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There is growing interest from research and conservation groups in the potential for
using small unoccupied aerial vehicles (UAVs; <2 kg) to conduct wildlife surveys
because they are affordable, easy to use, readily available and reliable. However,
limitations such as short flight endurance, and in many situations, aviation regulations,
have constrained the use of small UAVs in survey applications. Thus, there is a need
to refine survey methods adapted to small UAVs that conform to standard operations
within aviation law. We developed a novel survey approach based on a grid sampling
design using two multirotor UAVs (Phantom 4 Pros) flying simultaneously, within visual
line of sight, from our vessel base-station. We used this approach to assess the fine-
scale distribution and abundance of dugongs (Dugong dugon) in the remote waters of
the Pilbara, Western Australia during three field seasons across 2 years. We surveyed 64
non-overlapping survey cells in random order one or more times and obtained complete
image coverage of each surveyed cell of our 31 km2 survey area. Our sampling design
maximizes sampling effort while limiting survey time by surveying four cells, two at a
time, from one location. Overall, we conducted 240 flights with up to 17 flights per day
(mean = 14 flights per day) and could obtain complete coverage of up to 11.36 km2per
day. A total of 149 dugongs were sighted within the 50,482 images which we
manually reviewed. Spatially-explicit models of dugong density distribution (corrected for
availability and perception bias) were produced using general additive models to identify
areas more or less used by dugongs (range of corrected dugong densities across
all field season = 0.002–1.79 dugongs per 0.04 km2). Dugong abundance estimates
ranged from 47 individuals in June 2019 (CV = 0.17) to 103 individuals in May 2018
(CV = 0.36). Our method, which proved convincing in a real-word application by its
feasibility, ease of implementation, and achievable surface coverage has the potential
to be used in a wide range of applications from community-based local-scale surveys,
to long-term repeated/intensive surveys, and impact assessments and environmental
monitoring studies.

Keywords: drone, UAV (unoccupied aerial vehicle), wildlife survey methodology, abundance, spatial modeling,
dugong
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INTRODUCTION

A new promising and powerful approach to conducting wildlife
surveys is to use unoccupied aerial vehicles (UAVs) and
associated aerial imaging technology to collect highly accurate,
detailed and verifiable data about the animals of interest and
surveyed area (Gonzalez et al., 2016). Small UAVs (<2 kg)
are receiving a lot of attention from researchers interested in
conducting intensive, repeatable wildlife surveys because they are
widely available, relatively affordable and easy to operate (Jones
et al., 2006; Chabot, 2009; Watts et al., 2010; Chabot and Bird,
2015). Nonetheless, using small UAVs and aerial imagery requires
us to develop aerial survey designs and analytical methods
that are adapted to this new technology and to aviation law.
In many places around the world the legal horizontal range
of UAV operations is restricted to within visual line of sight,
which severely limits the area that can be surveyed. These
aviation restrictions on flight range reduce the benefits of UAVs
that have extended flight endurance, leaving small systems a
preferred option for wildlife aerial surveys (Sweeney et al.,
2015; Kiszka et al., 2016). However, to date there has been
little focus on developing an aerial survey methodology that
augments the capabilities of small UAVs in the context of strict
aviation regulations.

Although this paper lends itself to wildlife surveys in general,
our focus in this study was on the use of small UAVs to
conduct surveys of marine megafauna. Marine megafauna play
important roles in shaping ecosystems (Atwood et al., 2015;
Marsh et al., 2018) and they can be excellent indicators of
habitat condition, as their distribution reflects that of their
prey and or habitats (Hooker and Gerber, 2004; Hays et al.,
2018). Thus, assessing marine megafauna distribution, habitat
use, and abundance can be informative for the critical habitats
they use, as well as for species conservation (Augé et al., 2018).
Aerial surveys are an established and widely used approach to
assess the distribution, habitat use and abundance of marine
megafauna at broad spatial scales (100’s to hundreds of 1,000’s
of km2) (Pollock et al., 2006; Koski et al., 2009). For example,
aerial surveys conducted by observers on board light aircraft
(hereafter ‘occupied aerial surveys’) have been used to monitor
populations of marine megafauna species such as dugongs
and sea turtles (Marsh et al., 2004; Sobtzick et al., 2017),
elasmobranchs (e.g., review by Kiszka and Heithaus, 2018),
and cetaceans (e.g., Hammond et al., 2017). The limitations
associated with occupied surveys include (1) the inaccuracy in
the flight path data and imprecision in the flight telemetry
data (e.g., pitch, yaw, and roll of the aircraft) required to
calculate the surveyed area and the position of a sighted animal,
means this technique is not appropriate for surveys at the
local spatial scale (10s km2) (i.e., it is difficult to fly occupied
aircraft along flight paths with the precision needed at a small
spatial scale), (2) the need for a high level of expertise in
the operational phase (i.e., highly certified aircraft pilot and
experienced observers), (3) running costs, which prohibit surveys
in many situations, and don’t allow for high intensity and/or
repeated surveys of an area, (4) pilot and passenger safety
(Wiegmann and Taneja, 2003), and (5) limited to no use in

remote locations where there is no access to a runway or fuel
(Watts et al., 2010).

Unoccupied aerial vehicles and aerial imagery processing
techniques offer the opportunity to overcome these limitations
because (1) they can provide sufficient accuracy and precision in
the data collected to support fine scale surveys of small areas, (2)
off-the-shelf small UAVs require a relatively low level of expertise
during the data collection phase compared to occupied surveys,
(3) the relatively low costs of operating UAVs and the precision
of flight parameters offer the possibility of conducting surveys in
areas not previously surveyed, as well as intensive and repetitive
surveys at little or no extra cost, (4) UAVs can be operated in a
wide range of locations (e.g., challenging terrains, remote areas)
and environmental conditions (e.g., wind regimes and ambient
temperature) while virtually eliminating human risk (people
have died during wildlife surveys: see review by Hodgson et al.,
2013), and reducing carbon emissions and wildlife disturbance
through reduced noise compared to conventional methods such
as vessel or occupied aerial surveys (Hodgson et al., 2013; Mulero-
Pázmány et al., 2017), and (5) using UAVs to survey wildlife offers
the increased ability to standardize survey techniques, as most
aspects of the survey methodology and data processing have the
potential to be automated.

Nonetheless, transitioning from occupied to UAV surveys
and the subsequent change to collecting aerial images rather
than human observations requires a re-think of the traditional
methodology used in aerial surveys (Linchant et al., 2015;
Hodgson et al., 2017; Baxter and Hamilton, 2018). Essential
first steps in this transition include gaining an understanding
of how detections from traditional occupied survey platforms
compare to aerial images captured from either occupied or
unoccupied platforms (e.g., Bröker et al., 2019; Garcia-Garin
et al., 2020), and assessing the probability of detecting animals
using UAVs (e.g., Hodgson et al., 2017). These fields of research
have advanced over the recent years (see Colefax et al., 2018
for a recent review on this topic, and Doukari et al., 2019
for an example of recent published protocols for mapping
coastal areas) and it is expected that research will gradually
move from proof-of-concept studies to focus on hypothesis
testing and scientific inference based on UAV-collected data
(Barnas et al., 2020). For this to be achieved there is a need
to develop UAV-adapted wildlife survey methods – from the
survey design through to the data analysis – that consider (1)
the advantages and limitation of this new technology (e.g., flight
and sensor capabilities), (2) regulatory constraints in the use of
UAVs (i.e., aviation licensing and operation regulations), and
(3) the mobility of the animals and the associated spatial scale
of interest.

Our aim was to (1) investigate how to best adapt the use of
small multi-rotor UAVs in the context of wildlife surveys under
flight range limitations set by aviation authority regulations,
and (2) apply a spatial modeling approach to imagery data
to estimate the density distribution of the species of interest.
Small multi-rotor UAVs have all the advantages inherent to
any other UAV systems described above, but with the added
benefits of their (1) small size and vertical take-off landing
capabilities, which makes them particularly easy to transport
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and to operate (e.g., multirotor UAVs can typically be launched
and retrieved manually in very confined spaces), and (2) ease
of use and low cost relative to other types and/or larger
UAVs. One of the main limitations of multirotor UAVs is
their relatively short flight durations of typically 12–40 min
(Colefax et al., 2018). A number of test-of-concept studies
have evaluated the potential of small UAVs to detect and
survey marine megafauna at the local spatial scale in sharks
and rays (Hensel et al., 2018; Kiszka and Heithaus, 2018),
marine turtles (Sykora-Bodie et al., 2017). But there has been
limited research on finding an optimized survey design (i.e., for
particular research questions) for these small aircrafts under strict
aviation regulations. Finally, despite the wide use of line transect
methods in wildlife aerial surveying (Fleming and Tracey,
2008), to our knowledge exploration of how these methods
can be applied to aerial imagery data for spatial modeling and
abundance estimation have been rarely published (although see
Rexstad et al., 2012).

The present study focused on the dugong (Dugong dugon),
a coastal seagrass specialist listed as Vulnerable to extinction
on the IUCN Red List at a global scale (Marsh and Sobtzick,
2019). The dugong range spans the coastal and island waters
of 46 countries, over 90% of which are developing or least
developed countries with limited research capacity (Marsh
et al., 2011). In many parts of its range (East Africa,
India, South and most of South East Asia) the dugong is
Critically Endangered, and its status is unknown in half of
its range due to a lack of information on its distribution,
abundance, and mortality rates and causes (Marsh and Sobtzick,
2019). The Dugong Memorandum of Understanding on the
Conservation and Management of Dugongs and their Seagrass
Habitats throughout their Range (Dugong MoU) under the
United Nations Environment Program (UNEP) Convention on
Migratory Species (CMS) has highlighted the need to (1) develop
new participatory methods to collect information to help fast-
track the conservation of dugongs and seagrasses, and (2) for
those methods to be easily transferable to local communities to
empower them in taking ownership over the conservation of their
local resources (Donna Kwan pers. comm.).

Occupied aerial surveys of dugongs have been successful in
providing information on the distribution and abundance of
dugongs over large spatial-scales in some 20 countries within
the species’ range (see Marsh et al., 2011 for review; Hines
et al., 2012). However, in many places within the dugong range,
accessing an occupied-aircraft can be difficult and in remote
places the conditions and hence safety of those aircrafts is
questionable. As a result using marine vessels combined with
small UAVs are an attractive alternative. Occupied aerial surveys
have also been used to conduct local-scale dugong surveys to
gain some insights on the distribution and habitat use of the
species in places like small bays and with the view of informing
conservation planning at those scales. However, the accuracy of
occupied survey data is too coarse to make robust inferences
on the fine-scale habitat use of dugongs (e.g., Cleguer, 2015).
In recent years, research and conservation practitioners have
invested in small UAV systems and attempted to conduct local
trial surveys but all have emphasized the need for an established

standardized UAV survey method for improved conservation
outcomes1.

Our research offers a novel method for conducting aerial
surveys of marine megafauna using small multi-rotor UAVs in the
context of strict civil aviation regulations. Our approach features
standardized grid sampling, flight planning, data collection and
processing procedures. Finally, our approach to analyzing our
data was adapted to our survey design and the nature of imagery
data, to create spatially explicit models of dugong density across
the survey area, as well as abundance estimates. We believe
that our method is applicable to a range of wildlife species
and spatial scales.

MATERIALS AND METHODS

Project Overview
This UAV survey method was developed for the remote waters
of Exmouth Gulf in the Pilbara, Western Australia. The study
was part of a larger project with the aim of gaining an
understanding of the distribution and movement patterns of
dugongs in response to available resources and linking seagrass
habitat condition to its use by dugongs. During our UAV surveys
we collected still images of the sea surface to detect dugongs. In
this paper we follow the standardized protocol for reporting the
use of UAVs in wildlife research described by Barnas et al. (2020).

Study Sites
Aerial surveys were conducted in Exmouth Gulf in north-
western Australia (Figures 1A,B) in May and November 2018
and June 2019. Exmouth Gulf is a wide and semi-enclosed
embayment, which covers an area of approximately 4,000 km2,
encompassing a diversity of marine habitats which are vital
in supporting several populations of marine mammals. The
entire Gulf and surrounding areas including the Ningaloo reef
have recently been proposed to be listed as an “Important
Marine Mammal Area” because of the vital role these regions
play in supporting threatened iconic marine mammal species
(IUCN Marine Mammal Protected Areas Task Force, 2020).
Large-scale occupied aerial surveys of dugongs between 1989
and 2018 consistently identify the nearshore eastern waters
of the Gulf as critical feeding and nursing habitat (Preen
et al., 1997; Prince, 2001; Hodgson, 2007; Bayliss et al., 2018).
Our study area was located in one of the two dugong high
density areas identified during those past large-scale occupied
aerial surveys.

UAV System, Survey Design and
Operation Details
Platform Specification
Survey flights were conducted using the Phantom 4 Pro v1
systems (hereafter ‘P4Pro’) manufactured by DJI2. The P4Pro is
relatively low cost (∼2,000 USD start price as of 2017), user-
friendly, multirotor aircraft widely used in both recreational and

1https://www.dugongconservation.org
2http://www.dji.com
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FIGURE 1 | (A,B) Study site location (in red; hashed polygon represents
controlled air space); (C) survey grid and sampling effort (the blue shaded
layer represents the bathymetry); (D) diagrammatic representation of a grid
survey operation and flight parameters, the green and blue cells can all be
surveyed from the same launch and retrieve location (the vessel location); in
this scenario the blue cells are surveyed simultaneously by using two UAVs.

commercial/research applications. Three aircrafts were necessary
for this study: two primary systems and one backup. Technical
specifications of the P4Pro are detailed in Table 1.

Survey Design
Our aim was to conduct aerial surveys to assess the distribution
and abundance of dugongs over an area as large as possible
(albeit limited by our vessel operations) and as rapidly as possible

while considering several limitations. Our survey operations were
undertaken from a live-aboard vessel due to the remote nature
of the study site (i.e., there was no land access to the site). The
vessel was shared with seagrass scientists who were conducting
in situ benthos sampling work in our study area using the
vessel’s small tender. Thus for safety reasons the larger vessel
(our operation platform) had to remain within 2 NM of the
tender, thereby limiting our take-off and landing boundaries to
this radius distance. The area within this radius became our study
area (size= 31.36 km2; Figure 1).

We used a grid sampling approach inspired by large-scale
occupied aerial surveys of manatees in Florida conducted by
Martin et al. (2015), whereby a grid of cells is overlaid on
the survey area and cells are randomly selected and surveyed.
We assumed equal probability of dugong sightings across the
survey area as the area was within the 15 m depth contour, well

TABLE 1 | Drone and software specifications, and flight parameters.

UAV specifications

Make DJI©

Model name and version Phantom 4 Pro v1

Weight (battery and propellers included) 1,388 g

Number of rotors 4

Diagonal size (propellers excluded) 350 mm

Battery type LiPo 4S (only one battery
required to fly)

Max flight time Approx. 30 min

Camera name and effective pixel 1′ ′ CMOS; 20 Megapixels

Lens field of view 84◦ 8.8 mm/24 mm (35 mm
format equivalent)

Image aspect ratio used in this study 3:2; 5472 pixels × 3648 pixels

Flight parameters

Range <1,000 m

Altitude (above ground level) 90 m

In flight cruise speed 32.9 km/hr

Image capture rate 3 s

Image resolution at set altitude 2.5 cm per pixel

Number of transects per cell, and length 7 transects; each 750 m long

Transect separation 109 m

Forward overlap (FO; overlap between
successive images along a transect line) and
lateral overlap (LO; between adjacent flight
strips or transects)

FO = 70% and LO = 20%

Software

Survey design ArcGIS Desktop1 (USD 100.00)

Flight planning DJI-Flight Planner2 (USD 99.00)

Flight operation Litchi3 (USD 24.99)

Manual image review Image-Viewer (customized
software)

Mapping Ocean-Mapper (customized
software)

Spatial modeling and abundance estimation R software (R Core Team,
2020; freeware)

1https://www.esri.com/en-us/arcgis/products/arcgis-desktop/buy
2https://www.djiflightplanner.com
3https://www.flylitchi.com.
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within the dugong’s suitable depth range (Marsh et al., 2011).
The survey area was divided into 64 non-overlapping survey
cells of identical shape (square) and size (edge size = 0.7 km,
area size = 0.49 km2) using the ‘fishnet’ tool in ArcGIS (version
10.4.1, Esri R© 2018; Table 1). Each survey cell was subsequently
saved as a Keyhole Markup Language file (hereafter ‘KML’ file).
The constraints considered in the design of the survey cells
were that we wanted to (1) survey each cell with complete
coverage (i.e., the entire surface area of the cell was covered in
the imagery) within one P4Pro flight while taking into account
the flight capabilities of this UAV, (2) ensure our operations
fell into the ‘excluded category’ (i.e., operating a sub 2 kg UAV
for commercial purposes) and within the ‘standard operating
conditions’ set by the Australian Civil Aviation Authority with
one of the rules being to operate within visual line of sight3

(although we would recommend to operators to conduct their
own assessment of what line of sight might represent in their
specific circumstances), and (3) limit flight time to less than 70%
of the UAV battery charge (i.e., maximum 20 min flight time),
to ensure a sufficient battery charge buffer for safe landing. The
grid was randomly placed within the area of interest and 16
sampler points (i.e., the UAV take-off and landing position) were
placed over the grid, each one being located in corner of four cells
within the grid.

Given the novelty of our survey approach, one of our
objectives was to explore what sampling intensity we could
achieve at the scale of the entire study area (i.e., the range
in the number of cells we could survey in a day, over the
duration of the survey period) under a range of environmental
variables (e.g., different wind regimes, cloud cover, etc.), and
logistical constraints (e.g., we had no prior knowledge on the
time required to commute between survey cells using a large
vessel). Furthermore, there was no information available on
the fine-scale distribution, movement behavior (hence random
movement was assumed in this study, particularly within a day,
but also across the entire survey period) or the approximate
number of dugongs present within the area (except for the coarse
dugong distribution data collected during past large-scale surveys
conducted in Exmouth Gulf; Bayliss et al., 2018). Under these
circumstances, we randomly selected which cells of the grid (and
their chronological order) would be surveyed each day. We chose
to sample with replacement between days (i.e., sets of four cells
that were surveyed on one day could be selected for sampling
the next day). The decision for sampling with replacement was
based on the fact that the entire survey area was small, relative to
the broader regional dugong habitat area, and animals may move
substantially from 1 day to the next (e.g., Sheppard et al., 2006;
Cleguer et al., 2020b).

Launch and Retrieval
We anchored our vessel (launch and retrieval site) at the meeting
point of four adjacent cells. This allowed us to survey each of
those four cells from one location whilst remaining within visual
line of sight of the UAV which minimized commute time to the
start of each survey cell, and provided the opportunity to survey

3https://www.casa.gov.au/drones/rules/drone-safety-rules

two cells simultaneously using two UAVs (Figures 1C,D). It is
important to consider the potential for marine fauna to respond
to the vessel movements by either approaching or moving away
and thereby biasing survey results. We always surveyed with
our engine off and with our boat at anchor, and allowed a time
lag of 10 min before UAV operations began. Dugongs display
minimal response to slow moving vessels (Hodgson, 2007) but
other species may be more sensitive.

Flights were conducted autonomously until the UAV returned
over the anchored vessel after a completed survey. No specialized
launching equipment was required. The pilot in command took
manual control only to land the aircraft on the vessel’s deck or
into an assistant’s hands (our flight procedure library is provided
in Supplementary Material 1). Flights were conducted at least
1 h after sunrise and 1 h before sunset to avoid collecting images
with low light intensity. We avoided surveying when glare and
wind were high (midday and Beaufort sea state ≥ 3). Hodgson
et al. (2017) found that sea state had no significant effect on
sighting rates, suggesting that UAV surveys could be conducted
in a wider range of wind conditions than traditional occupied
surveys. Thus, we set the maximum wind limit of UAV operations
to 30 km/hr (above the maximum wind conditions generally
set at ∼18 km/hr in occupied aerial surveys) as beyond this
limit, we could visually observe the UAV stability being affected.
Environmental conditions, including average wind (in km/hr)
and cloud cover (in octas), were recorded at the start of each flight
(Supplementary Material 1).

Flight Planning and Method of Operation
The KML of each survey cell was imported into the flight
planning software ‘DJI-Flight Planner’ (©AeroScientific; Table 1
and Supplementary Material 2) in order to enter our flight
parameters, which, according to our design, were the same for
all cells. Still image capture was favored over video recording to
maximize image quality and prevent image motion from affecting
image clarity, and hence, animal detectability. The camera, was
installed on a gimbal to reduce inflight vibrations and it was
always positioned at a 90◦ angle (nadir, facing straight down).

The survey altitude was set at 90 m above ground level which
provided the most adequate area coverage/image resolution
ratio using the P4Pro. At this altitude, the image covered
a surface area of 136 m × 90 m for an on-ground image
resolution (also commonly named ground sampling distance or
‘GSD’) of 2.5 cm per pixel, well within the resolution proven
sufficient to detect dugongs (Hodgson et al., 2013). We chose
this conservative approach to ensure that we would collect
images of good quality in the face of other potential factors
affecting image quality (e.g., lighting conditions, UAV motion
induced by environmental effects). The forward image overlap
(between successive images) was set at 70% to maximize the
chance of detecting animals that are masked by sun glitter
and/or identifying animals initially captured at awkward body
angles (Hodgson et al., 2013, Figure 2). After several trial
flights in a range of wind conditions (i.e., from no wind to
constant winds of 30 km/hr with gusts of up to 35 km/hr) we
determined that a 20% lateral image overlap (between adjacent
flight strips or transects) was a conservative value to ensure
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FIGURE 2 | Example of a series of three consecutive images taken at 3 s intervals along a transect line. Each image contains the same individual dugong but its
identification becomes certain only in the third image.

full coverage even in windy conditions that pushed the UAV
slightly off-course. Choosing transect angle is difficult as there
are many considerations, including sun angle. On long survey
days we surveyed the entire day, so the sun angle and sun glitter
position and footprint varied across the day. The orientation of
our transects were set in respect to wind direction, to ensure that
the prevailing winds (coming from the south-west) would come
in an approximately perpendicular angle to the transects, and
hence reduce the effect of wind on flight speed (and hence on
image quality for example). All steps of the flight planning process
in DJI-Flight Planner are detailed in Supplementary Material 2).
Finally, we used a mobile device (Ipad mini v2, Apple Inc.)
connected to the P4Pro’s Radio-Controller to operate the UAV
via the ‘Litchi’ flight assistance application (©VC Technology
Ltd.) (Table 1; details of the pre-flight settings are provided in
Supplementary Material 3).

Each captured image was tagged in real-time and information
such as image capture time (hh:mm:ss local time), flight altitude
(meters above ground level), image location (GNSS coordinates
with average on-ground error of ∼1 m), and the three-
dimensional rotation data from the aircraft (roll, pitch, and yaw,
in degrees) at the time of image capture (to the nearest second)
were assigned to each image and stored in the ‘Exchangeable
Image File Format’ (EXIF) data. All images were automatically

stored on the camera’s memory card (1.9 GB of imagery were
typically collected in a single flight and stored onto a 64 GB mini
SD card) and downloaded post flight.

Image Processing
Review
All the images collected during the surveys were manually
reviewed post flight by trained observers using a customized
image review program written in Python 3.7 (Figure 3A)
which standardizes the manual processing method. The observer
manually draws a box around each individual animal sighting
and the software records the location as pixel x-, y-coordinates
of the top left and bottom right corner of the box. A pop-
up window allows the observer to enter information for each
individual sighting [taxa, single/mother/calf, certainty of taxa
identification (a binary category: certain or not certain), the
animal’s position in the water column, whether the animal is a
resight due to the forward overlap in the images (some animals
were visible across several consecutive images; detecting a resight
was eased by the low number of animals and group of animals
seen in consecutive images and the short time laps between
image capture), and the environment within the image (i.e.,
glare, water visibility, and sea state; Hodgson et al., 2013)].
To reduce the risk of double counts due to the side overlap
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FIGURE 3 | Manual image review (A) and mapping (B) process. The term “animal sighting” here refers to a single individual sighting (e.g., a single dugong, or a mum
or calf in a mum-calf group).

in the images we identified dugong sightings made in images
that were overlapping with each other from one transect to the
other and we removed the sightings made in one of the two

adjacent transect for those images. All entered data per flight
are saved in a text file which is subsequently used for mapping
and analysis.
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Each image was searched by one observer and, in the event
of dugongs being detected, the identification and environment
condition assessment was verified by the lead author, who had
the final say in confirming sightings’ certainty. The time spent
searching each image varied, depending on the complexity of
the image, which was affected by glare (sun glitter), the benthic
substrate, water depth, and sea conditions. We have not recorded
image review time but estimate that it took an average of 15 s to
review an image. Observers generally searched the image left to
right and top to bottom, zooming in on each quarter of the image
for closer inspection if fauna were detected.

Mapping and Filtering
The outline of all collected images (image footprints) and the
position of the dugong sightings was mapped using customized
software, OceanMapper (©Martin Wieser; Figure 3B) developed
as part of this study and which is similar to the software VADAR
described in Hodgson et al. (2017). OceanMapper allowed us
to map the image footprints by extracting data from the EXIF
associated with each image, including the global navigation
satellite system (GNSS) position, altitude above ground (∼1 m
horizontal and 2 m vertical accuracy) and UAV rotation (yaw,
pitch and roll to ∼1◦ accuracy). Mean error between on-ground
checkpoints and digital surface models generated using P4Pro
operations was reported at 0.01 m (Rogers et al., 2020). The
text files created during the image review (including pixel XY
image coordinates of each individual animal) were imported
to OceanMapper to georeference our sightings. OceanMapper
created two shapefiles; a polygon shapefile for the image
footprints, and a point shapefile for the animal sightings. These
georeferenced files were then imported into ArcGIS to conduct
subsequent analyses.

Only the dugong sightings qualified as ‘certain’ were retained
for mapping and analyses. Individual animals resighted (counted
multiple times) in successive images along each transect (i.e.,
within forward overlap) were removed from the dataset.

Analysis
Image Fragmentation and Area Cover Segmentation
The images were fragmented into image slivers according to
their overlap with other images (Figure 3B) using the ‘feature
to polygon’ and ‘spatial join’ tools in ArcGIS. Spatial coverage
of the imagery data was segmented into grids based on spatial
location within the broader survey area, and not on position
within an individual transect (c.f., the concept of a transect
segment for subsequent spatial modeling, as described by Hedley
and Buckland, 2004; Miller et al., 2013). This decision was
made due to the positive spatial overlap between transects,
which led to transect sampling units no longer being spatially
independent. Furthermore, given the speed at which transects
were flown (32.9 km/h; Table 1), we assumed animals did not
move substantially between areas covered by adjacent transects
(a gross estimate of dugong swimming speed range from other
studies is 0.5–4 km/hr; Sheppard et al., 2006; Campbell et al.,
2010). As such, the survey area was gridded using the fishnet
polygon tool in ArcGIS. A grid dimension of 200 m × 200 m
was selected as a compromise between having enough spatial

samples across the survey area to adequately parameterise a
density surface model, but not allowing the grids to be so small
that they represent only one or less image footprints, as that
may introduce excessive spatial auto-correlation between nearby
grids. An image sliver was assigned to a 200 m × 200 m grid
cell if its centroid coordinate was situated within that grid cell.
Where images were taken over the same patch of water, but
on multiple days, slivers from different days were treated as
completely separate sample units. For each grid cell, for each
unique flying day, the total area covered by image slivers was
calculated, along with the number of dugong individuals detected
within that grid cell. The extent of the study area was truncated
for the May 2018 field season so as to avoid extrapolation beyond
the achieved image coverage (Figure 4).

Dugong Density Surface Modeling and Abundance
Estimate
Density surface models were developed using the dsm package
(Miller et al., 2013) in the R statistical software (version 4.0.2; R
Core Team, 2020), which calls the mgcv package (Wood, 2017)
to describe the distribution of densities of detections of dugong
individuals as a function of projected space (Lambert Conformal
Conic). Environmental covariates (such as bathymetry) were not
used in the development of this density surface model as data
to describe such covariates were defined at a spatial scale larger
than the survey area. The generalized additive model (GAM)
fitted a two-dimensional (isotropic) spline using projected spatial
coordinates, with a Tweedie distribution (Wood, 2017). Uniform
detection probability from the lens optical center out to the edge
of the image was assumed, hence no distance detection function
was used. The smoothness selection for GAM was undertaken
using restricted maximum likelihood (REML; Wood, 2011).
Dugong density estimates (not yet corrected for availability)
across the survey area were produced using the density surface
model with a 200 m × 200 m square prediction grid. Density
surface models were fitted for each field season (i.e., May-2018,
November-2018, and June-2019).

In order to correct the density estimates for availability bias
(i.e., the proportion of time individuals are below the depth at
which they can be seen by the observers), we used availability
estimates, and associated error, provided by Pollock et al. (2006),
which are specific to four different levels of water visibility
(turbidity) and Beaufort sea state (reclassified to ‘optimal’ for
sea states 0, 1, and 2, and ‘marginal’ for sea states 3+), as
encountered during an aerial survey. Season-level estimates of
visibility and reclassified Beaufort sea state estimates across
the survey area were made via a multinomial GAM using the
environmental covariates assessed for each image and the same
spatial covariates as the density surface model; water visibility and
reclassified sea state estimates were combined to derive dugong
availability at each prediction point. Corrected dugong densities
were estimated by dividing the uncorrected density estimates at
each prediction point by the availability estimate at that point.
Under the assumption that availability is independent of dugong
density, the coefficient of variation (CV) from the availability
estimates were combined with the CV of the density estimates
via the delta method (Oehlert, 1992). An abundance estimate, and
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FIGURE 4 | Raw dugong sightings overlaid with spatially explicit, uncorrected and availability corrected, dugong density surface models for each of the three field
seasons.

associated variance, for the survey area was obtained by summing
the estimated densities across the survey area.

RESULTS

UAV Flights
We conducted 240 flights across three survey seasons and
collected a total of 50,482 images. The details of all flights and
images collected are provided in Table 2. We note that one of

the UAVs crashed following a system failure (cause unknown),
resulting in the partial loss the system (i.e., the shell and camera
gimbal had to be replaced).

Overall (i.e., across the three survey seasons), all the cells of
the survey area grid were surveyed at least once (mean= 3 times,
max = 9 times, ±SE = 0.19; Figure 1C). In May 2018, one UAV
was flown at a time and two to eight flights a day were conducted
(mean = 5 flights, SD = 2 flights; Table 2), representing surface
area coverage varying between 0.31 and 0.69 km2 per flight,
and between 1.24 and 5.35 km2 per day. Operating two UAVs
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TABLE 2 | UAV flight and image count details for all surveys conducted at the Exmouth Gulf site.

Date Number of
flights (cells)

Cumulative flight
time

Mean wind
velocity (km/hr)

Number of images
collected

Number of images
with dugongs in them
(% of total number of

images collected)1

Confirmed number of
individual dugongs

(% of total number of
images collected)

May-18

12-May-18 6 01 h 33 min 14.6 1478 27 (1.8) 15 (1.0)

13-May-18 2 00 h 30 min 17.0 483 11 (2.3) 11 (2.3)

14-May-18 8 02 h 08 min 13.4 1938 5 (0.3) 2 (0.1)

15-May-18 5 01 h 23 min 8.8 1079 20 (1.9) 3 (0.3)

Total 47 05 h 34 min
(mean = 0 h 15 min;

SD = 0.03; SE = 0.01)

13.2 (SD = 6.86;
SE = 0.33)

4978 (mean = 237.0;
SD = 33.92;
SE = 1.62)

63 (1.27) 31 (0.60)

November-18

4-November-18 13 03 h 18 min 20.0 3002 7 (0.2) 4 (0.1)

5-November-18 16 04 h 00 min 15.9 3692 16 (0.4) 7 (0.2)

6-November-18 16 04 h 32 min 17.9 3671 25 (0.7) 12 (0.3)

7-November-18 16 04h14min 16.0 3708 14 (0.4) 7 (0.2)

8-November-18 8 02 h 05 min 13.3 1860 34 (1.8) 15 (0.8)

Total 69 18 h 09 min
(mean = 0 h 16 min;

SD = 0.04;
SE = 0.005)

16.7 (SD = 4.68;
SE = 0.07)

15933 (mean = 230.9;
SD = 5.16; SE = 0.07)

96 (0.60) 45 (0.30)

June-19

12-June-19 12 03 h 18 min 13.7 2942 17 (0.6) 10 (0.3)

13-June-19 14 03 h 47 min 13.1 3303 11 (0.3) 5 (0.2)

14-June-19 16 03 h 57 min 12.3 3818 35 (0.9) 15 (0.4)

16-June-19 16 04 h 16 min 10.4 3775 27 (0.7) 13 (0.3)

17-June-19 9 02 h 22 min 9.1 2104 3 (0.1) 2 (0.1)

18-June-19 16 04 h 19 min 4.3 3767 13 (0.3) 12 (0.3)

19-June-19 8 02 h 03 min 7.8 1961 15 (0.8) 6 (0.3)

20-June-19 17 04 h 31 min 2.3 4057 10 (0.2) 6 (0.1)

21-June-19 16 04 h 16 min 4.0 3844 13 (0.3) 4 (0.1)

Total 124 32 h 50 min
(mean = 0 h 16 min;

SD = 0.02;
SE = 0.002)

9.1 (SD = 5.16;
SE = 0.04)

29571 (mean = 238.5;
SD = 8.59; SE = 0.07)

144 (0.50) 73 (0.25)

Grand total 240 56 h 49 min
(mean = 0 h 15 min;

SD = 0.03;
SE = 0.002)

12.1 (SD = 6.46;
SE = 0.03)

50482 (mean = 235.9;
SD = 13.27;
SE = 0.06)

303 (0.60) 149 (0.30)

1 Includes images where individual dugongs appeared in multiple overlapped images.

simultaneously in the two subsequent fieldtrips resulted in a
significant increase in the number of flights conducted per
day in November 2018 (mean = 14 flights, range = 8–16)
and in June 2019 (mean = 14 flights, range = 8–17) and the
doubling of the surface area coverage (range = 0.57–0.68 km2

per flight, and 5.35–10.59 km2 per day in November 2018; 0.59–
0.69 km2 per flight, and 5.99–11.36 km2 per day in June 2019).
Individual flights ranged from 5 to 23 min (mean = 15 min,
SD = 1 min, ± SE = 5 s), including two flights that were
aborted because the wind increased and exceeded the limits for
safe operations (set at 30 km/hr). Aside from these two events
wind conditions ranged from 0 to 28 km/hr (mean= 15.3 km/hr,
SD = 7.4 km/hr, ±SE = 0.4 km/hr). Cloud cover varied from 0
to 8 octas, but clouds were always higher than the survey altitude
(90 m above ground level) hence no image was directly obstructed

by clouds. The maximum cloud cover was 6 octas and it occurred
in eight consecutive flights out of 240 flights. Thus the effect
of cloud cover on luminosity in the images was insignificant,
it did not affect our ability to review images. UAV battery
consumption ranged from 48 to 68% (mean= 52%, SD= 4.25%,
±SE = 0.29%). There was a positive correlation between battery
consumption and wind strength [r(193) = 0.51, p < 0.05] but
wind did not affect the number of flights conducted per day.

Animal Counts and Abundance
Estimates
Across all season-level survey effort, the number of dugong
sightings ranged from 31 (in May 2018) to 73 individuals (in June
2019). Dugong abundance estimates (based on corrected number
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of dugongs and presented in Table 3) decreased with time and
ranged from a maximum of 102 dugongs (CV = 0.36) in May
2018 to a minimum of 46 dugongs (CV= 0.17) in June 2019.

Dugong Density Distribution
The density surface models suggest that dugongs occur in
relatively high densities in two distinct locations across the survey
seasons but that the spatial location of these density ‘hotspots’
vary temporally (Figure 4). During the cold months of the
surveys (May 2018 and June 2019) dugongs appear to favor the
eastern side of the surveyed area whereas during the warm season
(November 2019) intensive use shifts to the west. No dugongs
were detected in the south-western side of the surveyed area
across all season-level surveys. Note that the extent of the survey
area for the May 2018 sampling event was truncated to minimize
edge effects in the models mostly due to lack of sampling in
the north and north-eastern region (Figure 4). Details of the
(1) coefficients of variation from the spatial part of the density
models, (2) spatial GAM fits for each season-level survey effort,
(3) model-fit diagnostics for each density surface models, (4)
spatial autocorrelation tests, and (5) beaufort sea state and water
turbidity predictions are given in Supplementary Material 4.

DISCUSSION

We have developed a novel approach for using small, affordable
UAVs to investigate the occurrence of a marine megafauna
of interest, create spatially explicit models of distribution and
estimate abundance and across tens of km2. By taking a grid
sampling approach, coupled with the simultaneous use of two
UAVs from a vessel we found an efficient way to conduct dugong
aerial surveys in a remote marine environment despite visual
line of sight restrictions and limitations in the flight performance
of the UAV. This method proved convincing in a real-word
application in terms of feasibility, ease of implementation and
the achievable surface coverage. This method can be conducted
intensively and repetitively at a low cost (as suggested by
Koh and Wich, 2012; Vermeulen et al., 2013) and provide
information on the fine scale distribution of detected animals at a
spatial accuracy that cannot be obtained using other traditional
occupied surveys, either aerial or vessel-based (e.g., Williams
et al., 2007). The ability to conduct intensive surveys which can
be repeated over time at a relatively minor cost has a wide
range of applications, including species occupancy and habitat
use assessments (Guillera-Arroita, 2011; Williams et al., 2017)
and environmental impact assessments and monitoring.

Using customized image review and mapping programs, we
were able to standardize and fast-track the animal detection and
mapping process for high accuracy mapping of animal sightings
and survey effort (as per Hodgson et al., 2017) whilst in the field.
To our knowledge this is also the first time that animal density
surface models (sensu Miller et al., 2013) have been developed
based on animal sightings corrected for imperfect detection, and
using aerial imagery data, thereby providing a major step forward
in the spatial modeling of animal density distribution based on
imagery data. These advances are an exciting development for
wildlife managers who so often rely on spatially-explicit outputs
to support effective management actions (Winiarski et al., 2014;
Roberts et al., 2016; Herr et al., 2019).

Sampling Approach
Using a single small multirotor UAV in a grid sampling approach
and operating under regulated restrictions on flight range (within
visual line of sight operations and under 400 ft), we could conduct
up to eight flights per day and achieve complete image surface
coverage of up to 5.35 km2 per day (sampling intensity = 12.5%
of the 31 km2 study area). Under the same restrictions and
survey design, but with two UAVs flying simultaneously we
could more than double the sampling effort (up to 11.36 km2

of surface cover per day) without increasing operational time.
The novelty of this approach makes it hard to compare to other
published research involving the use of small multirotor UAVs,
which have mainly focused on trialing this technology to assess
the detectability of specific wildlife of interest or to conduct
synoptic surveys of animal groups (e.g., Ratcliffe et al., 2015; Díaz-
Delgado et al., 2017). Vermeulen et al. (2013) locally surveyed
wild elephants using a small fixed-wing UAV with higher flight
endurance capabilities (maximum flight duration= 40 min) than
the systems we used and with permission to fly beyond visual
line of sight (transect length = 10 Km), thereby theoretically
increasing surface area cover. Nonetheless, the authors found
that they could fly over a maximum of six transects of 1.2 km2

per day, thereby achieving a total daily surface area cover of
7.2 km2 and generating image resolution slightly lower than ours
(GSD = 3 cm per pixel). Our study shows that a similar, if not
superior coverage/image resolution can be achieved with more
constrained, small multirotor systems by using multiple aircrafts
and a design adapted to these constraints.

The most appropriate grid-based sampling intensity and
protocol will be determined by the research question as well as
the context, i.e., the logistical constraints and prior ecological
knowledge of the target species and area. In our case the grid was
surveyed using random cell selection (as opposed to systematic)
because of our limited knowledge on the dugongs’ distribution

TABLE 3 | Dugong abundance and density estimates based on corrected dugong counts (uncorrected dugong density estimates are provided in
Supplementary Material 4).

Field season Dugong abundance estimate CV Lower 95% CI Upper 95% CI Mean corrected dugong density estimates (per 0.04 km2)

May-18 102 0.36 52.2 201.9 0.19 (range = 0.01–1.79, SD = 0.27)

November-18 92 0.39 43.9 195.3 0.12 (range = 0.007–0.98, SD = 0.17)

June-19 46 0.17 33.5 64.9 0.04 (range = 0.002–0.21, SD = 0.04)
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and density in the area of interest, as well as the initial lack of
knowledge of the achievable sampling intensity. If resampling
our survey area, we could adapt our approach using our current
knowledge by, for example, taking a stratified systematic grid
sampling approach (Caughley, 1974).

Our surveys covered a relatively small area (31.36 km2)
because of vessel movement restrictions that were unrelated to
our UAV operations. Without these constraints, our approach
could be used to survey larger areas, albeit less intensively. In
doing this, the trade-off between spatial coverage and survey
intensity need to be considered in relation to the research
question. In this study the intensive survey of a small area
maximized (1) the precision in estimates of the abundance of
dugongs present at the time of the surveys (Caughley, 1974;
Ferreira and Van Aarde, 2009), and (2) the confidence in
their distribution within the surveyed area (MacKenzie, 2006).
Sampling a larger area than we did is feasible if ensuring high
mobility of the UAV operator (in order to maximize the coverage:
time ratio) and lowering sampling intensity (by reducing the
number of cells surveyed, number of times cells are surveyed, or
the coverage within the surveyed cell).

Spatial Accuracy, Modeling and Animal
Availability Considerations
One notable feature of our UAV image processing methods is
the ability to accurately map the horizontal position of surface-
available animals detected in images. In traditional occupied
surveys, either aerial or vessel-based, measurement error in
distance sampling (i.e., measuring distances from the trackline)
can be quite pronounced for a range of species (Williams et al.,
2007; Strobel and Butler, 2014; Conn and Alisauskas, 2018)
potentially impacting bias and precision in fitting detection
functions and subsequent density and abundance estimation
(Chen and Cowling, 2001; Marques, 2004; Borchers et al., 2010;
Buckland et al., 2015). With a nadir camera setting and the high
accuracy provided by the UAV telemetry our approach greatly
reduces this distance estimation error.

Furthermore, when inferred animal positions are used to study
clustering or spatial distribution (e.g., to study social- or resource-
driven patterns), measurement error may introduce bias to
such results because occupied vessel or aerial survey methods
are unable to provide positions for individual animals. Instead
they provide positions for groups (which are often very loosely
and subjectively defined). Our individual-scale ‘observations’
and mapping of individuals allows for greater flexibility in
subsequent analyses, such as the potential for characterizing
animal distributions as spatial point processes (Skaug, 2006;
Coburn et al., 2008; Yuan et al., 2017), in addition to more
traditional line transect or plot-based analyses. Furthermore, it
minimizes the error in group size estimation that results from
observers have differing interpretations of what constitutes a
group. Thus our aerial imagery data and standardized animal
detection and localization processes provide the opportunity to
assess clustering and define groups with greater confidence and
accuracy than traditional methods. Estimating group size based
on individual-scale observations made in aerial images is possible

(e.g., Hodgson et al., 2017) and so is the identification of mother-
calf pairs. However, we did not conduct these analyses because
the focus of this paper was on developing an understanding of
the use of the study area by individual dugongs regardless of their
group formation and calf attendance.

Whilst we chose to use a widely used density surface modeling
approach (Hedley and Buckland, 2004; Miller et al., 2013) in
combination with existing estimates of availability (e.g., Pollock
et al., 2006) to estimate dugong abundance within the survey
area, other established and emerging analysis methods might
also be useful, particularly to take advantage of the ability to
accurately map locations of individuals which are at or near
the surface of the water. For example, spatial point process
methods, which use the explicit location of detections (usually
in two-dimensional space in the context of wildlife studies)
relative to other detections, have been used to explore spatial
structure of marine mammal populations (Hagen and Schweder,
1995; Cowling, 1998; Yuan et al., 2017), and to make inferences
about survey observation processes, and resultant abundance and
precision (Skaug et al., 2004; Skaug, 2006; Waagepetersen and
Schweder, 2006; noting these methods also incorporate a model
of point ‘thinning’ via distance sampling, where points from a
full set are removed via the observation process occurring at
distance). Another related approach is ‘N-mixture’ modeling,
where resampling of detections in the same spatial region over
several sampling occasions may allow estimation of detection
probability, occupancy and abundance from aerial imagery
(Royle, 2004; Williams et al., 2017). Both approaches warrant
further investigation as potential ways to improve information
arising from aerial imagery surveys for marine mammals such as
dugongs.

The process of collecting overlapping imagery along a
transect may also allow estimation of availability, which could
augment what is already known about visibility bias in dugong
aerial surveys (e.g., Pollock et al., 2006; Hagihara et al.,
2018), in addition to provide area- and conditions-specific
estimates. Heide-Jørgensen et al. (2010)’s sequential images taken
(approximately 2.6 s apart) along a transect with a nadir-
facing camera were able to capture several surface/dive events
for common minke whales (Balaenoptera acutorostrata). This
allowed the authors to piece together estimates of surface and
dive duration, which was then fed into an estimator of non-
instantaneous availability given by Laake et al. (1997). The
surface/dive times captured by Heide-Jørgensen et al. (2010)
were both right and left-truncated due to the discrete nature
of images; arguably, continuous aerial focal follow video may
be better for estimating surface and dive durations, such as
demonstrated by Hodgson et al. (2017), for example. However,
Heide-Jørgensen et al. (2010) still demonstrated that basic
availability estimates were possible under this method. In our
study there was a designed 70% forward overlap in image area
along transects flown. Across the three seasons, this overlap
rate, combined with an image capture interval of 3 s, meant
that any point on the surface of the water was available
to be photographed for an average of approximately 9 s;
Figure 2 provides an indication of a dugong surfacing event
captured during this study. There would be benefit in future
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simulation work to explore the trade-off between percentage
of image overlap, platform speed and surface/dive activity,
and relative ability to estimate availability, all within the same
survey process.

Image Processing
While UAVs prove to be an effective tool at conducting wildlife
surveys, extensive efforts often required to post-process the data
can negate any time saved by UAVs in the field compared to
conventional survey methods. Here all images were reviewed
manually, but trained observers reviewed the images almost
immediately after the pilots had completed a survey. When
the UAVs were not in operation, the entire research crew of
up to eight people reviewed the images. The total estimated
time to review all the images collected in this study was
approximately 210 h (based on the estimated 15 s review of
an image). Nonetheless, it is widely accepted that for UAVs
to become truly efficient wildlife monitoring tools across the
entire workflow of data collection through to analysis, improved
capabilities to automate animal detection and counting in
the imagery collected by UAVs are required (Gonzalez et al.,
2016). Detections of animals in-water from aerial images using
convolutional neural networks (a form of machine learning) is
now also feasible (e.g., Nguyen et al., 2017; Guirado et al., 2019).
Maire et al. (2015) developed a machine learning system to
detect dugongs in UAV images using training images provided
from the trial surveys. The recall of this system (i.e., the
proportion of known dugongs detected in a set of test images)
is 80%. The precision of the system (proportion of detections
that were true dugongs as opposed to false detections) is
27%. Deep learning systems such as Maire et al. (2015)’s can
only be improved with large labeled training data. Our study
will provide valuable training data to advance the automated
detection system.

Key Assumptions and Limitations
The dugong detections from the aerial images were corrected
for availability bias to produce dugong abundance estimates.
However, it is important to note that these estimates do not
represent the total number of dugongs occurring in the southeast
region of Exmouth Gulf, but are an estimate of the number of
animals present in the study area at the time of the surveys.
Furthermore, we have assumed that the movements of the
dugongs in our study area were random in space and time,
and that the movements between transects during a flight was
minimal, thereby having no effect on animal counts from one
transect to another within a flight. Without (1) empirical data
on the movements of dugongs in the study region (and more
specifically their movement within and in and out the study area),
and (2) the ability to identify and detect the same animal at
different times within or across survey flights and thereby provide
data from which movement can be estimated, it is very difficult
if not impossible to say how likely these assumptions are to be
true. Dugongs traveling between locations in a constant direction
display varied minimum travel speeds from approximately 0.5–
4 km/hr (Campbell et al., 2010) but that speed will be less
for animals swimming while foraging. Thus, ideally information

on dugong movements in different behavioral states would be
integrated into the survey design to reduce bias due to movement
(Buckland et al., 2004; Fewster et al., 2008).

While there are many obvious advantages in using a vessel
to conduct aerial surveys using small UAVs, researchers should
also be aware of the potential constraints of vessel-based UAV
operations. In our experience, the use of a live-aboard vessel
enabled us to (1) survey a very remote area which our UAVs
could not have reached from the land, (2) stay in the area
overnight thereby reducing commute time and cost, (3) ensure
very safe UAV operations thanks to the vessel’s stability and
relatively large, open deck space for take-off and landing (4)
access to on-board charging facilities to charge multiple UAV
batteries and other equipment simultaneously, thereby ensuring
that battery charge was never a limiting factor to our intensive
operations. On the downside, using a large vessel with a large
draught limited our access to some inshore sites at low tide and
the commute between sites, even in good weather conditions, was
relatively slow, meaning we achieved less flights per day than
we could have with a smaller vessel (e.g., northeast section of
the study area, Figure 1C). Since this study, we have conducted
trials using our sampling approach from much smaller outboard
vessels (e.g., ∼6 m semi-inflatable vessel; Cleguer et al., 2020a)
and found that all aspects of our method could be replicated
as safely and at least as efficiently as the method we describe
in this paper.

We note that we had one system failure during our operations
which resulted in the UAV crashing back onto the deck of
our research vessel. All personnel were maintaining appropriate
distances from the launch and retrieval site to ensure safety. Upon
review of the flight data, the cause could not be detected, but
we suspect a bug in our flight planning app. Our experience
highlights the importance of risk management when operating
all UAVs, appropriate pilot training, and the need for having a
back-up system to allow field work to continue in the event of a
system failure or loss.

Conclusion
The methodology we describe shows that small, affordable
UAVs with seemingly limited capabilities can be successfully
applied to wildlife surveys. We also provide for the first time
a thorough description of an application of aerial imagery strip
transect sampling, in combination with model-based density
and abundance estimation corrected for imperfect detection—
demonstrating analyses of aerial imagery can be very much
aligned with traditional aerial survey approaches.

Using a novel grid-sampling approach, small UAVs can cover
reasonable sized survey areas considering we were able cover
11 km2 per day even with our mobility constraints. With
continued advancement of image processing tools, it is realistic
to suggest that our method paves the way for affordable rapid
assessment wildlife surveys that offer more detail and accuracy
than occupied survey techniques. As the UAV market continues
to grow, new affordable systems may become available and
show sufficient field testing to be used in intensive wildlife
survey applications. For example, vertical take-off and landing
fixed-wing UAVs are an emerging solution for surveying wildlife
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in challenging terrains while increasing flight time and thus
coverage (Raoult et al., 2020). We have provided detailed
information within our supplementary information to maximize
the potential for researchers to use these survey methods within
minimal training and experience. However, we reiterate that
optimal survey design (grid sampling intensity and selection
protocol) relies on a clear understanding of the research or
monitoring questions and objectives, of the target species’
ecology, and of the local logistical constraints.
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