing scenarios. And although the NWWS still
exhibits a much later ToE compared to the NWAP, the human-
induced warming is projected to reach the inner WS by the end
of the 2070 decade based on SSP5-8.5 simulations. To assess
the spatial variability of ToE, we have computed the horizontal
anomalies with the mean ToE for each SSP (Supplementary
Figure 2). This corroborates the understanding that the higher
the anthropogenic footprint, the sooner the human-induced
warming will emerge in the regions adjacent to the Antarctic
Peninsula. Moreover, Supplementary Figure 2 highlights that
this warming signal is expected to emerge much sooner across the
NWAP compared to the NWWS. The more intensive and faster
warming in the NWAP is caused by the Antarctic Circumpolar
Current carrying well-mixed warmer waters much closer to the

continent, which is consistent with studies that investigated the
ocean and ice shelf dynamics along the West Antarctica Peninsula
(Jacobs et al., 2011; Hellmer et al., 2012; Paolo et al., 2015; Zhang
et al., 2016; Smith et al., 2020).

Our machine learning models indicate a decrease in both
microbial communities’ richness and diversity within all climate
projections, with higher emissions causing a more significant
decrease in both indices, particularly under the most critical
scenario SSP5-8.5 (Figure 3). Therefore, microbial communities
might be highly impacted by increasing temperatures,
corroborating the observed trend for phytoplankton (Thomas
et al., 2012) and prokaryotic communities from a mesocosm
experiment in the Baltic Sea (Lindh et al., 2013). Also,
SSP1-2.6 and SSP5-8.5 yielded contrasting predictions for
microbial composition (Figure 4). Whilst the low emission
scenario projected small changes in the relative abundance of
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FIGURE 3 | Spatial distribution of observed (Obs) and machine learning projected (SSPs) microbial alpha diversity indices Chao1 (A) and Shannon (B) around the
Northwestern Antarctic Peninsula.

microorganisms, the three scenarios with the highest increase
in temperature, including the “middle of the road” scenario,
show changes in microbial communities’ structure, including

the loss of diversity and decrease in microbial taxa that
are important contributors to the biogeochemical processes
and ecosystem functioning in the NWAP and NWWS. In
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FIGURE 4 | Histogram representing the microbial composition (%) at the order level for the observations sorted by SST (Obs). The SSPs histograms are sorted by
years of projection (as in Figure 1) to illustrate the temporal evolution of the bacterial and archaeal community composition. Only taxa with relative abundance above
1% are presented.

general, the heterotrophic Flavobacteriales are projected to
have higher relative abundances, while the sulfur-oxidizing
Thiomicrospirales, the ammonia-oxidizing Archaea within
Nitrosopumilales, and the planktonic euryarchaeotal Marine
Group II have reduced relative abundance. These orders
are composed of several species with important roles in the
functioning of pelagic ecosystems, including the sulfur, nitrogen,
and carbon cycles, and are currently described as abundant taxa
in the SO (Signori et al., 2014; Zhang et al., 2015; Liu et al.,
2019). For instance, Nitrosopumilales members are important
contributors to nitrogen remineralization and carbon fixation,
and are often the most abundant taxa in cold waters, including
the euphotic and aphotic zones of the SO (Signori et al., 2014;
Cheung et al., 2019).

The implications of a decrease in ammonia oxidation in
the pelagic ecosystems are still unclear, but some modeling
studies have indicated that it might affect nutrient stoichiometry,
denitrification, marine productivity, and the biological carbon
pump (Beman et al., 2011; Kitidis et al., 2011). Members of
the Marine Group II have not yet been cultured and their
lifestyles are still not well known. The information obtained
through the reconstruction of genomes from metagenomic
data showed a photoheterotrophic lifestyle inferred by the
presence of proteorhodopsin genes (Pereira et al., 2019). Some
studies have suggested that photoheterotrophy contributes to
biomass accumulation in oligotrophic waters, and a loss in this
metabolism would potentially affect nutrients uptake by the
pelagic communities (Evans et al., 2015). Furthermore, a decrease
in Thiomicrospirales populations would affect the oxidation of

sulfur compounds, which has been described as an important
process that contributes to protecting marine ecosystems from
sulfide toxicity in coastal areas (Hu et al., 2018). However, the
importance of sulfur oxidation in the functioning of the SO
ecosystem is still unknown.

Microbes respond to changes in light, temperature,
metabolites, and other environmental factors, making them
good candidates for monitoring both short- and long-term
ecological variations (Hanson et al., 2012; Zinger et al., 2014;
Brum et al., 2015; Turner et al., 2016; Baker-Austin and Oliver,
2018; Buttigieg et al., 2018). Climate change affects interactions
between species and forces them to adapt, migrate, and even
be replaced by others (Hoffmann and Sgrò, 2011; Hutchins and
Fu, 2017). Understanding how well microorganisms are adapted
to environmental factors, such as temperature, and predicting
how well they will respond to warming is essential to elucidate
ecological adaptation of these organisms (Cavicchioli, 2016).

In this work, we were able to project future changes of
microbial community structure and a diversity decrease
for NWAP and NWWS, according to the SSP climate
change scenarios. The ML prediction showed a trend of
decreasing important bacterial and archaeal taxa involved with
crucial biogeochemical processes, such as Nitrosopumilales,
Marine Group II, and Thiomicrospirales, and an increase
of heterotrophic groups, such as Flavobacteriales. In other
words, regardless of when the forced signal emerges from
the internal variability, temperature changes are seen to
modulate the dynamics of the Southern Ocean marine
microbial community.
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CONCLUSION

This investigation delivers an assessment of 21C projected
changes in SST over the SO in the four Tier-1 CMIP6
ScenarioMIP scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5. A multimodel mean of 18 ESMs projects approximate
warming across these scenarios of ≈0.3, ≈0.7, ≈1.25, and
≈1.6◦C, respectively, between 2015 and 2100. ToE analyses
suggest delayed warming across the NWAP in the lower
socioeconomic pressure scenarios, i.e., SSP1-2.6 and SSP2-4.5,
compared to projections based on high forcing pathways (SSP3-
7.0 and SSP5-8.5).

In response to SSP scenarios, our predicted results showed
that the impacts of high latitude climate change on pelagic
microbial communities vary across future projections and mainly
indicate a loss of bacterial and archaeal diversity in surface waters.
However, it should be noted that even though the use of machine
learning is growing in microbial ecology studies, it remains a
predictive tool whose interpretation needs to be done carefully
(Lucas, 2020). To our knowledge, this is the first study to predict
the effect of long-term climate changes of SST on microbial
diversity in the SO. In addition, our results show a trend
of decreasing important bacterial and archaeal taxa involved
with crucial biogeochemical processes, such as Nitrosopumilales,
Marine Group II, and Thiomicrospirales, and an increase of
heterotrophic groups, such as Flavobacteriales. We suggest that
these microorganisms can be applied as potential models in
future marine studies, to validate our prediction and to create new
hypotheses regarding the response of these microbial taxa under
the increasing temperatures predicted by the SSP scenarios.
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