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Accurate and fast prediction of sea ice conditions is the foundation of safety guarantee
for Arctic navigation. Aiming at the imperious demand of short-term prediction for sea
ice, we develop a new data-driven prediction technique for the sea ice concentration
(SIC) combined with causal analysis. Through the causal analysis based on kernel
Granger causality (KGC) test, key environmental factors affecting SIC are selected.
Then multiple popular machine learning (ML) algorithms, namely self-adaptive differential
extreme learning machine (SaD-ELM), classification and regression tree (CART), random
forest (RF) and support vector regression (SVR), are employed to predict daily SIC,
respectively. The experimental results in the Barents-Kara (B-K) sea show: (1) compared
with correlation analysis, the input variables of ML models screened out by causal
analysis achieve better prediction; (2) when lead time is short (<3 d), the four ML
algorithms are all suitable for short-term prediction of daily SIC, while RF and SaD-
ELM have better prediction performance with long lead time (>3 d); (3) RF has the
best prediction accuracy and generalization ability but hugely time consuming, while
SaD-ELM achieves more favorable performance when taking computational complexity
into consideration. In summary, ML is applicable to short-term prediction of daily SIC,
which develops a new way of sea ice prediction and provides technical support for
Arctic navigation.
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INTRODUCTION

There have been unprecedented decreases in the amount of Arctic sea ice due to global warming.
The Arctic Ocean is rapidly transforming into a navigable ocean, making the exploitation and
utilization of marine resources viable in this region. Sea ice conditions, mainly including sea ice
concentration (SIC) and sea ice thickness (SIT), not only induce additional resistance, thereby
increasing sailing fuel consumption but also may cause damage to the ship hull and propeller.
Therefore, sea ice makes Arctic routes fraught with risks and unexpected costs. For the present,
sea ice observation and empirical prediction are widely conducted to reduce the risk caused by sea
ice in the Arctic navigation (Li et al., 2019). However, the role of these approaches is minimal due
to complex variations of sea ice. There is room to further improve prediction with more advanced
techniques, aiming at accurate and fast sea ice prediction for supporting Arctic navigation.
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At present, many studies have been devoted to sea ice
prediction, developing a number of forecasting approaches. All
of those are classified into two kinds: numerical models and
statistical models. Numerical prediction is based on sea ice
numerical models, including dynamic models, thermodynamic
models and dynamic-thermal coupling models. Many numerical
models show some predictive skill at seasonal to interannual
time scales. Chevallier et al. (2015) described the initialization
techniques and the forecast protocol of the Global Climate Model
(GCM), and developed the seasonal forecast of the pan-Arctic
sea ice extent using the GCM-based seasonal prediction system.
Mitchell et al. (2017) investigated the regional forecast skill of
the Arctic sea ice in a Geophysical Fluid Dynamics Laboratory
(GFDL) seasonal prediction system, using a coupled atmosphere-
ocean-sea ice-land model. Gascard et al. (2017) discussed the
ability to hindcast and predict sea ice conditions in the Arctic
Ocean. In his research, the CMIP5 (Coupled Model Inter-
comparison Project Phase 5) was used to provide ranges of
potential future sea ice conditions on large scales. Jun (2020)
have presented characteristics of the predictabilities of weather,
sea ice and ocean waves under extreme atmospheric conditions
over the Arctic Ocean in supporting Arctic navigation. In terms of
dynamic and thermodynamic processes of sea ice, the numerical
prediction is relatively accurate but has high time complexity,
which poses the greatest challenge for short-term and fast sea ice
prediction during navigation safeguarding, especially for sailing
adjustment according to sea ice changes.

Meanwhile, there has been some development of statistical
forecast for the Arctic sea ice, no matter the forecast focused
on the basin as a whole or for specific regions. In statistical
models, statistical relationships between sea ice and proceeding
environmental factors are built by time series analysis, and
sea ice is predicted according to variations of environmental
factors. Models about sea ice statistical prediction are relatively
simple, mainly including one-dimensional linear regression or
multivariate linear regression (Drobot and Maslanik, 2002; Chen
and Yuan, 2004). Given its cost effectiveness, scholars are
motivated to develop more advanced statistical models: Drobot
et al. (2006) developed a statistical model to predict the pan-
Arctic minimum ice extent based on multiple linear regression
and used the satellite-observed ice concentration, surface skin
temperature, albedo and downwelling longwave radiative flux as
predictor variables. Lindsay et al. (2008) explored the forecasting
ability of a linear empirical model for sea ice extent, using
as predictors historical information about the ocean and ice
obtained from an ice-ocean model retrospective analysis. Yuan
et al. (2016) built a linear Markov model for monthly SIC
forecasting at pan-Arctic grid points for all seasons. He also
assessed the sea ice predictability at different spatial locations over
all seasons. Wang et al. (2016) adopted the vector autoregressive
(VAR) model for predicting the summertime (May to September)
Arctic SIC at the intra-seasonal time scale, using only the daily
sea ice data and without direct information of the atmosphere
and ocean. To deal with the nonlinearity in sea ice prediction,
Zhang et al. (2017) established a SIT prediction model based
on BP neural network trained by a large number of observed
data. However, sea ice prediction is a very challenging task under

the changing Arctic climate system (Stroeve et al., 2008, 2014).
Sea ice is a coupled nonlinear system influenced by varieties
of meteorological and oceanic factors, causing drastic diurnal
variations and poor continuity of time series. Unfortunately,
most statistical models with linear assumption fail to describe
complex nonlinear relationships.

All in all, numerical prediction and statistical prediction
of sea ice achieve varying degrees of success but still have
some shortcomings: (1) It is necessary for sea ice numerical
models based on dynamic and thermodynamic equations to input
strict initial conditions, causing high computational complexity
(Lindsay et al., 2008; Wang et al., 2016; Yuan et al., 2016), which
cannot meet the requirements of fast and real-time prediction
in supporting Arctic navigation. (2) Statistical models run fast
and are easy to understand but have limited ability to capture
non-linearity and non-stationarity of sea ice time series because
of their linear and stationary assumptions (Stroeve et al., 2014;
Gascard et al., 2017). (3) Both numerical and statistical models
mainly focus on the monthly and quarterly forecast of sea ice,
while short-term and daily prediction is rarely studied. Monthly
prediction of sea ice makes little sense to ship navigation. It is
urgent to develop new daily sea ice forecasting models for fast
and accurate prediction.

In recent years, with the development of artificial intelligence,
machine learning (ML), more advanced data-driven technique, is
capturing people’s attention, including neural network, decision
tree (DT), naïve Bayes and support vector machine, etc. At
present, deep neural networks have been demonstrated to predict
the Arctic sea ice: Chi and Kim (2017) proposed a deep-
learning-based model using the long- and short-term memory
network (LSTM) in comparison with a traditional statistical
model. Their model showed good performance in the 1-month
prediction of SIC. Kim et al. (2019) put forward a near-future
SIC prediction model (10–20 years) with deep learning networks
and the Bayesian model averaging ensemble, lowing forecasting
errors effectively. Wang et al. (2017) applied the convolutional
neural network (CNN) to estimate SIC in the Gulf of Saint
Lawrence from synthetic-aperture-radar (SAR) imagery, showing
the superiority of CNN model in SIC estimation. Compared with
numerical models and classic statistical models, ML algorithms
simplify the tedious and intricate calculations, and they are
good at expressing non-linear relationships of variables (Li and
Liu, 2020). However, the previous studies using ML techniques
still focused on the long-term prediction of SIC. The short-
term prediction at a finer time scale is more important for
navigation and maritime industries (Schweiger and Zhang, 2015).
In addition, other ML algorithms have not been applied to sea
ice prediction except neural networks. Therefore, we will try
adopting various ML algorithms for short-term sea ice prediction
and compare their model performance to discuss the applicability
and reliability of ML in sea ice prediction.

Additionally, predictor selection plays a vital role in
prediction, known as “Feature Selection” in modeling with ML
(Poggio et al., 2000). Effective predictors selection can greatly
reduce the running time, improve the prediction accuracy as
well as increase the interpretability of the prediction model.
In classical statistical forecasting models, selection methods
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for predictors mainly include stepwise regression, time-lag
correlation analysis and teleconnection analysis, etc. However,
there has been a strong argument against using correlation
analysis for this purpose in the causal analysis community.
Liang (2014) made clear that two variables with a strong
correlation did not necessarily have a strong causality. It is
worth noting that causal analysis becomes a more advanced
way of detecting relationships. Bai et al. (2017) and Li and
Liu (2018) applied causal analysis to predictor selection and
significantly improved the forecasting accuracy. It is well-known
that daily and monthly sea ice change are affected by all kinds
of factors in different atmospheric processes (Fang and Wallace,
1994; Kang et al., 2014; Cvijanovic and Caldeira, 2015; Gong
and Luo, 2017). In our research, we will apply causal analysis,
rather than correlation analysis, to select predictors and further
discuss the influence of different factors on the prediction
accuracy of sea ice.

The Arctic is rapidly transforming into a navigable ocean
due to global warming. In this case, the development of new
prediction techniques of sea ice has become a high priority.
Regional sea-ice predictions at finer time scales are a pressing
need for Arctic navigation. In this article, we will combine causal
analysis and various popular ML algorithms for SIC prediction
to discuss the applicability and reliability of ML in sea ice
short-term prediction by error analysis, exploring new prediction
ways. The rest of the paper is organized as follows: section
“Theory and Method” explains the theoretical formulations
and proposes a detailed elaboration of our prediction model.
Application and results analysis are showed in section “Short-
Term Prediction of Daily SIC.” section “Conclusion” concludes
the presented studies.

THEORY AND METHOD

This section makes a specific introduction of various ML
algorithms and the causal analysis technique—Granger causality
test. Then the ML-based prediction technique with causal
analysis will be proposed.

ML Algorithm
We select popular ML algorithms, including extreme learning
machine (ELM), DT, random forest (RF) and support vector
regression (SVR), for daily SIC prediction. The principle and
characteristics of these algorithms are listed below.

(1) Extreme Learning Machine

Extreme learning machine is a novel single hidden layer
feedforward neural network, overcoming the weakness of slow
convergence and local optimum in conventional neural networks.
However, the random setting of initial weights and threshold
easily results in weak stability and poor generalization. To deal
with this deficiency, Cao et al. (2012) used the self-adaptive
differential evolution (SaD) algorithm to improve ELM and
further proposed the self-adaptive differential extreme learning
machine (SaD-ELM), which is used in our research.

(2) Decision Tree

Decision tree is constructed recursively by dividing nodes
according to the square error minimization criterion, and the
mean value of all leaf nodes is taken as the predicted result.
DT is suitable for dealing with interactions among features (or
predictors), easy to interpret, and runs fast. In this article, we will
choose one kind of DT, classification and regression tree (CART),
to construct the prediction model.

(3) Random Forest

Based on the idea of ensemble learning, DT is used as the
base learning machine to establish an ensemble model, namely
RF. The predicted value of RF is obtained by taking the mean
prediction of all DTs. Balancing the error of data sets gives RF
the advantage of not easy to overfit; besides that, it also has
great robustness.

(4) Support Vector Regression

Support vector regression adheres to the principle of structural
risk minimization seeking to minimize an upper bound of
generalization error and has good generalization ability. It can
deal with nonlinear interactions of features and solve the problem
of high-dimensional input space.

Causal Analysis
Input variable selection is of vital importance in ML. Irrelevant
variables, used as inputs of a regression machine, can
unnecessarily increase the time consuming of a prediction
system, as well as degrade the generalization ability and
interpretability (Li and Liu, 2020). In previous studies about
time series prediction with ML algorithms, methods based
on correlation coefficient and univariate regression are still
the most common data-based tools to select predictors by
analyzing associations (Li and Liu, 2019). Such approaches are
useful in daily practice but provide few insights into the causal
mechanisms that underlie the dynamics of a system, which is
important in meteorology and oceanography. Causal inference
methods can overcome some of the key shortcomings of such
correlation analysis (Runge et al., 2019).

Nowadays, the relationships mining from time series by causal
analysis in the earth system is a frontier issue. Some hidden
relationships in the earth system have been detected by causal
analysis, which cannot be identified by correlation analysis.
For example, Sugihara et al. (2012) showed an example from
ecology demonstrating that traditional regression analysis was
unable to identify the complex nonlinear interactions among
sardines, anchovy, and sea surface temperature (SST) in the
California Current ecosystem. A nonlinear causal state-space
reconstruction method reveals that SST is a common driver of
both sardine and anchovy abundances. Marlene et al. (2016)
detected that Barents-Kara SIC is an important driver of mid-
latitude circulation, influencing winter Arctic Oscillation (AO),
by causal inference method. McGraw and Barnes (2020) also
used the Granger causality method to examine the causal
relationship between Arctic sea ice and atmospheric circulations.
These studies prove that causal analysis has a stronger ability to
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mine relationships than correlation analysis, which is beneficial
to changes explanation. It is a promising approach to select
predictors in the prediction system.

Granger causality test (GC) is a classic causal detection
method proposed by Granger (1969) and Sims (1972). The
basic definition is: when the historical information of variables
X and Y are included, the prediction accuracy of Y is better
than that of the historical information of Y alone, that is, the
introduction of X is conductive to the prediction of Y . In
other words, X helps to explain the future change of Y , then
X is considered as the Granger cause of Y . This definition
is based on the regression and its mathematics expression is
shown below.

Regression equation of X and Y is built:

Yt =

k∑
i=1

αiYt−i +

k∑
i=1

βiXt−i + et (1)

Yt =

k∑
i=1

αiYt−i + et (2)

where: et denotes regression error; k is maximum lag order; αi and
βi denotes regression coefficient. GC is usually assessed according
to the statistical test (Krakovská et al., 2018).

Original hypothesis: X is not the Granger cause of Y .
Test statistic:

F =
(SSEr − SSEm)/k
SSEm/(N − 2k)

∼ F
(
k, N − 2k

)
(3)

where: SSEr is the residual sum of squares of autoregression with
Y ; SSEm is the residual sum of squares of regression with X and
Y . If F Fa, then X is the Granger cause of Y .

However, classic GC is only suitable for stationary time
series and has low detection power for high-dimensional space.
An attempt to extend GC to nonlinear cases by using the
theory of reproducing kernel Hilbert spaces was proposed
by Marinazzo et al. (2008), namely KGC test. The method
investigates Granger causality in the feature space of suitable
kernel functions. Instead of assessing the presence of causality
by means of a single statistical test, KGC constructs a causality
index to express the strength of causal relationships. The role
of the two time series can be reversed to evaluate the causality
index in the opposite direction. KGC works well for causality
detection of nonlinear time series and explains some hidden
relations in complex systems (Krakovská et al., 2018). In our
research, we will adopt the KGC test to select input factors of
SIC prediction by the shared MATLAB toolbox1, introducing
causal analysis to ML.

Prediction Model
This subsection presents a data-driven prediction model based
on ML and causal analysis. The main technique scheme and
processing stages are illustrated as follow, including factor
management, model construction, and model prediction.

1https://github.com/danielemarinazzo/KernelGrangerCausality

Factor Management: First, quality control and normalization
processing of data are carried out, and data are divided into
training sets and testing sets. Then, based on KGC test, causal
analysis of environmental factors is conducted to select the best
predictor variables of SIC.

Model Construction: Predictors are taken as input variables
and SIC is the response variable. SaD-ELM, CART, RF, and
SVR are employed to build prediction models, respectively. The
initial parameters are set according to the characteristics of
each algorithm, then, based on training sets, the 10-fold cross-
validation method is used for parameter tuning and prediction
models are trained completely.

Model Prediction: The prediction result is obtained by means
of cross-validation. The predictive ability of different models
are compared by error analysis, and the applicability of ML
algorithms for sea ice prediction is discussed in detail.

SHORT-TERM PREDICTION OF DAILY
SIC

This section conducts SIC prediction experiments with the
proposed technique. The performance levels of different
algorithms are compared in order to discuss the applicability and
reliability of ML in sea ice prediction.

Study Area and Data Introduction
Barents Sea and Kara Sea (B-K) are important marginal seas of
the Arctic Ocean, which is one of the most important routes
for the Arctic navigation. Sea ice of the B-K sea decreases
dramatically due to climate change, having a remarkable impact
on navigation safety. This article predicts SIC at day time scales
in the B-K sea (70–80◦N, 20–80◦E).

Sea ice concentration datasets are obtained from Climate Data
Record (CDR) provided by the National Snow and Ice Data
Center (NSIDC). SIC is the sea ice–covered area relative to the
total at a given location in the ocean, and thus ranges from 0
to 1 (or 0–100%). By incorporating data from multiple sensors,
including SSMR, SSM/I, and SSMI/S, SIC datasets are generated
with the bootstrap algorithm. The SIC data are available from
November 1st, 1978 every day and have the spatial resolution
of 25 km × 25 km2. In our research, daily time series of SIC
from January 1st, 2009 to December 31st, 2018 are used for
experiments and resampled to 1◦ × 1◦ grids by the linear
interpolation method. The temporal-spatial number of SIC grid
is [3652 days× (61× 11) grids].

The daily change of B-K SIC is affected by various factors in
complex atmospheric processes (Fang and Wallace, 1994). The
solar radiation heats the surface of sea ice, causing a decline of
sea ice by raising sea temperature (Screen and Simmonds, 2010).
Local wind forces cause sea ice drifts, affecting sea ice motion and
destruction (Shimada et al., 2006; Guemas et al., 2016). Cvijanovic
and Caldeira (2015) pointed out that the increase in CO2 is
critical for decline of sea ice. Gong and Luo (2017) revealed
the presence of Ural blocking with a positive North Atlantic

2https://nsidc.org/data/g02202/versions/3
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TABLE 1 | KGC index between SIC and predictors (statistically significant values at the 95% level are highlighted).

Variable LCC SLP AT HF WVF WD SST AL WV

→SIC 0.0068 0 0.4455 0.0061 0 0.1516 0.1762 0.6206 0.1724

SIC→ 0 0 0.3437 0 0 0 0 0.1696 0

TABLE 2 | Pearson correlation coefficient between SIC and predictors (statistically significant values at the 95% level are highlighted).

Variable LCC SLP AT HF WVF WD SST AL WV

SIC 0.3775 0.1456 −0.7222 −0.4364 0.0286 0.3452 −0.7821 0.8332 0.5126

Oscillation is important for the variability of sea ice. They also
found the decline of B-K SIC lags the total water by about 4 days.
To sum up, environmental factors causing the daily variation of
SIC include dynamical variables and thermodynamic variables.
According to the fifth assessment report of the Intergovernmental
Panel on Climate Change (IPCC), we preliminarily select low
cloud cover, sea level pressure, 2 m air temperature, northward
heat flux, northward water vapor flux, 2 m wind speed, SST,
albedo and total column water vapor as predictor variables,
named LCC, SLP, AT, HF, WVF, WD, SST, AL, and WV. Their
datasets are obtained from the European Centre for Medium
Range Weather Forecast (ECMWF) and have the same temporal-
spatial resolution with SIC3.

Predictor variables and SIC have different orders of
magnitude. In order to eliminate the impact of different
orders of magnitude on causal analysis and prediction and to
speed up the training of ML algorithms, all variables need to be
normalized according to Eq. 4.

X =
x− xmin

xmax − xmin
(4)

where: X is the normalized value; x is the original value; xmax and
xmin denote maximum and minimum of original values.

Causality Detection
kernel Granger causality is capable of mining causal relationships
from time series of multiple variables, so we average variables
of all grids (61 × 11) in the B-K sea and generate time
series of nine predictors and SIC. Each time series comprise
3652 days. The inhomogeneous polynomial function is used in
the implementation of KGC test.

Table 1 shows the results of causal analysis between the
predictors and SIC. We can see KGC index is asymmetric and
directional, so the direction of causality can be identified. The
causal analysis shows: SLP and WVF are not the Granger cause
of SIC (KGC = 0); the causal relationships between SIC and LCC,
HF are weak (KGC fails to pass the significance test). By contrast,
there are significant reciprocal causality between SIC and AT, AL;
WD, SST, and WV are the unidirectional Granger cause of SIC
(WD→SIC, SST→SIC, WV→SIC). Through casual analysis, AT,
WD, SST, AL, and WV are the Granger cause of SIC and can
significantly explain the future change of SIC.

3https://apps.ecmwf.int/datasets/data

The five predictors selected through causal analysis have
theoretical foundations that are related to the physical
mechanism of SIC. AT and AL are related to the amount
of solar radiation which enables the prediction of SIC to change.
The solar radiation heats the surface of ocean as well as sea ice,
which causes a rise of SST while also reducing AL on the sea ice
by thinning the sea ice (Mahajan et al., 2011). Warm winds from
lower latitudes toward the Arctic can melt sea ice (Kang et al.,
2014). Changes in SST and SIC have a significant relationship to
each other with regards to the heat budget (Rayner et al., 2003;
Screen et al., 2013), corresponding to the findings obtained by
Granger causality method (McGraw and Barnes, 2020). The
re-emergence of sea ice anomalies is also partially interpreted by
the persistence of SST anomalies (Guemas et al., 2016). WV is
closely related to daily change of SIC and SIC decline lags WV by
about 4 days (Gong and Luo, 2017). The previous studies provide
a theoretical support for the Granger causality analysis.

As a contrast, we also take correlation analysis between
environmental factors and SIC. Pearson correlation coefficient
(Table 2) shows that SIC has strong relevance with LCC, AT,
HF, WD, SST, AL, and WV. In order to test the validity of
causal analysis, we respectively use predictors selected by causal
analysis and correlation analysis to build prediction models with
ML algorithms, and discuss the impact of different predictors
on SIC prediction.

Prediction Experiment Design
To fully discuss the applicability of ML algorithms to short-
term sea ice prediction, two experiments are designed: (1) SIC
prediction in the Kara Strait (single site: 71◦N, 58◦E) with
different lead times (1, 3, and 5 d). (2) SIC prediction in the
B-K sea (region: 70–80◦N, 20–80◦E) with different lead times
(1, 3, and 5 d).

Experiment I: SIC Prediction in the Kara Strait (71◦N,
58◦E)
To exclude the prediction errors caused by SIC anomalies such
as missing value, ice-free value and land, we select SIC greater
than 0.1, a total of 1000 samples, for ML modeling. The 10-fold
cross-validation approach is adopted to construct prediction
models and verify the performance. The samples are divided into
ten equal parts. In each prediction experiment, nine groups of
samples (training samples) are used to train prediction models,
and the remaining one group (testing samples) are used for
model validation. root-mean-square error (RMSE), correlation
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FIGURE 1 | Prediction mechanism of ML model. (A) Model input with causal analysis. (B) Model input with correlation analysis.

FIGURE 2 | Sensitivity of CART parameters on the RMSE.

coefficient (R) and mean relative error (MRE), as shown in
Eqs 5–7, are employed as evaluation criteria to investigate the
performance levels of prediction models quantitatively.

RMSE =

√√√√ 1
n

n∑
i=1

(y− ŷ)2 (5)

R =
Cov

(
y, ŷ

)√
Var

(
y
)
· Var

(
ŷ
) (6)

MRE =
1
n

n∑
i=1

∣∣y− ŷ
∣∣

y
(7)

where: y is the observation; ŷ is the prediction.
Taking predictors selected by causal analysis (AT, WD, SST,

AL, and WV) and correlation analysis (LCC, AT, HF, WD,
SST, AL, and WV) as input variables, respectively, the four ML
algorithms are adopted to build prediction models. It is well
known that historical information of SIC helps to explain the
future change of SIC (Deser and Teng, 2008). Therefore, past
SIC is also taken as the predictor. Figure 1 shows the inputs of
prediction model.

In the model training of the four ML algorithms: SaD-
ELM has a lot of parameters so we set them by referring to
Cao et al. (2012). For SVR, the parameters involve the penalty
coefficient and small positive number, in which both parameters

are embedded in dual problem formalism. Here, we respectively
set penalty coefficient and small positive number at 15 and 0.001,
according to Liu et al. (2020).

For CART and RF, parameter calibrations are subjected
to sensitivity analysis, which is conducted by “GridSearchCV”
function provided by scikit-learn module, which is a function
library for ML including all kinds of classification, regression
and clustering algorithms. RMSE is used to measure the errors
of results. The smaller the RMSE, the more favorable is the
performance of the predicted outcome. For CART, the maximum
depth of the tree (max_depth) and the number of node samples
(num_samples) are chosen by performing sensitivity analysis.
Figure 2 plots the RMSE calculations using the training samples.
We can see the optimal RMSE values are at max_depth = 20 and
num_samples = 11. For RF, the suitable parameters can also be
determined by using the same processes. The parameter setting
of all algorithms is concluded in the Table 3.

After training the parameters of the ML models, we
input testing samples for prediction. Ten sets of training
samples and testing samples are used in turn to perform SIC
prediction experiments. The model performance is evaluated by
quantitatively comparing the prediction results based on three
accuracy metrics: RMSE, R and MRE.

(5) Evaluation of Different Input Variables

We conduct the SIC prediction experiment (lead time = 1 d)
in the Kara Strait with different predictor variables. The accuracy
metrics of each experimental results are presented in Figure 3. As
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TABLE 3 | Parameter setting of four ML algorithms.

ML algorithm Parameter setting

SaD-ELM The number of hidden layers is 3;

The number of neurons in each hidden layer is 10;

The excitation function is “sig”;

The population number, variation probability and crossover
probability are set as 30, 0.5, and 0.4;

The remaining parameters are left with the default values.

CART The maximum depth of the tree and the number of node
samples are set as 20 and 11;

The remaining parameters are left with the default values.

RF The number of decision trees, the maximum depth of each
tree and the number of node samples are set as 100, 30,
and 10;

The remaining parameters are left with the default values.

SVR The kernel function is “rbf”;

The penalty coefficient and small positive number are set
at 15 and 0.001;

The remaining parameters are left with the default values.

can be seen from the figures, for the four ML models, the metrics
of each experimental result have little difference, indicating the
performance of the ML-based prediction models is stable for
different testing sets.

For further analysis, we calculate the average of ten prediction
results as the final result, which is displayed in Figure 4. RMSE,
R and MRE of the results are shown in Figure 5 and Table 4.
From visual inspection in Figure 4, for the four ML models, it
appears that the predicted trends with input variables screened
out by causal analysis are significantly better than predictions
based on correlation analysis. It can be seen from Figure 5 that,
although prediction performances of four causal analysis-based
ML models are different, it is worth noting that RMSE is less than
0.1, R is greater than 0.7, and MRE is less than 0.15, better than
the climatology used as the benchmark (RMSE: 0.113, R: 0.689,
MRE: 0.172). Compared with correlation analysis, predicted
results (Table 4) with causal analysis selecting predictors are
improved dramatically: on average, RMSE decreases by 36.15%,
R increases by 16.09% and MRE decreases by 29.17%. To sum up,
ML models with input factors screened by causal analysis have

FIGURE 3 | RMSE, R, and MRE of the four prediction model with the 10-fold cross-validation. (A) SaD-ELM. (B) CART. (C) RF. (D) SVR.
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FIGURE 4 | Mean prediction with lead time = 1 day of (A) SaD-ELM, (B) CART, (C) RF, and (D) SVR. The black line represents the observed SIC of NISIDC; the blue
line represents the prediction based on causal analysis; and the red line represents the prediction based on correlation analysis.

a significantly better prediction performance than those based
on correlation analysis. Causal analysis is an effective predictor
screening method.

(6) Evaluation of Various Lead Times

Then we take predictors screened by KGC to build ML-based
prediction models for SIC prediction with different lead times (1,
3, and 5 d). RMSE, R, and MRE of predicted results are showed
in Table 5 and Figure 6.

It can be seen from Table 5 that, for different lead times, the
prediction performance of CART is the worst, perhaps because
CART is often used to process discrete data and is prone to
overfitting for continuous time series prediction. In addition,
SVR is better than CART, but slightly worse than SaD-ELM
and RF, perhaps because daily time series of SIC contain some
noise and SVR is sensitive to data noise (Liu et al., 2020), so
the prediction error brought by noise increases. By contrast,

SaD-ELM based on adaptive differential evolution and RF based
on ensemble learning mechanism can obtain more accurate
prediction for different lead times.

Figure 6 illustrates that, with the increase of lead time, the
prediction performances of the four ML models decrease to a
greater or lesser degree: the prediction accuracy of CART and
SVR decreases notably; RF is the most stable, perhaps because
RF is an ensemble learning algorithm based on CART, which can
reduce the possibility of overfitting through averaging DTs, so it
is more accurate and stable than one individual model. When
lead time is short (<3 d), all the four ML models can achieve
satisfactory predicted results. That is because the relationships
between adjacent time are close with short lead time and the
nonlinearity is weak, so the mapping between predictors and
SIC can be easily captured by all ML algorithms. With lead
time increasing, SaD-ELM and RF still maintain stable prediction
accuracy, while the accuracy of CART and SVR decreases
dramatically. The error feed-back loop in SaD-ELM achieves the
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FIGURE 5 | (A) R, (B) RMSE, and (C) MRE of mean predicted SIC with different prediction models. White represents the prediction based on correlation analysis;
yellow represents the prediction based on causal analysis.

automatic error correction and the ensemble learning mechanism
in RF can enhance the prediction effect through multi model
fusion modeling. Therefore, SaD-ELM and RF perform better
with long lead time. Through the prediction experiment of SIC
in the Kara Strait, it can be concluded that: (1) Compared with
correlation analysis, the input factors of ML models screened
out by causal analysis lead to better predicted results; (2) By
analyzing R, RMSE, and MRE, the four ML algorithms are all
suitable for short-term prediction of SIC. Thereinto, RF and
SaD-ELM have better prediction performance under long lead
time condition.

TABLE 4 | RMSE, R, and MRE of SIC prediction with different predictors.

Evaluation index ML algorithm CA KGC Rangeability (%&)

RMSE SaD-ELM 0.121 0.075 −38.01

CART 0.146 0.101 −30.82

RF 0.116 0.068 −41.37

SVR 0.125 0.082 −34.41

R SaD-ELM 0.697 0.794 +13.91

CART 0.623 0.735 +17.97

RF 0.732 0.826 +12.84

SVR 0.642 0.768 +19.62

MRE SaD-ELM 0.143 0.102 −28.67

CART 0.198 0.144 −27.27

RF 0.135 0.091 −32.59

SVR 0.174 0.125 −28.16

Experiment II: SIC Prediction in the B-K Sea
(70–80◦N, 20–80◦E)
In order to test the generalization ability of various ML
algorithms and further discuss the reliability of ML, we also
make a short-term prediction of SIC fields in the whole B-K
sea. Based on the predictor variables selected by causal analysis,
four ML-based prediction models are constructed to predict daily
spatial distribution of SIC. At present, the studies about spatial
field prediction using ML algorithms are the minority. In our
research, we build the prediction model grid by grid in the
spatial field.

TABLE 5 | Predicted results with different ML algorithms and lead times.

Evaluation index ML algorithm d = 1 d = 3 d = 5

RMSE SaD-ELM 0.075 0.082 0.124

CART 0.101 0.125 0.175

RF 0.068 0.079 0.113

SVR 0.081 0.089 0.157

R SaD-ELM 0.793 0.739 0.636

CART 0.747 0.647 0.568

RF 0.826 0.799 0.767

SVR 0.767 0.668 0.598

MRE SaD-ELM 0.103 0.125 0.171

CART 0.144 0.172 0.236

RF 0.091 0.107 0.109

SVR 0.125 0.153 0.212
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FIGURE 6 | Predicted results with different ML algorithms and lead times. (A) RMSE. (B) R. (C) MRE. White represents prediction in lead time = 1 day; yellow
represents prediction in lead time = 3 days; and pink represents prediction in lead time = 5 days.

FIGURE 7 | Predicted SIC at grid point (80◦E, 80◦N) (the black line represents the observed SIC of NISIDC; the blue line represents the predicted SIC in lead
time = 1 d).
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FIGURE 8 | RMSE of predicted SIC at each grid point of B-K sea with four models (lead time = 1 day). (A) SaD-ELM. (B) CART. (C) RF. (D) SVR.

FIGURE 9 | R of predicted SIC at each grid point of B-K sea with four models (lead time = 1 day). (A) SaD-ELM. (B) CART. (C) RF. (D) SVR.
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TABLE 6 | Mean RMSE, R, MRE, and model running time of different prediction
models (lead time = 1 d).

Algorithm Mean RMSE Mean R Mean MRE Time (s)

SaD-ELM 0.076 0.773 0.113 133.269

CART 0.112 0.704 0.172 399.357

RF 0.069 0.798 0.103 860.953

SVR 0.089 0.739 0.146 917.671

Climatology 0.122 0.694 0.195 \

TABLE 7 | Predictions of SIC from January 1st to June 30th, 2000
(lead time = 1 d).

Algorithm Mean RMSE Mean R Mean MRE

SaD-ELM 0.149 0.627 0.214

CART 0.184 0.606 0.253

RF 0.101 0.712 0.132

SVR 0.136 0.675 0.185

Climatology 0.143 0.673 0.204

The data processing and parameters setting are carried out
by the same processes in Experiment I, and the remaining 100
samples of each grid point are used for the model test. Figure 7
shows the predicted results (lead time = 1d) of SIC at grid point
(80◦E, 80◦N). The distribution map of RMSE and R in the B-K
sea are shown in Figures 8, 9.

It can be seen from Figure 7: when lead time = 1d,
all ML algorithms can achieve effective prediction of SIC at
different sites. The predicted peak/low value corresponds to
the observation, and the changing trend of each time series is
accurately expressed. Prediction performances of SaD-ELM and
RF are better than CART and SVR, which is consistent with the
conclusion obtained in Experiment I. Figure 8 displays that the
prediction errors of the four ML algorithms in different regions
of the B-K sea are significantly different. From visual inspection,
RMSE of predicted SIC in the Kara Sea is higher than that in
the Barents Sea. We speculate that Novae Island and Eurasia
continent, surrounding the Kara sea, may affect the result as land
can lead to local meteorology and marine environment more
complex and changeable. Therefore, the sea ice is susceptible to
change and SIC is more difficult to predict (Chevallier et al., 2013;
Liu et al., 2020).

To determine the prediction ability of ML algorithms, we
calculate the average of each performance measure for all grid
points (61 × 11) and estimate the computational complexity.
Table 6 shows that, when lead time is short (<3d), the prediction
accuracy of these ML algorithms is satisfactory, better than
the accuracy of climatology, and suitable for SIC prediction.
RF based on ensemble learning has the highest prediction
accuracy, followed by SaD-ELM and SVR, while CART has
the worst prediction performance. From the perspective of
model running time, although the prediction performance of
SaD-ELM is slightly less than RF, its running time is shorter.
In light of this advantage, SaD-ELM can be applied to real-
time or quasi real-time sea ice prediction, which is of great
significance to Arctic navigation and engineering management.
By contrast, RF and SVR have lower performance when it

comes to computational complexity, which implies poor practical
engineering application.

In addition, we further compare the generalization ability of
the four ML algorithms. We take new datasets of predictors
and SIC from January 1st to June 30th, 2000 as testing samples
and predict SIC (lead time = 1d) with the trained ML-based
prediction models in section “Experiment II: SIC prediction in
the B-K sea (70–80◦N, 20–80◦E).” Compared with predicted
results in Table 6, the prediction accuracy of four ML algorithms
is reduced to a certain extent. Table 7 shows that the reduction
in prediction accuracy of RF is minimal (RMSE: +36.37%,
R: −10.77%, MRE: +21.97%), while the prediction accuracy
of SaD-ELM (RMSE: +96.05%, R: −18.89%, MRE: +89.38%)
and CART (RMSE: +64.29%, R: −13.92%, MRE: +47.09%)
decreases obviously. These results imply that RF has the best
generalization ability, followed by SVR, while SaD-ELM performs
worse in generalization.

CONCLUSION

In this article, we put forward a new idea of short-term prediction
of sea ice by introducing ML algorithms and causal analysis to
prediction modeling. Aiming at the imperious demand of short-
term and fast prediction of sea ice in the Arctic navigation, a data-
driven prediction technique of SIC based on causal analysis and
ML is developed. We first select predictor variables with causal
analysis instead of classical correlation analysis, then adopt SaD-
ELM, CART, RF, and SVR to establish corresponding prediction
models. The applicability and reliability of ML algorithms in sea
ice prediction are discussed. The main conclusions are as follows:

(1) Compared with correlation analysis, input variables of
ML-based prediction models screened out by causal
analysis lead to more accuracy predicted results.
Causal analysis works better than correlation analysis
in predictor selection.

(2) When lead time is short (<3 d), the four ML algorithms
are all suitable for short-term prediction of SIC. With the
increase of lead time, although the prediction accuracy
of the four models decreases to different degrees, they
are adequate to the need for navigation. RF has the best
predictive performance, followed by SaD-ELM and SVR,
while CART has the worst prediction accuracy.

(3) Compared with CART and SVR, the prediction accuracy
of SaD-ELM and RF is more stable with different
lead times. RF has the best prediction accuracy and
generalization ability but the largest time consuming. SaD-
ELM obtains more favorable performance from the aspect
of computational complexity but in the meantime, it has
weak generalization capability.

Through multi-set of prediction experiments, we analyzed
the prediction performance of SaD-ELM, CART, RF, and SVR
in SIC prediction at day time scales and concluded that ML
algorithms are appropriate for short-term prediction of SIC.
However, we only conducted a comparative analysis of multiple
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ML algorithms, and did not touch on improving the models.
Our future research will focus on the optimization of ML-
based models to further improve the prediction accuracy of
sea ice. In addition, in allusion to the high nonlinearity of
the daily time series of SIC, we will preprocess the time series
by wavelet decomposition or empirical mode decomposition
in the next study.
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