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Cold-water coral (CWC) reefs are complex structural habitats that are considered
biodiversity “hotspots” in deep-sea environments and are subject to several climate
and anthropogenic threats. As three-dimensional structural habitats, there is a need
for robust and accessible technologies to enable more accurate reef assessments.
Photogrammetry derived from remotely operated vehicle video data is an effective and
non-destructive method that creates high-resolution reconstructions of CWC habitats.
Here, three classification workflows [Multiscale Geometrical Classification (MGC), Colour
and Geometrical Classification (CGC) and Object-Based Image Classification(OBIA)] are
presented and applied to photogrammetric reconstructions of CWC habitats in the
Porcupine Bank Canyon, NE Atlantic. In total, six point clouds, orthomosaics, and digital
elevation models, generated from structure-from-motion photogrammetry, are used to
evaluate each classification workflow. Our results show that 3D Multiscale Geometrical
Classification outperforms the Colour and Geometrical Classification method. However,
each method has advantages for specific applications pertinent to the wider marine
scientific community. Results suggest that advancing from commonly employed
2D image analysis techniques to 3D photogrammetric classification methods is
advantageous and provides a more realistic representation of CWC habitat composition.

Keywords: cold-water corals, 3D photogrammetry, structure-from-motion, remotely operated vehicles, object-
based classification, 3D image classification

INTRODUCTION

Azooxanthallate scleractinian corals, such as Lophelia pertusa (synonymised to Desmophyllum
pertusum in Addamo et al., 2016) and Madrepora oculata, are recognised by their three-dimensional
branching morphology and framework building capacity (Mortensen et al., 1995; Roberts, 2002;
Jonsson et al., 2004; Costello et al., 2005; Wheeler et al., 2005a, 2007b; Gass and Roberts, 2006;
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Guinan et al., 2009). In suitable environmental conditions, these
cold-water coral (CWC) species can form structural habitats such
as small coral patches (Wilson, 1979a), reefs (Masson et al., 2003;
Roberts et al., 2006b; Victorero et al., 2016; Lim et al., 2018), and
giant carbonate mounds (Hovland and Thomsen, 1997; Mienis
et al., 2006; Wheeler et al., 2007a; Freiwald et al., 2011; Huvenne
et al., 2011) that can reach up to 400 m above the seabed. The
presence of reef-forming CWC colonies has been documented in
a range of settings from fjords (Fosså et al., 2006) to continental
shelfs, slopes (Wilson, 1979b; Mortensen et al., 1995; Wheeler
et al., 2005c; Leverette and Metaxas, 2006; Mienis et al., 2006) to
seamounts and submarine canyons (Huvenne et al., 2011; Appah
et al., 2020) throughout the North Atlantic, Indian, and Pacific
oceans and the Mediterranean Sea (de Mol et al., 2005; Freiwald
and Roberts, 2005; Wheeler et al., 2007a,b; Roberts et al., 2009;
Freiwald et al., 2011; Lim et al., 2018).

Cold-water coral environments are commonly considered
marine biodiversity “hotspots” as they can harbour increased
biodiversity and biomass relative to their surrounding areas
(Jonsson et al., 2004; Wheeler et al., 2007a; Fanelli et al., 2017).
Despite being among the world’s most important reservoirs
of marine biodiversity (Freiwald et al., 2011), CWC reefs are
also susceptible to environmental changes and threats such
as temperature and salinity changes, as well as anthropogenic
activities (Roberts et al., 2006a; Wheeler et al., 2007a; Orejas et al.,
2009; Huvenne et al., 2016), e.g., bottom trawling (Wheeler et al.,
2005b), mining (Savini et al., 2014), and oil and gas exploration
(Roberts, 2002; Gass and Roberts, 2006; Barbosa et al., 2019).
Several studies have affirmed that CWC reefs are declining
rapidly in response to high rates of environmental change (Lim
et al., 2018; Boolukos et al., 2019) and ocean acidification
(Turley et al., 2007; Findlay et al., 2013). Consequently, there
is a need for CWC reef assessments that quantify variations in
temperature, salinity, food supply, and growth rates combined
with measurements of structural complexity and biodiversity.
It is therefore essential to understand these environments and
to assign priority areas for protection (Ferrari et al., 2018;
Appah et al., 2020).

Three-dimensional structures enhance small-scale spatial
variability and play a major role in species biodiversity and
nutrient cycling (Graham and Nash, 2013; Pizarro et al., 2017;
Lim et al., 2018). The use of multibeam echosounders (MBES)
can provide sub-metre pixel resolution bathymetric coverages of
submarine canyons (Huvenne et al., 2011; Robert et al., 2017) and
CWC environments (De Clippele et al., 2017; Lim et al., 2017).
However, there is a lack of studies at a centimetric resolution
(King et al., 2018; Anelli et al., 2019; Price et al., 2019) that
reveal the complexity of coral frameworks. The analysis of these
environments usually relies on 1D or 2D estimates of coral
cover and distribution that can potentially disregard important
changes in reef habitats as they may not integrate accurate
vertical or volumetric information (Courtney et al., 2007; Goatley
and Bellwood, 2011; House et al., 2018). Therefore, there is
an increasing demand for the development of novel techniques
for measuring coral reef environments in 3D (Burns et al.,
2015a,b; House et al., 2018; Fukunaga et al., 2019). This demand
has been mitigated with the use of novel mapping techniques

such as structure-from-motion (SfM) photogrammetry (Cocito
et al., 2003; Burns et al., 2015b; Storlazzi et al., 2016; Robert
et al., 2017; Price et al., 2019) which is becoming progressively
more common since the introduction of remotely operated
vehicles (ROVs) (Kwasnitschka et al., 2013; Lim et al., 2020).
Increasing access to computer processing power, high-resolution
digital imagery, and recent developments in image processing
software has led to a considerably higher number of studies
utilising photogrammetry for seabed habitat mapping (Storlazzi
et al., 2016; Pizarro et al., 2017; Hopkinson et al., 2020). SfM
photogrammetry is considered a time- and cost-effective method
for seabed mapping that allows high-resolution environment
reconstruction (Burns et al., 2015a,b; Storlazzi et al., 2016; Robert
et al., 2017; House et al., 2018). SfM utilises multiple overlapping
images at various angles to reconstruct 3D models of complex
scenes. To this end, SfM uses a scale-invariant feature transform
(SIFT) algorithm to extract corresponding image features from an
offset of images captured sequentially along the camera transect
(Lowe, 1999). These calculations of overlapping imagery can be
used to reconstruct 3D point cloud models of the photographed
surface or scene (Carrivick et al., 2016). Moreover, the use of ROV
video data has a number of benefits when compared to traditional
sampling methods given that it is non-destructive and can have a
wide spatial coverage (Guinan et al., 2009; Bennecke et al., 2016;
De Clippele et al., 2017; Young, 2017).

The increase of data derived from SfM mapping has led to
the necessity for new tools and techniques to aid time-effective
and high-quality analysis of large areas (Storlazzi et al., 2016;
Pizarro et al., 2017; Young et al., 2018; Marre et al., 2019). As
technology advances, datasets are also becoming larger which, in
turn, leads to a need for automated processing with faster, more
precise, and accurate classification outputs (Brodu and Lague,
2012; Weinmann et al., 2015). Currently, this need has been
achieved by integrating machine learning (ML) with mapping
techniques to achieve automated meaningful pattern detection
from multi-thematic datasets. ML has been widely used in remote
sensing (Pal, 2005; Mountrakis et al., 2011), archaeology (Menna
et al., 2018; Lambers et al., 2019), and to predict fish abundances
(Young, 2018). Studies have shown optimal results on the
application of ML for satellite, aerial, and terrestrial imagery
(Wang et al., 2015; Pirotti and Tonion, 2019). Classification
studies using LiDAR data performed in Walton et al. (2016)
and Weidner et al. (2019) are also good examples. However,
there is still a scientific gap between ML and marine surveying
for seabed classification due to the costly computational nature
of ML methods and the time-intensive annotation of marine
datasets which usually requires expert knowledge (Shihavuddin
et al., 2013; Marburg and Bigham, 2016; Hopkinson et al., 2020).
This gap is emphasised when we consider the use of 3D data. Even
though existing ML models such as neural networks (NNs) have
shown promising results on 3D reconstructions of single objects,
there is still room for improvement for the classification of
complex 3D scenes (Weinmann et al., 2015; Roynard et al., 2018),
especially in the case of marine habitats (Gómez-ríos et al., 2018;
Hopkinson et al., 2020). Challenges related to the complexity
derived from variability of point density, non-uniform point
structure, and size of the dataset still cause difficulties when
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developing and applying new methodologies for 3D point cloud
classification (Weinmann et al., 2013). In the specific case of
coral reefs, difficulties in detecting coral shape, colour, and texture
have also been reported (Gómez-ríos et al., 2018; King et al.,
2018; Hopkinson et al., 2020) especially as corals tend to occur
in colonies and can have similar features.

In this study, we assess three different image classification
techniques embedded in image analysis software and evaluate
both the performance and results when using 3D data. We also
compare their resource requirements and information outputs.
The usability and the computing power required to process and
analyse data were also taken into account. In a wider scenario,
this study aims to show novel applications of ML for seabed
mapping of submarine canyons and CWC reefs. Furthermore, we
provide a classification workflow created for these environments
and evaluate the limitations and advantages of using 3D data in
comparison to 2D. For the first time, the techniques were applied
to the CWC reefs in the Porcupine Bank Canyon (PBC), NE
Atlantic. As such, this paper contributes to the wider scientific
community using existing image processing software for 3D
classification of deep-sea environments.

MATERIALS AND METHODS

Three classification workflows applied to underwater
photogrammetric reconstructions of CWC habitats in the
PBC are analysed. The methods range from a relatively straight-
forward appraisal to ones of increased complexity in terms of
computational requirements and user knowledge. Herein, we
describe data acquisition, processing, and the workflow of the
applied methods.

Study Area
Submarine canyons offer a variety of CWC habitats including
vertical habitats (Huvenne et al., 2011; De Clippele et al., 2017;
Robert et al., 2017). The three methodologies presented herein
were applied to CWC habitats in the PBC, located approximately
300 km southwest of Ireland (Figure 1). The canyon is located
between the Porcupine Seabight to the southeast and the Rockall
Trough to the west (Wheeler et al., 2005a). Measuring 63 km
in length, the PBC is one of the largest submarine canyons
on Ireland’s western margin. Since 2016, the PBC has been
designated as a special area of conservation (SAC) (n◦003001) by
the European Union Habitats Directive (2016), and therefore no
fishing or other exploratory activities are allowed in the area.

The PBC is a tectonically controlled (Shannon, 1991),
asymmetrical canyon with two branching heads separated by
a ridge and exiting separately into the Rockall Trough (Appah
et al., 2020; Lim et al., 2020). A steep, ∼700 m high, cliff
face exists at the southeast margin of the canyon with exposed
bedrock. This bedrock contrasts with the sediment-dominant
slope on the northwest margin that extends to the canyon base
(Dorschel et al., 2010; Appah et al., 2020; Lim et al., 2020). Giant
carbonate mounds of up to 100 m high (Wheeler et al., 2005a)
are concentrated along the edges of the canyons or associated

with fault systems existing around the canyon head, leading to
escarpments of up to 60 m high (Mazzini et al., 2012).

The PBC is influenced by strong currents along the mound
tops and flanks, water column stratification, enhanced bottom
currents, and upwelling (Mazzini et al., 2012). Unprecedented
current speeds of 114 cm s−1 have been recorded within the
PBC, which is the highest current speed ever recorded in a CWC
habitat (Lim et al., 2020). Data from conductivity-temperature-
depth (CTD) measurements show that the region is mainly
influenced by the eastern north atlantic water (ENAW) down
to 800 m water depth flowing northerly (Lim et al., 2020) with
the labrador sea water (LSW) below 1100 m depth (Appah
et al., 2020). Mediterranean outflow water (MOW) also flows
through the canyon between 800 and 1100 m water depth
(Appah et al., 2020; Lim et al., 2020). It is suggested that
current regimes influence the distribution of benthic fauna
throughout the canyon and that CWC habitats in the PBC can
tolerate considerably high current speeds (Lim et al., 2020).
High biodiversity including actively growing and well-developed
coral colonies is found at depths of 600–1000 m where the
ENAW and MOW occur, while poorly developed coral colonies
were related to the LSW (Appah et al., 2020). The main
framework forming CWC in the canyon is L. pertusa (syn.
D. pertusum), and the other most common coral species were
black corals Stichopathes cf. abyssicola and Leiopathes glaberrima
and sponges Aphrocallistes beatrix and Hexadella dedritifera
(Appah et al., 2020).

Video Survey and Data Collection
The video data used in this survey were acquired during research
cruises CE19008 (Lim et al., 2019b) and CE19014 (Lim et al.,
2019a) from 13rd to 23rd of May of 2019 and 25th to 31st of
July of 2019, respectively. Video data were collected using the
Holland 1 ROV, although the methodologies compared in this
paper could be applied to towed-camera or diver surveys. The
ROV is equipped with 11 camera systems of which two were used
as data sources for analysis in this paper: an HDTV camera (HD
Insite mini-Zeus with HD SDI fibre output), and a Kongsberg OE
14–208 digital stills camera. Two deep-sea power lasers spaced at
10 cm were used for scaling. Positioning data were recorded with
a Sonardyne Ranger 2 ultra short baseline (USBL) beacon and
corrected by an IXBlue doppler velocity logger (DVL) (Lim et al.,
2020). ROV video data were acquired at a height of ∼2 m above
the seabed with a survey speed of <0.2 knots at locations in the
PBC. High-definition video data (1080p) were acquired at 50 fps
and stored as ∗.mov files. The areas selected for reconstruction
were based on the distribution and variety of CWC habitats
such as small individual coral colonies, coral colonies on rock
outcrops, coral gardens, and mounds.

3D Reconstruction Using
Structure-From-Motion (SfM)
Photogrammetry
Remotely operated vehicle video data, digital stills, and
camera positioning information were used to produce the 3D
reconstructions in this study. One frame per second was extracted
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FIGURE 1 | Study site (in red)—The Porcupine Bank Canyon study area on the Irish continental margin west of Ireland.

from the raw video data with Blender (version 2.78). The frames
were imported into Agisoft Metashape Professional v1.6, and
each frame was georeferenced with its relative USBL positioning
data. The lasers from the HD camera were utilised to scale
features during the reconstruction process. The workflow for
model rendering was carried out as detailed in Agisoft (2019)
using an Intel I7 hexa core, 16 GB of RAM, and NVIDIA
GTX1070 (8 GB) graphics card. The overall workflow and data
outputs are shown in Figure 2. Dense clouds were used in
method 1–MGC [section “Method 1–Multiscale Geometrical
Classification (MGC)”] and method 2–CGC [section “Method

2–Colour and Geometrical Classification (CGC)”], while the
orthomosaics were used for method 3–OBIA [section “Method
3–2D Object-Based Image Analysis (OBIA)”].

Classification Methods
Method 1–Multiscale Geometrical
Classification (MGC)
An MGC approach was utilised in this study to perform
a binary classification of our 3D CWC reef reconstructions.
We utilised Canupo (Brodu and Lague, 2012), a support
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FIGURE 2 | Workflow for 3D model reconstruction and applications of each output data within this study.

vector machine (SVM) classification algorithm implemented in
the open-source software CloudCompare (Girardeau-Montaut,
2011). This method was chosen due to its solid workflow for
classification of point clouds applicable to natural environments
(Brodu and Lague, 2012). As this technique uses dimensionality
(computation of vector dispersion for each point relative to a
neighbourhood of points) as a parameter for classification, it
provides flexibility when applied to data derived from different
sources as geometrical measurements are not dependent on the
instrument used (Brodu and Lague, 2012). Therefore, these SVM-
based classifiers can be reutilised by other users with point cloud
data derived from different sources, e.g., terrestrial or airborne
laser scanning. Another reason for choosing a dimensionality-
based classifier is the limited separability of RGB component
spectral signatures in underwater photogrammetry.

The multiscale classification technique used here computes the
degree to which each neighbourhood of points can be examined
as single-, two-, or three-dimensional aspects by identifying the
principal components of the point coordinates in the given
neighbourhood (Brodu and Lague, 2012). This method is defined
as a multiscale classification because it calculates these statistics
for each core point in the scene at a spherical neighbourhood
of different sizes, referred to as scales parameters. As such, this
method generates a feature vector that can distinguish between
semantic objects (Maxwell et al., 2018; Weidner et al., 2019),
such as coral and bedrock. The computation of neighbourhoods

defined by each scale gives the classifier a multi-scale refining
property (Brodu and Lague, 2012; Weidner et al., 2019). The final
product of this process is defined herein as a multiscale classifier
that is applied to the test dataset. Here, the neighbourhood sizes
were chosen to include a range from coral frameworks to differing
rock sizes so that small-scale objects would also be captured in
large-scale sizes.

As this technique is a semi-automated classification that
employs a probabilistic approach, it is essential to build classifiers
based on samples of features of interest from a training dataset,
i.e., live and dead corals. Entire dense clouds were manually
segmented into objects of interest and divided in two classes:
“coral” and “seabed.” The class “coral” consisted of hard and
soft coral colonies and frameworks. The class seabed consisted
of the remainder, i.e., seafloor and other benthic organisms
(e.g., coral rubble, echinoderms, sponges, etc.). The segmentation
process was repeated on each axis (X, Y, and Z) to avoid
single view bias.

Scale parameters used for the multiscale descriptors were
based on the variance of object size within the scene. Ten
initial scales with steps of 0.1 or 0.005 were chosen based on
an empirical analysis of the data, combining the evaluation
of features to be identified with a trial-and-error approach.
The maximum number of core points (MNCPs) value is the
number of randomly sub-sampled points that will be used for
computations on the scene data. The higher the MNCP value,
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the greater the number of computations. Thus, an increase in the
number of scales and core points was directly related to the ability
to discriminate and the processing power required to train the
classifier. The performance of each classifier was quantified by the
Balanced Accuracy (ba) value which is defined by the equation:

ba =
1
2
(ac1 + ac2)

Where each class accuracy (ac1 and ac2) is defined as
ac1 = tcc1

/(
tcc1 + fcc2

) and ac2 = tcc2
/(

tcc2 + fcc1
) (tcc1–truly

classified class 1, tcc2–truly classified class 2, fcc1–falsely classified
class 1, and fcc2–falsely classified class 2). For each sample,
the classifier assigns a distance, d, from the separation line of
the classifier and the measure of separability is calculated by
the Fisher Discriminant Ratio (fdr) described in Sergios and
Konstantinos (2008) which is defined as:

fdr = (µ2 − µ1)
2/

ν1 + ν2

where µ2 and µ1 and ν1 and ν2 are the mean and the variance of
the aforementioned distance d for each class 1 and 2. The fdr is
used to assess the class separability, i.e., how well the classes are
separated. Therefore, a high ba value indicates that the trained
classifier has a good recognition performance, whereas a high fdr
indicates that the classes are well separated in a plane of maximal
separability. The classifier quality is directly proportional to ba
and fdr values. The higher the values, the better the classifier can
identify and classify objects into two classes. Further details can
be found in Brodu and Lague (2012).

The dataset consisted of eight dense-clouds that were split
into training and testing sets. The training set was used for
training the classifier, which was then applied onto the unseen
testing set. Each classifier was trained with a combination of
segments from a single dense-cloud or two different dense-
clouds, referred to here as source-clouds. The testing dataset
composed by the remainder of the dataset after excluding the
dense-clouds was used to train the classifier. The classifiers
with the highest ba and fdr values were applied to the testing
dataset to evaluate their robustness and reproducibility, i.e., their
ability to be applied to analogous environments. Initially, no
confidence threshold was set for the classification. Therefore,
all points were classified as either coral or seabed. After a
visual inspection of preliminary results, a confidence threshold
was set to arbitrary values 0.5 or 0.9 and the classifier was
executed again. The confidence threshold allows class labels to
be assigned only if the results exceed that value; otherwise,
the point is left unclassified. If more than 30% of the points
were left unclassified, the classifier was retrained with a different
number of scales and core points (Supplementary Figure 1).
This threshold was set to reassure classification quality in a trial-
and-error approach (Weidner et al., 2019). Hence, higher values
will result in less generalisation and more complex decision
boundaries (Maxwell et al., 2018). Studies in terrestrial point
clouds for rock slope classification have chosen the confidence
threshold based on up to 15% of unclassified points (Weidner
et al., 2019). A 30% confidence threshold was chosen for this

study due to the point cloud density differences and the classes
of objects to be addressed.

Method 2–Colour and Geometrical
Classification (CGC)
The second classification workflow is based on the use of
colour and geometrical feature information following the work
of Becker et al. (2018) which has shown satisfactory results for
ground classification point clouds surveys using unmanned aerial
vehicles (UAVs) (Klápště et al., 2018).

The use of geometrical features for semantic classification
has brought positive results in several terrestrial data studies
(Weinmann et al., 2015; Hackel et al., 2016). In addition to
geometrical features, the use of colour information in the
classification process of point clouds provides a significant
increase in prediction accuracy (Lichti, 2005; Becker et al., 2018).
For underwater photogrammetry, the use of colour has been
advised as a way to include important image spectral information
(Beijbom et al., 2012; Bryson et al., 2013, 2015, 2016). However, its
importance is questionable as there are interactions between the
colour spectrum and water column, e.g., the red colour channel
is attenuated with distance from camera (Carlevaris-Bianco et al.,
2010; Beijbom et al., 2012; Bryson et al., 2013).

Here, the same training set of dense point clouds was
classified using the supervised multiclass classification algorithm
implemented in Agisoft Metashape (Supplementary Figure 2).
This automatic multiclass classification approach associates
geometric and colour features that are fed into the Gradient
Boosted Tree (GBT) algorithm to predict the class of each point
in the point cloud. GBT utilises colour features computed from
the colour values of each point and the average colour values of
its neighbouring points.

Geometrical features used in the algorithm were previously
presented in Becker et al. (2018). For each point, its neighbouring
points are computed and the set is used to build a local 3D
structure covariance tensor which summarises the predominant
direction of the slope gradients in the neighbourhood of a
point. The eigenvalues and corresponding eigenvectors are
used to compute the local geometric features, for instance,
ominivariance, eigentropy, anisotropy, planarity, linearity,
surface variation, verticality, and scatter. These features, which
originate from the 3D covariance matrix of nearest neighbours
of each point, can be used to describe the local 3D structure and
dimensionality (Weinmann et al., 2013). Further information
about the algorithm can be found in Becker et al. (2018).
This technique provides a supervised classification which is
pre-trained using terrestrial datasets. The dense clouds were
classified with the GBT classifier into ground (seabed) and low
vegetation (corals).

Method 3–2D Object-Based Image Analysis (OBIA)
As a baseline method, object image classification was utilised
to analyse the range of information that 2D data classification
can provide in comparison to the 3D data. Object-based analysis
techniques have been widely applied across different remote
sensing areas, especially for marine studies (Conti et al., 2019;
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Lim et al., 2020), aerial imagery (Zhang et al., 2010), and land
cover mapping (Benz et al., 2004).

For this classification method, the georeferenced
orthomosaics, DEM, and slope from the training set were
used. Slope was derived from the DEM in ArcGIS Spatial
Analyst toolbox. Slope, DEM, and the orthomosaics derived
from the point cloud processing were imported into eCognition
Developer (Trimble Germany GmbH, 2019) and segmented
using the multi-resolution segmentation algorithm (Benz
et al., 2004) at a pixel level using different layer weights for
RGB, DEM, and slope layers. This segmentation approach
merges pixels of similar values into objects based on relative
homogeneity criterion. The homogeneity criterion measures
how homogeneous an image object is in relation to itself
and it is calculated as a combination of spectral and shape
criteria (Trimble, 2018). The shape ratio determines to what
extent the shape influences the segmentation compared to
colour. The compactness is a weighting value that affects the
compactness of the objects in relation to smoothness created
during the segmentation. These ratios are obtained by calculating
primary object features, shape, and colour, with heterogeneity
calculations, i.e., standard deviation (Benz et al., 2004). Layer
weight values control the emphasis given to colour and shape
during the heterogeneity calculation (Koop et al., 2021) as it
increases the weight of a layer based on the heterogeneity. The
weight parameters adapt the heterogeneity definition to the
application in order to get suitable segmentation output for
image data (Benz et al., 2004). The layer weight values used
were chosen following Lim et al. (2020). The scale parameter
is considered the most effective parameter (Benz et al., 2004;
Kavzoglu and Yildiz, 2014) and is used to control the average
image object size in relation to the whole scene, the higher the
value, the larger the objects will be. Scale parameters, shape, and
compactness thresholds were set for each model individually,
following a trial-and-error approach.

After the segmentation, each model was manually classified by
an expert. The simplified process is defined in the workflow in
Supplementary Figure 3.

Ground Truthing
To assess classification performance, dense cloud datasets were
manually annotated. These points were then compared to
the classification outputs from the MGC and CGC methods.
Classification accuracy was calculated in Python with the ML
library Scikit-learn (Pedregosa et al., 2011).

The accuracy score was calculated by summing the true
positives and true negatives of all classes and dividing by the
total number of annotated points (true positives, false positives,
true negatives, and false negatives). The balanced accuracy was
calculated as the arithmetic mean of sensitivity (true positive rate)
and specificity (true negative rate) of each class. These metrics
were chosen because they take into account the class imbalance,
i.e., classes do not have the same number of samples, which
is typical of seabed imagery datasets. Failure to do so would
accidentally inflate the performance of classifiers (Akbani et al.,
2004; Brodersen et al., 2010).

RESULTS

3D Reconstructions
A total of eight 3D reconstructions were produced using 3681
images. Dense clouds were composed of a total of 165,356,594
points. The average reconstruction length was 19.73 m and
depths ranged from 595 to 1001 m, with average depth of
732.57 m. Mean total error (i.e., root-mean-square error for
X, Y, and Z coordinates for all the cameras) was 13.015.
Continuous video acquisition along the ROV transects was
not regularly possible because of variations in ROV height
and speed. High current speeds at the PBC and the presence
of particles in suspension in water column (marine snow)
also impacted the ROV video transect and consequently the
video quality in some areas. Low-quality data were rejected
prior to reconstruction. Despite the presence of a few gaps in
the surface, the reconstructions showed medium scale features
(>10 cm) such as coral branches, coral rubble, and some
benthic species with distinction. However, fine scale features
(<5 cm) such as individual coral polyps and encrusted algae were
not easily visible.

Coral and Seabed Distribution in the Porcupine
Bank Canyon
The dense clouds were manually annotated by an expert
and segmented into classes: coral and seabed. The percentage
distribution of the coral and seabed samples from the annotated
test set showed an average of 7.19% coral and 92.81% seabed.
Models A, B, and C, located on the upper part of the PBC, showed
higher percentages of coral (>10%) and sediment-dominated
facies with dropstones (Figure 3). Models D, E, and F, located
on the canyon flank ridge, showed lower percentages of coral
(<5%), predominance of bedrock with occasional sediment-
dominated facies in areas proximal to the eastern side of the flank
(Model F; Figure 3).

Multiscale Geometrical
Classification (MGC)
A total of 11 SVM classifiers were built based on different
combinations of annotated samples from the training dataset
(Part 1 of Supplementary Figure 1). Overall classifier training
results had an average ba of 89.85%, and fdr ratio of 4.27.
Classifier 6 presented the best ba and fdr with values of 99.8
and 8.98%, respectively (Figure 4). The training was performed
with 20,000 core points and 10 scales with a minimum of 0.1,
maximum of 1, and step of 0.2. Classifiers trained with classes
from two different source clouds hence, different environments,
presented higher ba and fdr ratios than classifiers trained with
one single cloud source.

The classifier that presented the best performance (classifier
6 on Figure 4) was applied to the testing dataset (see Part
2 of Supplementary Figure 1). As this classifier was trained
with two different source clouds, these were excluded from the
test set, which was composed of the remainder of the dataset,
i.e., six manually annotated dense clouds. Average accuracy and
balanced accuracy scores were 68.2 and 74.7%, respectively. Two
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FIGURE 3 | Map showing the location of the Porcupine Bank Canyon on the Irish continental shelf and the location of each SfM reconstructed dense cloud
produced in this study and its respective class distribution with manual annotation. Blue represents seabed and orange represents coral.

FIGURE 4 | Classifier accuracy in relation to the number of scales. The classifier ID is placed on the top of each bar. In the MGC method, scale is defined as the
neighbourhood size of pixels to which the classifiers compute each metrics.
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models presented accuracy scores above 80% and two models
above 60% (Figure 5). Models which presented an accuracy
score above 80% shared a similar coral distribution pattern.
This pattern is represented by the vertical elongation of the
coral branches through the Z-axis, i.e., height information, which
can be accurately determined using 3D information (Figure 6-
Model F).

Colour and Geometrical Classification
(CGC)
The average classification accuracy score using the colour and
geometrical classification method was approximately 67.9% with
an average balanced accuracy of 58.1%. The classification output
resulting from this method is shown in Figure 7. From the six
models analysed on our testing dataset, two models presented
accuracy scores below 60%. The remainder presented accuracy
scores above 70%, ranging from 75 to 95% (Figure 8).

Object-Based Image Classification
(OBIA)
The OBIA method was performed on the orthomosaics,
respective DEMs, and calculated slopes of the same dataset. The

average classification accuracy was approximately 100%. This
result is to be expected because all orthomosaics were manually
classified (Figure 9) and an adequate manual classification, when
repeated by an expert, is expected to have the same outcome.

DISCUSSION

This study compares classification methods of 3D point
clouds and 2D images. The workflow involved annotation of
datasets, training of classifiers (MGC method), evaluation of
the classification output, and the analysis of 3D and 2D-
derived information from CWC environments. Studies have
shown that overall accuracy is widely used for both OBIA
and pixel-based classification accuracy assessments (Ye et al.,
2018). Recent developments in accuracy assessment techniques
have indicated redundancies in metrics such as standard Kappa
indices (Foody, 1992; Pontius and Millones, 2011; Ye et al.,
2018; Verma et al., 2020). The use of a Kappa score (Cohen,
1960) as a metric compares the observed accuracy to random
accuracy; therefore, it is considered questionable to create a
classification map (Foody, 2008; Pontius and Millones, 2011).
Although there is substantial discussion on the appropriate

FIGURE 5 | Confusion matrices representing the MGC classification results for each dense cloud reconstruction. Confusion matrices show the accuracy score and
the relationship between the referenced data and the classification. The “Actual class” on the y-axis refers to the manually annotated data, whereas the “Predicted
class” on the x-axis relates to the classification output. The main diagonal of the matrices lists the correctly classified percentage of points per class. The colour scale
bar on the right of each confusion matrix represents the number of points.
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FIGURE 6 | Model F – Results of classification using the MGC method – (A) Dense cloud (B) Classification output. Model with predominance of black corals
(Leiopathes sp.) Red is seabed and blue is coral. Model A – Results of classification using the MGC method – (A) Dense cloud (B) Classification output. Model with
predominance of coral rubble patterns. Red is seabed and blue is coral.

metrics for image classification (Congalton, 1991; Banko, 1998;
Foody, 2008; Ye et al., 2018), the confusion matrices presented
here are a neutral representation of the true positives and true
negatives of the classification.

The class distribution of the test data showed more abundance
of corals on areas located on the eastern canyon flank.
Reconstructions from sites located proximal to the canyon
axis, towards the west, presented fewer coral features than
sites located on the eastern canyon flank, as also described in
previous studies (Appah et al., 2020; Lim et al., 2020). Appah
et al. (2020) show that benthic taxa mean percentage coverage
is twice as high in the flank as in adjacent areas, such as
north towards the canyon head and the southern part of the
canyon. Lim et al. (2020) provide a high-resolution habitat
suitability correlation with current speeds, photogrammetry,
and coral distribution in the PBC, showing that the variation
in coral habitats does not follow a specific pattern, for
example, from south to north. This result was also observed
in reconstructions from areas located proximal to the canyon
flank ridge (models D, E, and F), where the percentage of coral
did not present any major increase or decrease following the
north–south trend.

Classification Results
The ba and fdr ratios obtained for method MGC indicate that
classifiers were influenced by the diversity of point sources
used during the training process. Classifiers that were trained
with two different dense clouds showed higher ba and fdr than
classifiers trained with a single dense cloud. This suggests that
training data with different datasets including those with habitat

variability, e.g., different ratios of coral, seabed, and seabed
facies, have a positive impact on the classifier performance,
as also seen by Mountrakis et al. (2011), Brodu and Lague
(2012), and Weidner et al. (2019) in terrestrial data studies.
Interestingly, classifier accuracy results (ba and fdr ratios) showed
that increasing the number of scales did not directly impact the
quality of the classifier, as increasing the scale past a certain
number did not necessarily lead to an increase in accuracy
(see Figure 4). Thus, incorporating a great number of scales
to build a classifier aiming to address a variety of seabed
features in the classification computation did not show an
improvement on the classifier performance and it can increase
the computational complexity required to train the classifier.
The process of incorporating multiple scales to acquire the best
combination of scales thereby allowing the maximum separability
between two classes is constructed automatically and as such,
it can tend to overfit. SVM model overfitting can happen
by maximising the margin and minimising the training error,
which is typical of not only SVMs but also general kernel-based
functions (Mountrakis et al., 2011).

Dense clouds that shared a similar coral distribution pattern,
such as individual coral colonies with high vertical elongation and
low presence of coral rubble as shown in Model F (Figure 6),
had high accuracy scores (>80%). In contrast, models with lower
accuracy results (<60%) (Figure 6-Model A) originated from
areas with less defined feature boundaries such as coral rubble.

The colour and geometrical classification algorithm applied
in the CGC method did not show any definite patterns
concerning the structural complexity of the environment.
Even though the classification outputs showed that coral
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FIGURE 7 | Results of classification using CGC method—(A) Dense cloud and (B) classification output with CGC method.

colonies and patches tended to be misclassified in non-
flat areas, the classifier resulted in different behaviours
when applied to dense-cloud reconstructions of similar
environments (Figure 7). In previous studies, the algorithm
performed well for the detection of buildings and roads,
but it misclassified vegetation and ground, especially in
datasets containing hills and non-flat surfaces (Becker et al.,
2018) meaning that terrain variations could have influenced
object detection. Performance results showed that, although
accuracy scores were >60% for the majority of the models,
the visual assessment of the predicted output was not
in accordance with the high values, as the classification
results did not reflect the real objects clearly. Therefore, this
result suggests that the high accuracy score may have been
derived from the class imbalance in the test dataset, given
that the seabed is more dominant than the coral class. Thus,
the balanced accuracy provided a better representation of
the overall performance. These results may also reflect the
similarity of RGB spectral signatures as previously mentioned
here and discussed in Lichti (2005), Beijbom et al. (2012),
and Hopkinson et al. (2020). It is also possible that the
performance of the CGC classifier may improve if there
was an intermediary step that allowed training with seafloor
and coral data within Agisoft Metashape. Nevertheless, the
minimal user input required for this method, since pre-training
is not necessary, makes it suitable for fast identification of
seabed distribution.

In relation to the OBIA method, the automated segmentation
performed better in small-scale orthomosaics (<4 m) where
corals and rubble were easily distinguishable. In large-scale
models (>8 m), the segmentation tended to under or over-
segment, resulting in a poor differentiation in coral and seabed
classes, specifically between coral patches and coral rubble
(Figure 9). A benefit of utilising object-based techniques applied
to classification tasks is the automatic segmentation process,
which in the workflow shown herein (Supplementary Figure 3)
can be faster and more accurate than manual segmentation
for annotation of datasets. However, although orthomosaics
and DEMs provide height information that is useful for larger
scale models, they can be limiting for high-resolution analyses.
Conversely, 3D metrics derived from vector dispersion and
triangulation in dense clouds provide more detailed information
for characterising individual coral colonies and benthic species
(Fukunaga and Burns, 2020). Thus, the use of 2D metrics for
detailed habitat analysis can lead to lack of discernment when
detecting seabed features, e.g., coral branches, coral rubble, and
sand ripples as also noted by Hopkinson et al. (2020).

Comparison Within 3D Classifications
Accuracy results (Table 1) suggest that models behaved
similarly when 3D methods are used (MGC and CGC).
Models that obtained an accuracy score of >60% with the
MGC method also obtained a comparable result for the CGC
method. Occasionally, MGC tended to ignore coral, while

Frontiers in Marine Science | www.frontiersin.org 11 March 2021 | Volume 8 | Article 640713

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-640713 March 16, 2021 Time: 16:34 # 12

de Oliveira et al. 3D Classification of Cold-Water Coral Reefs

FIGURE 8 | Confusion matrices representing the CGC classification results for each dense cloud reconstruction. The “Actual class” on the y-axis refers to the
manually annotated data, whereas the “Predicted class” on the x-axis relates to the classification output. The main diagonal of the matrices lists the correctly
classified percentage of points per class. The colour scale bar on the right of each confusion matrix represents the number of points.

CGC tended to overclassify such objects. Both CGC and MGC
appeared to be susceptible to object occlusion and canopy
effects created by objects. This occlusion was recognised by
a classification pattern occurring not only on the object itself
(e.g., coral) but also on the shade it created, producing an
elongated pattern behind the object consistent with its shadow
(Figures 6, 7).

In support of this observation, challenges related to the
partial occlusion of objects and lighting artefacts have been
addressed in other studies (Singh et al., 2004; Gracias and

TABLE 1 | Accuracy metrics for Method 1–Multiscale Geometrical Classification
(MGC), Method 2–Colour and Geometrical Classification (CGC), and Method
3–Object-based Image Classification (OBIA).

Accuracy/method MGC CGC OBIA

Balanced accuracy 0.74 0.66 1

Accuracy score 0.68 0.56 1

The values represent the average from the results on the testing set.

Negahdaripour, 2005). Lighting artefacts such as light scattering,
colour shifts, and blurring related to the data acquisition
can be considered a bottleneck which impacts the overall
model resolution and hence the classification output (Bryson
et al., 2015, 2016, 2017). This difficulty can be addressed
with the use of image enhancement methods, e.g., texture
delighting and colour filtering that can diminish object occlusion
artefacts (Bryson et al., 2015). In the overall outputs, the
canopy effect pattern was more evident in the CGC method.
Furthermore, dense cloud models with a low RGB variability
hence, similar RGB values for coral and seabed, resulted in
slightly different classification outputs with the CGC method
not being able to recognise seabed as compared to the
method MGC. As previously mentioned, the classifier in the
CGC method also seemed to take into consideration terrain
surface variations. Conversely, the geometrical approach and
the resistance to shadow effects of the MGC provided a degree
of variability and heterogeneity in the class characteristics. As
such, MGC appears more suitable for the classification of CWC
because (a) it addressed coral colonies and coral patches more
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FIGURE 9 | Results of classification using OBIA method—(A) Orthomosaic, (B) output of the multi-resolution automated segmentation, and (C) manual classification.

accurately, (b) it was able to identify seabed coverage in all
3D reconstructions, and (c) it can be reapplied to classify
similar coral reef environments. As a preliminary study, the
results showed herein provide important insights towards the
advancement on the venue of 3D classification as an accessible
and informative approach.

Cost and Data-Loss Related to
Representing 3D Objects as 2D
With the exception of the CGC method, all methods required
similar amounts of data processing, which was mainly allocated
to segmentation, labelling, and parameter-tuning, e.g., manual
segmentation and labelling in MGC and manual classification
in the OBIA method. Even though visual classification output
did not fully delineate areas where coral rubble and gradational
boundaries were present, the CGC method provided more
accurate results when applied to models where objects have
well-defined boundaries and sharp edges such as man-made
objects (Becker et al., 2018). Conversely, the MGC method is
more appropriate for complex scenes with high environmental
variability (Brodu and Lague, 2012). One important aspect that
should be considered in the MGC application is the amount of
training data required to train the classifier. As for most of the
classification methods, training data size and availability should
be evaluated prior to choosing the methodology to be followed
as it directly impacts the performance of the classifier (Lu and
Weng, 2007; Maxwell et al., 2018; Zurowietz et al., 2018).

Similarly, the abundance of coral rubble and octocorals
must be considered when choosing the classification method as
they are subject to underwater colour and intensity distortions
(Beijbom et al., 2012; Bryson et al., 2013). Such features
present similar values within the intensity range and tend to
exhibit wave-length attenuation when reconstructed (Bryson

et al., 2013). Attention is drawn to coral rubble features
as they present undefined boundary features which hinders
their detection. Previous studies have also highlighted the
difficulties of automatically classifying coral rubble in images
(Beijbom et al., 2012) and 3D models (Hopkinson et al., 2020).
Coral rubble occurs due to the coral exposure for extensive
periods which lead to abrasion and bioerosion of coral framework
(Titschack et al., 2015). High proportions of coral rubble may
be indicative of high current speeds in the area (Lim et al.,
2020). In contrast, the segmentation utilised in the OBIA method
successfully distinguished coral rubble from sediment. This
observation agrees with previous studies that have shown that
orthomosaics can be useful for high-resolution habitat mapping
of large areas (Lim et al., 2017; Conti et al., 2019). Although
coral rubble was not included as a class on our framework, this
observation can be useful for future studies.

Representing 3D objects in a 2D space may potentially
lead to data bias due to misrepresentation of the object
in the feature space and the use of metrics that disregard

TABLE 2 | Percentage of class distribution results from the manual annotation for
each habitat and each class in 2D and 3D.

3D dense cloud OBIA

Coral Seabed Coral Seabed

Model A 10.8% 89.2% 9.3% 90.7%

Model B 10.0% 90.0% 6.9% 93.1%

Model C 12.8% 87.2% 8.4% 91.6%

Model D 2.1% 97.9% 5.5% 94.5%

Model E 2.2% 97.8% 4.5% 95.5%

Model F 5.3% 94.7% 7.7% 92.3%

Average 7.2% 92.8% 7.1% 92.9%
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its multidimensionality factors. In this study, two manual
annotation schemes were used to provide a baseline and ground-
truth for accuracy calculation. Annotations were performed by
an expert in dense-clouds (3D) and orthomosaics for each 3D
reconstruction. Table 2 shows the percentage distribution of
classes of each model in each manual annotation schemes: 3D
dense cloud annotation and OBIA manual classification.

Class distribution results for each method (Table 2) show that
there is a higher distribution of coral class within the 3D dense-
cloud annotation in comparison to the OBIA method in 50% of
the models. When such variation happens, there is a difference
of up to 4.45% in the percentage of coral with a mean of 3.02%.
Conversely, in models where the distribution of coral class is
higher in the OBIA methods, the difference is only up to 3.39%,
with a mean of 2.75%.

The average class distribution for the 3D dense cloud was
7.2% coral and 92.8% seabed as opposed to 7.1% coral and
92.9% seabed in the OBIA method. The average of the difference
between class distributions was 0.2%. These results show that
there is potentially an impact of at least a magnitude order of
a tenth of the value in using 2D methods to represent objects
that are naturally 3D structures. Although these values may not
appear significant in the overall scheme, they have the potential
to impact studies whose aims are derived from habitat mapping at
a sub-centimetre resolution and a more significant impact when
applied over large areas.

Scleractinian corals are naturally vertical-orientated features
that, when mapped using 2D metrics, may give a small
contribution in the percentage coverage. The 3D branching
framework of CWC can increase sediment baffling with reefs
or around colonies by offering a resistance to currents, for
example (Mienis et al., 2019; Lim et al., 2020). However,
the vertical structure of corals would be taken into account
in overall biomass estimates if mapped in 3D. Furthermore,
calculation of biomass considering all aspects of the environment
is extremely relevant to understanding coral reef metabolism
and overall environmental dynamics (McKinnon et al., 2011;
Burns et al., 2015a, 2019; Price et al., 2019; Hopkinson et al.,
2020). In comparison to 2D metrics, the use of multiscale
dimensionality features that describe the local geometry of each
point in relation to the entire scene makes 3D classification
more suitable for the analysis of real complex scenarios at
higher resolutions. Thus, advancing from commonly employed
2D image analysis techniques to 3D methods could provide
more realistic representations of coral reefs and submarine
environments (Fisher et al., 2007; Anelli et al., 2019).

Main Advantages and Disadvantages of
the 3D Workflows Identified Within
This Study
Three-dimensional reconstructions provide rich, non-destructive
ecological and structural habitat information (Burns et al., 2015b;
Figueira et al., 2015; Pizarro et al., 2017; Price et al., 2019),
serving as a valuable tool for monitoring growth rates and
assessing impacts of environmental disturbances (Bennecke et al.,
2016; Marre et al., 2019). The use of SfM can also increase

versatility and repeatability of reef surveys (Storlazzi et al., 2016;
Bayley et al., 2019; Lim et al., 2020) as it can provide accurate
quantifications for habitat coverage as well as coral orientation
analyses (Lim et al., 2020). The 3D reconstructions produced in
this study can complement recent studies (e.g., Appah et al., 2020;
Lim et al., 2020) by providing an object of comparison for spatio-
temporal changes in the PBC. The workflows applied herein
yield the identification and quantification of CWC distribution
at high resolutions.

In contrast, monitoring seabed habitats through 3D
reconstruction require centimetric to milimetric resolutions
and corresponding accuracies (Marre et al., 2019). High-
resolution 3D models require significant data resources (storage
and processing power) (Bayley and Mogg, 2020; Hopkinson
et al., 2020; Mohamed et al., 2020). Therefore, it is important
to highlight the constraints associated with manipulating 3D
data. In many cases, it is necessary to develop sub-sampling
processes to analyse large batches of data without compromising
data resolution. The computer resources and methods available
to manipulate and analyse 3D data from marine environments
at larger scales could be further improved (Bryson et al., 2017;
Robert et al., 2017). The 3D-based workflows described herein
demonstrate that most off-the-shelf algorithms need to be
adapted for seabed classification and mapping.

The use of SfM for seabed mapping requires consideration of
a number of variables to determine the feasibility and accuracy
of each study (Burns et al., 2015a; Bayley and Mogg, 2020).
For example, environmental conditions such as visibility, swell
variations, changes in camera altitude, and ROV speed can
impact the survey design, hence, the video quality (Mohamed
et al., 2018; Anelli et al., 2019; Marre et al., 2019). Factors
related to HD video acquisition and processing such as camera
position, lens, light attenuation, calibration, image overlap, and
software options can affect the results of 3D reconstructions
(Marre et al., 2019; Rossi et al., 2020). Furthermore, high-
resolution reconstruction of models can take up to 12 h of
processing and a considerable amount of HD video footage
(Robert et al., 2017). A regular laptop computer may face
limitations to process the resulting models, which can be over
10 GB in size (Robert et al., 2017).

CONCLUSION

Cold-water corals significantly contribute to deep-sea
biodiversity due to their 3D structure and reef-building capacity.
Submarine canyons act as conduits for sediments, nutrients,
and organic matter supporting high biomass communities
(Nittrouer and Wright, 1994; Puig and Palanques, 1998; Harris
and Whiteway, 2011). There is an increasing demand for new
methods able to efficiently capture fine-scale changes in these
environments. SfM can contribute to more precise structural
analysis of CWC habitats while also providing grounds for
temporal and volumetric change detection in CWC reefs.
This study describes three classification methods applied to
CWC reefs within the PBC SAC in the North East Atlantic.
The workflows described provide an original and not yet
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applied methodology for the classification of 3D reconstructed
marine environments at the PBC. The dataset consisted of
3D reconstructed point clouds, respective orthomosaics, DEMs,
and associated terrain variables of CWC environments. The
classification workflows designed for 3D point clouds showed a
similar accuracy, even though visual results had different outputs
and had a different level of robustness. The balanced accuracy and
accuracy scores averaged 67.2% for the 3D methods. The study
defines methodologies that are compatible with off-the-shelf
commercial software with high-resolution data. Furthermore, the
execution of the methods was fast and appeared suitable for
the wider deep-sea research community who have access to the
SfM point cloud data. Executing more complex frameworks is
possible at the expense of computation power and time resources.
Future research should involve the application of unsupervised
learning with use of geometrical features and application of other
ML algorithms for supervised learning. The use of more robust
classification methods and higher resolution 3D reconstructions
will aid the inclusion of more classes, especially of objects with
irregular contour boundaries.
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