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NASA NeMO-Net, The Neural Multimodal Observation and Training Network for global
coral reef assessment, is a convolutional neural network (CNN) that generates benthic
habitat maps of coral reefs and other shallow marine ecosystems. To segment and
classify imagery accurately, CNNs require curated training datasets of considerable
volume and accuracy. Here, we present a citizen science approach to create these
training datasets through a novel 3D classification game for mobile and desktop devices.
Leveraging citizen science, the NeMO-Net video game generates high-resolution 3D
benthic habitat labels at the subcentimeter to meter scales. The video game trains
users to accurately identify benthic categories and semantically segment 3D scenes
captured using NASA airborne fluid lensing, the first remote sensing technology capable
of mitigating ocean wave distortions, as well as in situ 3D photogrammetry and 2D
satellite remote sensing. An active learning framework is used in the game to allow
users to rate and edit other user classifications, dynamically improving segmentation
accuracy. Refined and aggregated data labels from the game are used to train NeMO-
Net’s supercomputer-based CNN to autonomously map shallow marine systems and
augment satellite habitat mapping accuracy in these regions. We share the NeMO-
Net game approach to user training and retention, outline the 3D labeling technique
developed to accurately label complex coral reef imagery, and present preliminary results
from over 70,000 user classifications. To overcome the inherent variability of citizen
science, we analyze criteria and metrics for evaluating and filtering user data. Finally,
we examine how future citizen science and machine learning approaches might benefit
from label training in 3D space using an active learning framework. Within 7 months of
launch, NeMO-Net has reached over 300 million people globally and directly engaged
communities in coral reef mapping and conservation through ongoing scientific field
campaigns, uninhibited by geography, language, or physical ability. As more user data
are fed into NeMO-Net’s CNN, it will produce the first shallow-marine habitat mapping
products trained on 3D subcm-scale label data and merged with m-scale satellite data
that could be applied globally when data sets are available.

Keywords: coral reefs, remote sensing, machine learning, citizen science, fluid lensing, video game, active
learning, 3D classification
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INTRODUCTION

Marine ecosystems are in the midst of a conservation crisis.
Coral reefs, in particular, are facing degradation from climate
change, disease, and other stressors faster than they are able to
regenerate (Hughes, 1994; Bellwood et al., 2004). In an effort to
better understand these ecosystems and coordinate an effective
response to this crisis, projects such as the Khaled bin Sultan
Living Oceans Foundation, under the auspices of their Global
Reef Expedition (Purkis et al., 2019), the Allen Coral Atlas
(Allen Coral Atlas, 2020; Lyons et al., 2020), the Millennium
Coral Reef Mapping Project (Andréfouët et al., 2004), and
NASA’s COral Reef Airborne Laboratory mission (Hochberg and
Gierach, 2020) have imaged large portions of the world’s coral
reefs using satellite/airborne sensors and in situ photogrammetry.
Additionally, instruments such as NASA’s FluidCam, fluid lensing
technology, and MiDAR provide a means to eliminate refractive
ocean wave distortion (Chirayath and Earle, 2016; Purkis, 2018;
Chirayath, 2019; Tavares, 2020), enabling airborne campaigns to
generate sub-centimeter, 3D photogrammetry of shallow marine
ecosystems over regional scales (Silver, 2019).

The combination of these multimodal datasets presents
researchers with a sizeable quantity of data to analyze,
but to extract scientific value from these datasets requires
a methodology for creating reliable geomorphological and
biological labels (Roelfsema et al., 2021). Given the large
amounts of spatial and temporal data available, there is a
compelling motivation to automate coral reef classification
and semantic segmentation using machine learning methods,
such as convolutional neural networks (CNNs) (Beijbom et al.,
2015). Utilizing CNNs for the purpose of marine mapping has
shown encouraging results (King et al., 2018; Akbari et al.,
2020), but systems that exhibit a high degree of taxonomic
and geomorphological diversity, such as coral reefs, still require
training sets of considerable size for a CNN to segment
and classify imagery accurately (Jansen and Zhang, 2007;
Chirayath and Instrella, 2019).

Generating training datasets for machine learning algorithms
presents four significant challenges for researchers: acquiring
users willing to dedicate their time to labeling the dataset,
ensuring that those users have the domain-specific knowledge
required to label accurately, building a toolset that enables swift
and easy labeling of the dataset, and building metrics that can
evaluate and filter user label data. Projects such as Disk Detective,
Galaxy Zoo, Old Weather, Snapshot Serengeti, and FoldIt have
overcome these challenges using citizen science (Lintott et al.,
2008; Greennhill et al., 2014; Swanson et al., 2015; Kuchner
et al., 2016; Kleffner et al., 2017). In the field of coral reef
classification, programs such as CoralNet and the Coral Point
Count with Excel extensions provide users with an interface to
overlay a random point cloud on 2D images and identify the
species/substrate underneath each point (Kohler and Gill, 2006;
Lozada-Misa et al., 2017).

These programs possess the advantage of being immediately
accessible and understandable by a broad audience, but are
currently limited to the classification of 2D image data. Using
planar views of coral reef systems to label solely in a 2D

space, while expedient, can cause a bias in sampling by
obscuring the habitats underneath (Goatley and Bellwood, 2011).
Additionally, coral colonies’ physical characteristics, such as their
topographic structure and vertical assemblages, play a crucial
role in accurate classification (Burns et al., 2015). The National
Oceanic and Atmospheric Administration (NOAA) collects 3D
data via photogrammetry as a method of characterizing coral
demography, benthic community structure, and habitat structure
(Suka et al., 2019).

NASA NeMO-Net, the Neural Multimodal Observation and
Training Network for global coral reef assessment, is a CNN
designed to generate benthic habitat classification maps for
shallow marine ecosystems from 2D and 3D imagery at a global
scale (Li et al., 2020). A core component of NeMO-Net is a
video game application and tool for mobile and desktop devices
which leverages the power of citizen science and active learning to
generate accurate, high-resolution player classification datasets to
train NeMO-Net’s CNN. This paper refers to the player-generated
label data used to train the NeMO-Net CNN as classifications.
These player classifications are used purely to train the CNN and
are not used directly in any final data products. For a description
of how the NeMO-Net CNN uses training data to generate
benthic habitat maps, see Li et al. (2020).

Here, we focus on the NeMO-Net video game (Figure 1) and
address how this component approaches the challenges and risks
involved with generating training datasets for NeMO-Net’s CNN.
The “3D Painting Background” section highlights the challenges
of developing a 3D painting algorithm and reviews existing
3D segmentation and 3D painting algorithms. The “Materials
and Methods” section provides an overview of the NeMO-Net
video game application, how the video game trains users and
integrates active learning, the algorithms behind NeMO-Net’s
3D classification tool, and the data evaluation metrics used to
filter user data. The “Results” section describes and analyzes
the results of the project, while the “Discussion” section details
how the user data are interpreted using the predefined metrics.
Finally, the “Conclusions and Future Work” section closes with
a discussion of potential applications to citizen science more
broadly and future work.

3D PAINTING BACKGROUND

NeMO-Net uses 3D painting as a method of classification, but
3D painting algorithms present unique challenges compared to
2D painting algorithms. In a standard rendering pipeline, most
3D objects are represented as a set of 3D points connected via a
set of triangles (Akenin-Möller et al., 2018). For example, a cube
is represented by eight points and twelve triangles, two triangles
on each face of the cube. The 3D object’s color is represented by a
2D texture and a mapping that defines how that texture is applied.
Figure 2A illustrates the process of transforming data points and
textures into colored renderings. It consists of a 2D texture on the
left, a 3D mesh on the right, and an illustration of how the texture
maps onto the mesh. The 2D pixels of a texture image file are in
texture space, while the mesh’s 3D points are in mesh space. For
example, in Figure 2A, the ‘2’ is above the ‘5’ in texture space, but
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FIGURE 1 | NeMO-Net video game homescreen, and the deck of the ‘Nautilus,’ a research vessel from which citizen scientists can travel the ocean exploring and
labeling the coral reefs. As players explore the seafloor, the Nautilus upgrades with new features and capabilities.

the ‘2’ is behind the ‘5’ in mesh space. When a mesh renders to
the screen, and orthographic or perspective projection is applied,
the pixels of the rendering are in screen space. For example, the

FIGURE 2 | Rendering pipeline techniques. (A) The mapping from 2D texture
space to 3D mesh space via a predefined mapping. (B) A naïve, left, and
correct, right, implementation of a 3D painting algorithm. This figure illustrates
how a straight line in 2D texture space does not result in a straight line in 3D
mesh space, making the development of a 3D painting and labeling tool
non-trivial. Each square on the cube is given a color and number to highlight
how the forms turn in 3D space.

texture has many green pixels in texture space, but there are no
green pixels when the cube renders to screen space.

Because the mapping from 2D texture space to 3D mesh space
is non-trivial, developing a 3D painting system has a much higher
algorithmic complexity than a 2D painting system. If a user views
a cube that has been rendered to their screen and attempts to
paint a straight line on the cube from point A to point B, a 3D
painting algorithm must determine which pixels need to change
in texture space to render that line in screen space. Figure 2B
illustrates two separate attempts to draw a straight red line in
screen space. The naïve implementation on the figure’s left shows
how a straight line in texture space might not appear as a straight
line in screen space once the mesh renders to the screen. To draw
a straight line in screen space accurately, a painting algorithm
must edit the texture as in the desired implementation on the
figure’s right. Converting screen space coordinates selected via a
drawing interface to texture space coordinates to be painted by a
program presents a difficult challenge.

One early attempt to solve this problem involves rendering
the 3D mesh with a special texture generated by encoding
each texture coordinate into a unique RGB color (Hanrahan
and Haeberli, 1990). By picking a screen coordinate from this
render and decoding the color, the painting system can identify
which texture coordinate is visible at that screen coordinate.
A limitation of this approach is that it only paints pixels visible to
the screen, resulting in paint strokes that look contiguous when
applied, but that reveal holes when zooming in.

Carr and Hart detail an algorithm that renders a temporary
mesh that uses the original object’s texture coordinates as its mesh
space coordinates, the original object’s screen space coordinates
as its texture coordinates, and the user’s screen space stroke as
its texture (Carr and Hart, 2004). This results in a render that
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converts the user’s screen space stroke to texture space. This
approach is compelling, as it makes use of the GPU (graphical
processing unit) for parallelized processing and rapid results.
NeMO-Net implements a similar approach, utilizing compute
shaders to avoid the additional render step.

MATERIALS AND METHODS

Data Sources
NeMO-Net leverages multispectral 2D and 3D datasets from
in situ photogrammetry captured by divers or snorkelers at the
cm-scale (3D RGB images), airborne fluid lensing at the cm-scale
(2D and 3D RGB images), and commercial and governmental
satellites sources at the m-decameter scale (2D eight visible-
band multispectral images). The in situ photogrammetry imagery
is captured using the standard operating procedures outlined
by the NOAA Ecosystem Sciences Division (Suka et al., 2019).
Airborne datasets are captured using FluidCam, a nadir-pointing,
high-frame-rate, multispectral sensor that uses fluid lensing to
render 2D and 3D benthic images without fluid distortion,
as described in Chirayath (2016); Chirayath and Earle (2016),
and Chirayath and Li (2019). The airborne campaign sites
overlap in situ photogrammetry sites and satellite remote sensing
datasets, allowing for the validation and fusion of datasets across
multiple spatial resolutions.

The in situ photogrammetry, airborne fluid lensing, and
satellite imagery are split into digestible chunks for player
classification in the NeMO-Net video game. The spatial scale
of these chunks varies depending on the species diversity
of the region, spatial resolution, and spectral complexity of
the dataset (with a range of 1–5 m square tiles at the cm
scale to 10–100 m square tiles at the m scale). The data
are cleaned and filtered using methods such as checking for
empty files and 3D data are smoothed and decimated. All
data sources used will be available at the NeMO-Net website1

upon project completion, estimated at the end of 2021, and
archived for future use.

Table 1 lists NeMO-Net’s classification hierarchy, where
the classes listed in the Zone and Biological Family columns
are pertinent to the coral reef scenes within the NeMO-Net
application. A pixel with the ‘No Class’ label indicates that a
player did not label that pixel. In contrast, a pixel with the
‘Unknown’ label indicates that a player intentionally categorized
that pixel as unknown. The NeMO-Net video game uses the
‘Zone’ column to label meter-to-decameter-scale 2D satellite
datasets with global coverage and the ‘Biological Family’ column
to label cm-scale in situ photogrammetry and airborne fluid
lensing imagery with regional coverage. Airborne fluid lensing
and in situ photogrammetry datasets are input into the game
at comparable resolution. However, each class label ties into
the same harmonized classification hierarchy, and the NeMO-
Net framework is designed to allow for the use of cm-scale
data to increase the classification accuracy of lower scale data
(Chirayath et al., 2020).

1http://nemonet.info

TABLE 1 | NeMO-Net classification hierarchy.

Zone (m-scale
2D imagery)

Biological cover
(m-scale 2D

imagery)

Biological
morphology
(m-scale 2D

imagery)

Biological family
(cm-scale 2D and

3D imagery)

Coral Live Coral Branching Coral Acroporidae

Seagrass Seagrass Massive Coral Agariciidae

Beach Algae Soft Coral Alcyoniidae

Breaking Wave Mangrove Seagrass Fungiidae

Clouds Invertebrate Macroalgae Gorgoniidae

Deep Water Bare Substratum Turf Algae Merulinidae

Terrestrial Unknown Mangrove Montastraeidae

Bare Substratum Invertebrate Mussidae

No Class Bare Substratum Plexauridae

Unknown Unknown Pocilloporidae

Poritidae

Siderastreidae

Seagrass

Brown Algae

Green Algae

Red Algae

Invertebrate

Bare Substratum

No Class

Unknown

Class labels for finer-scale datasets tie into class labels for larger-scale datasets,
grouped by color.

Video Game Overview and User
Workflow
The NeMO-Net video game uses the Unity3D engine, enabling
the game to port to multiple different platforms efficiently. The
game’s backend server uses the LAMP stack (Linux, Apache,
MySQL, PHP) to connect to coral data and classification results
stored on the Amazon AWS Simple Storage System. This server
architecture allows NeMO-Net to ingest new input data and
continuously sends user classifications through the NeMO-Net
Processing Pipeline illustrated in Figure 3. The NeMO-Net CNN
incorporates many components including, but not limited to,
machine transfer learning, domain adaptation, data fusion, and
super resolution (Chirayath and Li, 2019; Li et al., 2020). This
paper specifically focuses on the active learning video game
component of NeMO-Net.

In the game, players take on the role of a new NASA
researcher traveling the world to learn more about the world’s
coral reefs. When players begin the NeMO-Net game, they
create a unique account that tracks their progress across
multiple devices. Players must complete an in-game tutorial,
shown in Figures 3A,B, which teaches players how to navigate
and label inside a 3D space. There is no standard control
scheme for 3D painting interfaces on desktop and mobile, so
NeMO-Net introduces these controls with mini games such
as asking the players to find the NASA logo hidden in the
coral. The tutorial teaches players how to paint in 3D and
requires them to label a simplified coral reef scene with 90%
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FIGURE 3 | NeMO-Net video game overview. (A) In-game tutorial testing players’ 3D navigation skills. (B) In-game tutorial testing 3D painting skills, players must
pass an accuracy threshold to continue. The player in this figure is currently at 29% accuracy for this training example. (C) Review mode allows players to rate other
players’ classifications. (D) Classification mode allows players to create and edit classifications.

accuracy compared to our team’s classification before entering
the classification mode. To focus on players’ ability to label in
3D, players are only given the class labels ‘Coral’ and ‘Bare
Substratum.’

Upon completing the tutorial, players are sent to the game’s
main menu and given an initial rank. To increase their rank,
players must earn experience points by submitting classifications,
reviewing other players’ classifications, and completing daily
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quests. Videos of researchers in the field are used to encourage
users along the way. Each rank corresponds to a fish or animal
within the food web (clownfish, manta ray, whale shark, etc.),
and when players rank up, they rank up through the food
web as well. Fauna that players have unlocked populate the
underwater classification scene through 3D models that swim
around the painting environment. This system is designed to
keep players engaged and rewarded for assisting in environmental
conservation. There is also an educational component in that
players are given informative text content about each rank
as they unlock them. NeMO-Net’s main menu is a 3D boat
with several features, such as a set of scuba gear, a personal
computer, and a holographic coral system (Figure 1). Clicking
on these various features directs players to the many subsystems
within the game, including the classification painting mode,
a classification edit/review mode, a messaging system, a stats
page, an achievement viewer, a video player, an educational field
guide, a tutorial mode, and an options menu. The review and
classification modes are shown in Figures 3C,D, respectively.

When players enter the classification mode, they first select
the area and type of data they would like to label. The game
allows players to label both 3D and 2D data collected from
fieldwork and satellites. Once the player selects a region and
datatype they would like to work with, they enter an underwater
scene where they can view coral from that region in a 3D

space. The game also allows players to view 3D coral using
their mobile device’s camera via augmented reality. When players
are new to the classification mode, NeMO-Net presents them
with aquatic regions that have low complexity and only a few
possible class labels. As players continue to label, the game
teaches them how to identify the different class labels and
gradually gives them access to more diverse and difficult-to-
label regions.

The game teaches players through an in-game field guide,
which provides detailed descriptions, photographs, and 3D
models of each classification label. This interactive training tool,
shown in Figure 4, utilizes carefully crafted language to target
a diverse age group while remaining accurate and educational.
Players can access this field guide at any time from the main
menu or during classification and review by holding down on
the class label’s icon. Additionally, the game periodically presents
players with educational videos about coral reef systems and the
organisms that live within them.

When a player opts to submit their classification map, it gets
sent to the NeMO-Net servers for further processing. Multiple
players are able to label each coral reef scene. By integrating
a weighted distribution across multiple players, the NeMO-Net
CNN filters out incorrect classifications and uses the popular
consensus for what the correct classification should be (Li et al.,
2020). If no popular consensus emerges, the NeMO-Net app

FIGURE 4 | NeMO-Net 3D field guide. At any time, players may access the field guide for instructional content on how to label correctly. Each class label contains
real-world 3D images, 2D images, and detailed text describing each of the 26 class labels. Class labels are gradually introduced to players in an interactive format.
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continues to ask players to label the scene in question and invites
experts to label the sections of particularly high variance.

In addition to gathering multiple classifications for each coral
reef scene, the NeMO-Net game has a few built-in mechanisms
to prevent incorrect label data from entering the neural network.
The first is a review mode where players can rate other players’
classifications as positive or negative. In review mode, players
may use another player’s classification as a starting point for their
own. This feature allows players to build upon and improve other
players’ contributions, generating more accurate classifications at
greater speeds. The ratings generated from review mode enable
the game to assign a confidence rating to each classification.
The game also assigns each player a confidence rating and uses
the review mode to score classification trustworthiness on a
per-player level.

3D Painting Algorithm
Players in NeMO-Net label 3D images of coral reefs by painting
on them with various colors, each corresponding to a different
class label (Table 1). The NeMO-Net 3D painting algorithm
utilizes the existing mapping from texture space to screen space
created by the GPU (graphics processing unit) when rendering
the 3D scene. The painting algorithm starts by assigning each
triangle in the mesh to a different thread in the GPU so that
the algorithm can process in parallel. Unity3D’s implementation
of compute shaders is used for this task. For every triangle, the
algorithm calculates the screen space position of that triangle’s
texture pixels (gray pixels in Figure 5A). For each of the texture
pixels, if their screen space position is within the shape the player
is attempting to draw, the pixel is colored in (yellow pixels in
Figure 5A).

Figure 5B illustrates the challenge of occlusion, where an
intuitive painting algorithm should only allow users to paint
pixels which are visible to them. The NeMO-Net painting
algorithm solves for occlusion by accessing the depth buffer
created as a byproduct of Unity’s rendering pipeline. The depth
buffer allows the algorithm to calculate the camera’s distance to
the nearest visible pixel (Figure 5B, D1). The algorithm calculates
the distance between the camera and texture pixel in question
(Figure 5B, D2). If the distances are equivalent, the pixel in
question is visible. If the distances are different, then the pixel in
question is being occluded by the nearest visible pixel.

Data Evaluation and Filtering
The NeMO-Net citizen science video game generates a large
number of classifications that can be used to train NeMO-
Net’s CNN. Evaluating player classifications for metrics such as
accuracy and player consistency refines which classifications are
permitted in the training dataset and which are disregarded. The
overall goal is to arrive at a set of filtering schemes that can
generate the best representative truth dataset while minimizing
erroneous classifications. Additionally, player metrics can
provide insight into which parts of the game need improvement
and which portions of the player community would benefit most
from additional training and engagement. The metrics in this
section use the symbols L, C, and P to represent a given class label,
classification image, and player respectively.

Many of the metrics used in this paper are calculated
by comparing player classifications on pixel-by-pixel basis
to a representative ‘truth dataset’ of 134 aggregated expert
3D classifications. Pixels classified as No Class or Unknown
are excluded from this comparison. The representative truth
dataset is created by aggregating and filtering classifications
from a subset of Ph.D.-level trained coral ecologists with
in situ expertise and observations of the coral reef scenes
they are labeling.

The first metrics this paper considers are recall, precision,
and the Jaccard index of each class label. Equations 1–3 define
these metrics for any given class label, L. Recall measures how
often pixels of a given class label are classified correctly, precision
measures how often a classification using a given class label is
correct, and the Jaccard index measures the overall quality of
classification for a given class label. In Equations 1–3, the true
positive (tp) of a class label L is the number of cases where both
the player and the truth dataset label a pixel as L. False positive
(fp) of a class label L is the number of cases where the player labels
a pixel as L, but the truth dataset does not. False Negative (fn) of
a class label L is the number of cases where the user does not label
a pixel as L, but the truth dataset does.

recall(L) =
tp(L)

tp(L)+ fn(L)
(1)

precision(L) =
tp(L)

tp(L)+ fp(L)
(2)

Jaccard index(L) =
tp(L)

(tp(L)+ fn(L))U(tp(L)+ fp(L))
(3)

While recall, precision, and Jaccard index cannot be evaluated
for every classification submitted, they provide a general
understanding of how accurately each class label is being
classified. These metrics are evaluated on a per-player
basis, providing insight into how well specific players label
specific class labels.

Player agreeance is a similar metric that does not rely on a
comparison to expert classifications. Player agreeance measures
how uniform classifications of a particular pixel are and can filter
out areas that lack a strong player consensus. Areas with low
player agreeance can be flagged for review either by a domain
knowledge expert or by further community assessment. Player
agreeance is defined in equation 4 for any given class label, L, and
any given pixel, X. Pixels classified as ‘No Class’ are excluded from
these calculations.

player agreeance (L, X)

=
players who classify pixel X as class label L

players who classify pixel X
(4)

In addition to understanding which class labels players label
inaccurately and where players disagree on classifications, further
insight is gained by understanding the root causes of these
evaluations. Because classifications are generated using a painting
interface, smaller and more detailed areas take longer to label
correctly. There is likely some correlation between the accuracy
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FIGURE 5 | NeMO-Net 3D painting algorithm. (A) The process of converting screen space drawings into texture space. Each gray pixel tests collision against the
user generated stroke to determine if the pixel is being painted. (B) Pixel occlusion. D1 is the distance to the nearest visible pixel, P1. D2 is the distance to the pixel in
question, P2. D2 6= D1→ P1 occludes P2.

of a given class label and the scale of that class label in relation to
the other class labels.

For this reason, the truth dataset created by the NeMO-Net
team is used to estimate each class label’s average percent cover.
Equation 5 defines the average percent cover for any given class
label L, where n is the number of classifications in the truth
dataset containing the given class label and Ci is an individual
classification in that set of classifications. As this set only includes
classifications that contain the given class label, it is more a
measure of a class label’s scale than a measure of a class label’s
overall rarity.

average percent cover (L)

=
1
n

n∑
i=1

pixels in Ci that the truth dataset labels as L
all pixels in Ci

(5)

To estimate an individual player’s trustworthiness and
consistency, the truth dataset is used to evaluate each player’s
average accuracy (acc) and standard deviation of accuracies
(σacc). Equation 6 defines the accuracy (acc) of a given player
classification C. Equations 7 and 8 define the average accuracy
and standard deviation of accuracies for a given player P, where
n is the number of that player’s classifications that have matching

classifications in the truth dataset and Ci is an individual
classification in that set of classifications.

acc(C) =
pixels classified correctly in C

all pixels in C
(6)

acc(P) =
1
n

n∑
i=1

acc(Ci) (7)

σacc(P) =

√√√√ 1
n

n∑
i=1

[(acc(Ci)− acc(P))2] (8)

Given each player’s average accuracy, it is possible to calculate
the mean and median over all players’ average accuracies.
These metrics provide a general estimation of the quality
of the NeMO-Net classification tool and can indicate how
much filtering is required to create a representative truth
dataset from player inputs. Equations 9 and 10 define
the mean average accuracy (µacc) and median average
accuracy (Macc) over all players, where n is the number
of players for which average accuracy can be calculated,
sorted by average accuracy, and Pi is an individual player
in that sequence. P1 is the player with the lowest average
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accuracy and Pn is the player with the highest average
accuracy.

µacc =
1
n

n∑
i=1

acc(Pi) (9)

Macc = acc(P(n+2)/2) (10)

Classification and player trustworthiness can also be estimated
using NeMO-Net’s in-game rating system. Equation 11 defines
the rating sum for a given classification C, where n is
the number of player ratings for that classification and Ri
is an individual rating out of that set of player ratings.
Equation 12 defines the average rating sum for a given
player P, where n is the number of classifications that the
player has submitted that there exist ratings for and Ci
is an individual classification in that set of classifications.

rating sum (C) =

n∑
i=1

{
1
−1

Ri is positive
Ri is negative

(11)

average rating sum (P) =
1
n

n∑
i=1

rating sum (Ci) (12)

RESULTS

Player Classification Set
The NASA NeMO-Net video game was released in April 2020
and, as of December 2020, has ∼45.2K app units (first-time

downloads to a device) across the globe. Figure 6 depicts a
regional distribution map of app units across the world, with
downloads in at least 73 countries. App store location data is
opt-in, causing app unit numbers to appear lower than actual
app units. Players have submitted over 76k classifications and
over 62k ratings evaluating other players’ classifications. These
submissions are the player classification set being evaluated
in this section.

Truth Dataset Comparison
To initially verify the usefulness of user classified data, we first
calculate the average accuracy of classifications from all users.
As defined in equations 9 and 10, the mean average accuracy
of the player classification set is 67.7% and the median average
accuracy is 72.23%, a negatively skewed distribution. These
results are promising and can be improved with filtering. Figure 7
shows high values along the diagonal, indicating strong overall
classification quality.

Figure 8 shows that for all but four class labels, recall is
higher than precision. These four exceptions are some of the most
common class labels in the dataset, indicating that users may be
overusing the more common class labels. The average recall over
all class labels is ∼78%, and the average precision over all class
labels is∼57%.

To test the relationship between the size of a class label
within a given scene and how well that class label is classified,
Figure 9 maps each class labels’ average percent cover, as defined
in equation 5, to the class labels’ Jaccard index. An initial
comparison indicates that as a class label’s average percent

FIGURE 6 | NeMO-Net download map. Location data is opt-in, causing known downloads to be lower than actual downloads. In the 7 months since release,
NeMO-Net has been downloaded in at least 73 countries, reached over 300 million people, received a 4.9-star rating on the App Store, reached #3 in the App Store
family games category, generated over 76K player classification maps and over 62K reviews of other players’ classification maps.
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FIGURE 7 | Normalized confusion matrix of each class label, generated using user training data. Class labels with an asterisk indicate that the class label is used
purely in satellite classifications. The average recall over all class labels is ∼78%.

FIGURE 8 | Recall and precision per class label, sorted by Jaccard indices. Class labels with an asterisk indicate that the class label is used purely in satellite
classifications.
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FIGURE 9 | Linear least-squares regression plot and 95% confidence interval of class labels’ average percent cover and Jaccard indices. Shows a positive trend
between the average percent cover and the Jaccard index of class labels, with an R2 value of 0.66. This trend indicates that the more area a class label occupies in
a coral reef scene on average, the more it will be classified correctly.

FIGURE 10 | An example of a 3D dataset showing that the NeMO-Net game and active learning framework can effectively aggregate user labels to improve overall
classification quality. Player classifications tighten and show on stronger boundary delineation when taking the combination of many players as input.

cover increases, so does its Jaccard index. This correlation
suggests that the more area a class label covers within a
given scene the more it will be classified correctly. The
regression appears to be significant as it has a relatively high
R2 value, 0.6618, given how many factors might affect the
Jaccard index.

Heat maps of player agreeance for given class labels are used to
understand how averaging inputs from multiple players refines
classifications. Figure 10 indicates that player classifications will
tighten and potentially increase in specificity when taking the
combination of many players as input. The center of areas
belonging to one class label show the most agreeance, leading
to high confidence of a particular class, while borders and edges
show more variability.

Filtering Player Classifications
Figure 11 shows that in each of NeMO-Net’s primary regions,
3D classifications have higher recall than 2D classifications.
Without filters applied, Guam has a 41.14% increase in recall
when going from 2D classifications to 3D classifications, Puerto
Rico has a 20.26% increase in recall when going from 2D
classifications to 3D classifications, and Hawai’i has a 140.45%
increase in recall when going from 2D classifications to
3D classifications. The average of these three regions shows
a 67.38% increase in recall when going from 2D to 3D
classifications.

Filtering the classification set by the submitting players’
experience or hours played has little impact on recall and, in some
cases, negatively affects recall. Filtering the classification set by
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FIGURE 11 | Comparison of recall (accuracy) for 2D versus 3D dataset labeling. Going from 2D labeling to 3D labeling demonstrates a measurable impact of recall,
especially in areas with high benthic complexity. ‘All classifications’ applies no filter to the user dataset. ‘Players with high experience points’ filters out players with
below 200 in-game experience points. ‘Players with high hours played’ filters out players who have played less than 1 hour. ‘Classifications with high ratings’ filters
out classifications with a rating sum at or below 0. Players with high ratings filters out players who have had their classifications rated less than 5 times and players
who have an average rating sum below 1.

player ratings or classification ratings tends to have a positive
effect on recall.

Figure 12 maps each class label’s recall across classification sets
with increasing classification rating sum. The figure only includes
class labels that have a linear regression with a slope of three or
higher. Of the 26 class labels, 23 class labels’ recall improves as the
rating sum of the classification set increases, the average class label
improves with a linear regression slope of 6.13%. This means that,
in most cases, higher classification ratings can serve as a good
indicator of higher recall.

Player Consistency
In addition to evaluating players’ average accuracy compared to
the truth dataset, it is critical to determine their classification
consistency. Figure 13 shows that there is a key group of players
that have submitted several classifications, have high average
accuracy, and a relatively low standard deviation of accuracies,
as defined in equations 7 and 8.

DISCUSSION

In this section, we will expand upon the reported metrics of
the previous results. Specifically, we discuss a comparison of
2D and 3D classification accuracies, how a class label’s average
percent cover affects accuracy, the utility of the in-game rating
system, player consistency, NeMO-Net’s user retention strategy,
the effectiveness of NeMO-Net’s outreach campaign, and the
value of NeMO-Net’s educational content.

2D and 3D Classifications
Figure 11 breaks down how classification recall is affected by
applying different filters to the player classification set. In every
region where both 2D and 3D data are available, the 3D data
are classified with a higher recall than 2D data for each filtering
method. The recall of an average region in the NeMO-Net
videogame shows a 67.38% increase when going from 2D to 3D
classifications. This is of great significance as it demonstrates the
value of 3D over 2D toolsets for the classification of complex
ecosystems such as coral reefs.

Hawai’i is the only region that does not feature entirely new
class labels, and so is the only region that does not have a
tutorial on how to label its data. The lack of a tutorial and the
Hawai’i dataset being highly spectrally diverse could explain its
low overall recall. The filter ‘Players with high rating’ represents
players who have received many positive ratings in the in-game
rating system. This subset of players tends to label better than
the average player, as applying this filter on average increases
the recall of each region by 16.61%. Like the rest of the NeMO-
Net players, this subset of players struggles with labeling the
Hawai’i dataset. However, this subset of players has a noteworthy
1739.9% increase in recall when going from 2D Hawai’i to 3D
Hawai’i classifications. Note that there are fewer players labeling
the Hawai’i region who pass the ‘Players with high rating’ filter
than in other regions, adding variability to the results for the
Hawai’i dataset for this filter.

These statistics strongly demonstrate the value of 3D
classifications in complex systems such as coral reefs, particularly
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FIGURE 12 | Class label recall across user classification sets with a given rating sum. Class labels with an asterisk indicate that the class label is used purely in
satellite classifications. This figure only includes class labels that have a linear regression with a slope of three or higher. These class labels show that
player-generated ratings can be used as an estimation of classification quality.

FIGURE 13 | Mapping of average accuracy, standard deviation of accuracies, and classifications completed. Each datapoint represents an individual player, and the
size and color of the datapoint corresponds to the number of classifications completed. There is a key group of trustworthy players who have high average accuracy,
low standard deviation of accuracies and have submitted many classifications.
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in regions of high benthic complexity such as Hawai’i. Coral
reef families are difficult to label without knowledge of their
topographic structure and vertical assemblages. Additionally,
coral reef classifications in a purely 2D space lose information
about the habitats occluded underneath the topmost structures.

Average Percent Cover
One of the most promising metrics for determining the overall
quality of classifications for a given class label is average
percent cover. Figure 9 illustrates that a given class label’s
classification quality increases as the class label’s average percent
cover increases.

Citing a specific example, the data used to generate Figure 7
shows that players commonly mislabel green algae and red algae
as Poritidae, brown algae as bare substratum, and seagrass∗ and
bare substratum∗ as coral∗ (∗ denotes satellite-only class labels).
In each of these cases, the correct class label has a lower average
percent cover than the class label players used. This correlation
indicates that players likely ignore smaller class labels when they
are positioned over larger forms. For example, if the majority of a
form is Poritidae and small sections of red algae are on top of the
form, players are likely to label the entire form as Poritidae.

Additionally, there are many cases where class labels with
high average percent cover (Poritidae and bare substratum) are
mislabeled as class labels with low average percent cover (red
algae and green algae). These misclassifications are likely because
players paint strokes that are too large and overpaint the region
they intend to label. For example, if there is a small patch of
red algae over a large Poritidae, players might use a single paint
stroke to label the red algae while accidentally marking some of
the Poritidae as red algae too.

In these cases, data filtering algorithms can likely remedy
overclassification and underclassification of class labels
due to paint stroke error by combining multiple players’
classifications for an area. Figure 10 demonstrates promising
results for this method, effectively delineating brown algae from
bare substratum.

There is potential for future analysis determining how
detailed a particular player’s classifications are. Image processing
could potentially evaluate an image detail metric by taking
the Fourier transforms of players’ classifications and comparing
the magnitudes. Comparing players’ classifications against truth
datasets that require high detail and truth datasets that require
low detail could also evaluate how detailed individual players
are. The more detailed a player is, the more likely they are to
accurately label class labels with a low average percent cover.

Player Rating System
Figures 11, 12 demonstrate that the in-game player rating
system serves as a tremendously useful tool for filtering player
classifications. Of the 26 class labels, 23 class labels’ recall
improves as the rating sum of the classification set increases,
meaning that filtering out lowly rated classifications improves
the classification quality of almost every class label. It is by far
the most effective filtering method tested in this study. Across
all regions and datatypes listed in Figure 11, recall improves by
11.82% when filtering out classifications with a rating sum at or

below 0, and given Figure 12, this is likely to increase as the rating
sum of the filter increases.

In addition to its utility as a filtering method, the rating system
allows players to edit the classifications of other players and
submit the modified versions as new classifications. This feature
greatly increases the speed at which classifications are created and
the quality of those classifications. The use of an active learning
feature such as this is equivalent to large scale peer review and is
highly encouraged for future citizen science projects.

While many of the class labels’ accuracy improve when
classifications are filtered by rating sum, some do not. The average
percent cover of a class label could potentially impact whether
the class label’s recall correlates to the classification set’s rating
sum. The average percent cover of all the class labels whose linear
regression slope in Figure 12 is greater than or equal to three is
1.87 times that of class labels whose linear regression slope is less
than three. NeMO-Net’s rating system is binary, so classifications
are likely to be judged primarily by their most massive features.
A more complex rating system could improve the rating system’s
utility as a filtering method.

Player Consistency
Many players have a high average accuracy and low standard
deviation of accuracies but have only submitted a small number
of classifications. The less complicated, pre-selected early regions
presented to beginner players likely skew this group’s results.
Players who have submitted a higher quantity of classifications
tend to have lower average accuracy and a higher standard
deviation of accuracies. Experienced players’ ability to label
many different areas and data types likely increases this group’s
standard deviation of accuracies. Citizen science programs could
benefit by engaging with and maintaining the group of players
that have submitted several classifications, have high average
accuracy, and a relatively low standard deviation of accuracies.
Note that it is possible for a player to have completed a large
number of classifications but have a low standard deviation
of accuracies because only a few of their classifications have
matching classifications in the truth dataset.

User Retention
Given the number of classifications completed per player, it can
be inferred that most players only submit a few classifications
during their time with the game, but a select group of users
continues to submit classifications over a long period of time.
The low drop off rate for long-term players provides an incentive
for citizen science projects to focus on maintaining these
players and increases their proficiency with additional resources
such as community forums. NeMO-Net ensures that the first
classifications players complete are pre-selected to teach players
about specific families of coral. As most players only submit
a few classifications, the shorter this training phase is, the
more data players submit on transects that do not already have
training labels.

The NeMO-Net video game works to increase user retention
during its tutorial by using mini-games and challenges to teach
its systems. For example, rather than instructing players how to
navigate in 3D with a simple prompt, NeMO-Net asks players to
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use the navigation controls to find the NASA logo hidden in the
coral, shown in Figure 4A. In this way, NeMO-Net’s initial in-
game tutorial effectively familiarizes players with how to navigate
a 3D space while maximizing user retention. It is pivotal to
ensure that players are properly trained in the navigation and
classification systems. Additionally, the NeMO-Net quest system,
ranking system, original soundtrack, menu easter eggs, 3D
artwork and video messages offer players incentive to continue
interacting with the game. It is important that citizen science
projects are both tools and games.

Citizen Science Impact
NeMO-Net has had a large impact on the public, reaching over
300 million people, particularly populations living in coastal areas
adjacent to and, often, dependent upon coral reefs for subsistence
fishing and tourism. As of December 2020, the NASA NeMO-Net
video game has 421 ratings and a 4.9-star rating on the iOS App
Store and reached #3 ranking for family/casual apps and #48 for
casual apps on the Mac and iOS App Stores, respectively. Android
and Windows versions have been released in 2021.

While training a CNN to create a global dataset of coral
reefs is NeMO-Net’s primary objective, it is equally critical to
engage and educate the public on the state of marine systems.
Many cannot directly view the impact of coral reef degradation
firsthand or have the means to support existing coral reef
conservation efforts. The NeMO-Net video game provides an
accessible way to experience the world’s coral reefs and empowers
citizen scientists with a tangible means to make a difference in
coral reef conservation.

The NeMO-Net in-game field guide is the first public
library of 3D coral families alongside detailed descriptions
and identification strategies. This novel contribution benefits
field biologists while being accessible enough to fit into a
primary school educational curriculum. The NeMO-Net game
has been successfully tested and applied in this way with
students in elementary, middle, and high-school levels as well as
undergraduate, graduate, and post-doctoral levels. Additionally,
NeMO-Net’s augmented reality mode allows for field biologists
and young students alike to view and label coral in an entirely
new way. Alongside the field guide, NeMO-Net sends players
educational videos and messages to provide additional insight on
key topics. NeMO-Net’s 3D field guide and educational content
are likely a key component of why NeMO-Net players perform
well, with an average recall of ∼78% across all class labels.

CONCLUSION AND FUTURE WORK

Conclusion
In the 7 months since release, the NASA NeMO-Net video game
has generated over 76,000 player classifications and reached over
300 million people, demonstrating it is an effective medium
for sharing coral reefs with the general public and gathering
important citizen science data for training the NeMO-Net CNN.
Many of NeMO-Net’s end users are young people, motivating
interest and conservation of coral reefs among a new generation.
The classifications generated by NeMO-Net’s citizen scientists are

of high quality, with an average recall of ∼78% across all class
labels when measured against NeMO-Net’s representative truth
dataset, and are actively being used to train the NeMO-Net CNN
for global shallow marine habitat mapping.

NeMO-Net’s key strengths are its educational field guide,
interactive coral classification tutorials, and augmented reality
3D coral viewer. These 3D tools are a highly accessible way
to understand and identify the different families of coral. The
NeMO-Net in-game field guide is the first public library of 3D
coral families alongside detailed descriptions and classification
strategies. This library is a major step forward in educating
the public on coral reef habitats and providing both field
biologists and conservationists with an accessible tool for coral
classification. Educational content, in addition to entertaining
music, art, and an interactive ocean world, keep user retention
and engagement high – a crucial advance in the otherwise tedious
process of training CNNs for habitat mapping.

The analysis described in this paper highlights the value
of 3D classification tools for complex ecosystems such as
coral reefs. The 3D painting algorithm described in this paper
has a low computation cost and considerable potential for
future citizen science projects operating in a 3D space. This
paper also illustrates the value of an in-game rating system
and active learning framework, as filtering classifications for
those with a positive in-game rating increases classification
quality considerably.

Amongst the metrics presented, the average percent cover of
a class label has been shown to be a strong indicator of how
well that class label will be classified. Analysis of the NeMO-
Net classifications show that as a class label’s average percent
cover increases, so does the quality of its classification. There is
potential for future analysis developing metrics tracking which
players do better specifically labeling class labels with low average
percent cover. There is also potential to develop classification
and tutorial systems that better account for class labels with low
average percent cover. One of the key areas of improvement for
the NeMO-Net video game is to modify the rating system to be
more detailed, so that it can better handle class labels with low
average percent cover.

Future Work
The NeMO-Net video game has created a growing and improving
training dataset for NeMO-Net’s NASA-supercomputer-based
CNN. In situ photogrammetry, airborne fluid lensing, and
satellite imagery alike are labeled and harmonized into one
multimodal global dataset for release later in 2021, with taxon-
specificity where possible.

We are working in close collaboration with the IUCN
(International Union for Conservation of Nature) and the United
Nations to produce actionable habitat maps from NeMO-Net
for shallow marine systems that meet the method usability level
criteria 4 through 6 for SDG (Sustainable Development Goal) 14.
Additionally, we are collaborating with the NOAA Pacific Island
Fisheries Science Center, USGS, Puerto Rico, Guam, and the
people of American Samoa, the Khaled bin Sultan Living Oceans
Foundation, and Mission Blue to deliver data products that will
enable novel conservation applications for marine science.

Frontiers in Marine Science | www.frontiersin.org 15 April 2021 | Volume 8 | Article 645408

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-645408 April 8, 2021 Time: 13:8 # 16

van den Bergh et al. NeMO-Net, Gamifying Marine Habitat Mapping

The NeMO-Net server architecture and video game
management could potentially be transitioned to a program
such as NOAA for long term sustainability. We are currently
developing language localization in the game for Chinese,
Korean, Japanese, and Spanish. This feature will have
implications for the tourism industries dependent on their coral
reefs. Hotels in the areas that NeMO-Net field campaigns have
surveyed, such as Guam, have reached out to partner with us in
educating their guests about nearby coral reefs. The game will
be used to engage a large number of tourists to safely participate
in coral reef conservation within a video game format, while
encouraging best practices for conservation.

There has been increasing demand from third parties to
upload their own georeferenced in situ, airborne, and satellite
datasets for labeling in the NeMO-Net video game and
classification by NeMO-Net’s CNN. Such a feature could be used
in collaboration with island nations to monitor the health of
their coral reefs, which have a major economic impact for those
nations. NeMO-Net could provide researchers with the GPS
locations of existing coral reef surveys to allow for repeat surveys
and the simplified generation of time series datasets.

For members of the public who do not have the means to visit
coral reefs, NeMO-Net can be used to bring the reefs to them.
NeMO-Net’s augmented reality features could be enhanced to
allow players to travel through larger sections of coral reefs by
walking around. NeMO-Net has already been successfully used
as part of an elementary school curriculum teaching students
about coral reefs. NeMO-Net could be further adapted to better
accompany a full class curriculum, perhaps with a feature
that allows teachers to track students’ progress and provide
customized feedback to students inside of the game.

With global benthic habitat map products on the horizon,
we are actively developing an online portal where users and
the public can dynamically analyze NeMO-Net 3D label data
statistics and accuracy in an interactive 3D interface. This
online interface will support the United Nation’s SDG 14
indicator monitoring and could be used to inform resilience-
based management for coral reefs, enhancing understanding of
which reefs successfully resist and recover from environmental
disturbance, and why they do so (Maynard et al., 2015). A high-
frequency, high-resolution, temporal and global benthic habitat
map, such as the one NeMO-Net’s CNN will produce, can be
used to track patterns of coral growth, mortality, and recruitment,
potentially allowing for the predictive modeling of coral reef
systems. The NeMO-Net video game is therefore crucial for
providing high-quality, dynamically improving training and 3D
labeling data for this ongoing mapping effort.
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