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Marine forests ecosystems are typical of temperate rocky benthic areas. These systems
are formed by canopy-forming macroalgae (Laminariales, Tilopteridales, and Fucales) of
high ecological value that provide numerous ecosystem services. These key species are
also indicators of good environmental status. In recent decades, marine forests have
been threatened by different impacts of local and global origin, putting their stability
and survival in question. On a global scale, in many temperate areas of the planet,
marine forests have been replaced by “sea-urchins barrens.” We present a general
overview of sea-urchins’ population status in the archipelagos of Azores, Webbnesia
(Madeira, Selvagens, and Canary Islands) and Cabo Verde, focusing on their role in the
maintenance of the so-called “alternate stable state.” After an in-depth evaluation of
the different anthropogenic and environmental pressures, we conclude that sea-urchins
population explosion has been facilitated in the benthic habitats of Madeira and Canary
Islands, preventing the recovery of canopy-forming macroalgae assemblages and being
one of the main drivers in maintaining a stable barren state. Diadema africanum is
the main barrens-forming species in Webbnesia, where it reaches high densities and
strongly impacts macroalgal assemblages. On the other hand, in the most pristine
areas, such as the Selvagens Islands and other Marine Protected Areas from the Canary
Islands, the density of D. africanum is up to 65% lower than in the nearby Madeira Island,
and macroalgal communities are preserved in good status. This information is critical for
marine environmental management, highlighting the urgent need for implementation of
appropriate control mechanisms and restoration actions headed to the conservation of
marine forests in Macaronesian archipelagos.

Keywords: canopy-forming macroalgae, Diadema africanum, NE Atlantic archipelagos, coastal pressures,
climate-change effects
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INTRODUCTION

Canopy-forming algae (Laminariales, Tilopteridales, and
Fucales) have been widely recognized as the underwater forests
of temperate rocky systems (Dayton, 1985). These key species
are characteristic of mature high productive systems, since they
are late-colonizers, with the ability to increase the structural
complexity of ecosystems providing habitat and food for many
associated species (Bray and Ebeling, 1975; Steneck et al., 2002;
Filbee-Dexter and Scheibling, 2014). Furthermore, its important
contribution to the benthic carbon cycle has been demonstrated
(Duarte and Cebrián, 1996), highlighting the capacity of the
macroalgal beds to act as atmospheric CO2 sinks (Watanabe
et al., 2019). The loss or reduction of these underwater forests has
multiple negative effects, with particularly strong effects on the
composition, structure and biodiversity of the associated benthic
assemblages (Steneck et al., 2002; Ling et al., 2015), producing
undesirable consequences at the ecosystem level (Worm et al.,
2006; Smale et al., 2013). By contrast, the presence of canopy-
forming algae is considered a clear indicator of good state for
rocky benthic communities (Hernández et al., 2008a). The loss
and even disappearance of canopy-forming algae communities
have been reported almost everywhere from various impacts,
such as overgrazing (Tuya et al., 2004a; Hereu Fina, 2007; Gianni
et al., 2017), sedimentation (Airoldi, 2003; Schiel and Gunn,
2019), pollution (Rodríguez Prieto and Polo Albertí, 1996; Soltan
et al., 2001), coastal urbanization (Scherner et al., 2013), and
climate change effects (Arafeh-Dalmau et al., 2020; Smale, 2020).

The role of sea-urchins as modifying agents for erect
algae community structure is well known (Watanabe and
Harrold, 1991; Filbee-Dexter and Scheibling, 2014; Miller et al.,
2018). Although there are other herbivores recognized as
relevant grazing agents, their functional activity is lower or
insignificant compared to sea-urchins (Cordeiro et al., 2020).
The intense browsing activity of these species can cause canopy-
forming macroalgal communities to collapse, transforming large
extensions of rocky bottoms in the named “sea-urchin barrens,”
a status dominated by turf and crustose coralline algae (CCA)
(Sala et al., 1998; Goreau et al., 2000; Guidetti et al., 2005).
When benthic bottoms reach this alteration point, they are in an
“alternate stable state,” presenting a high resistance to return to
its starting point (Figure 1; Knowlton, 2004; Filbee-Dexter and
Scheibling, 2014; Melis et al., 2019). This has been verified in
different regions of the planet, where the extent of sea-urchin
grazing exerts a major control on the structure and functioning of
the coastal benthic ecosystems (Hill et al., 2003; Tuya et al., 2004a;
Hereu Fina, 2007; Eklöf et al., 2008; Gianni et al., 2017; Yorke
et al., 2019). For example, in the Mediterranean Sea, algal cover
increased up to 40–50% in patches where the sea-urchin Arbacia
lixula was removed, while in control patches their cover never
exceeded 10% (Bulleri et al., 1999). Cover of macroalgae returned
to original levels only 6 months after the removal of Paracentrotus
lividus also in the Northwest Mediterranean (Bulleri et al.,
1999). Sea-urchins significantly affect habitat structure, even in
communities with low echinoid densities (Palacín et al., 1998).
At a global level and from an ecological view, the leading
causes that alter the balance between sea-urchin barrens and

erect algae communities can be divided into: (1) top-down
(loss of predation), (2) bottom-up (nutrient enrichment), and
(3) “side-in” (temperature, etc.) mechanisms. Moreover, these
drivers do not act in isolation, so the additive or synergistic
effects of multiple co-occurring mechanisms may contribute to
the maintenance of overgrazing over time (Eklöf et al., 2008).

The Macaronesian islands, a group of archipelagos located in
the Northeast (NE) Atlantic Ocean (Figure 2), have recently been
redefined, based on extensive analysis encompassing numerous
phyla (fish, echinoderms, macroalgae, among others) (Freitas
et al., 2019). Now the marine biogeographic unit of Macaronesia,
is consider as four distinct ecoregions: The South European
Atlantic Shelf, the Saharan Upwelling, the Azores ecoregion and
a new ecoregion herein named Webbnesia (formed by Madeira,
Selvagens and Canary Islands). In addition, Cabo Verde has
been proposed as an isolated ecoregion characterized as an
important hotspot of tropical reef biodiversity (Roberts et al.,
2002; Freitas et al., 2019). The altitudinal range of the various
islands across these archipelagos, coupled with their isolation
from the mainland result in climates that are atypical for their
latitudinal locations (Martín et al., 2012). But, in general, their
climate is framed by the semi-permanent presence of a high-
pressure system from the Azores, prevailing from the northeast
trade winds and the surrounding ocean, including the Azores and
the Canary currents (Cropper, 2013).

The major guild of grazing sea-urchins inhabiting coastal
rocky bottoms in the Azores, Webbnesia and Cabo Verde is well
represented by Arbacia luxila (Linnaeus, 1758), Arbaciella elegans
(Mortensen, 1910), Centrostephanus longispinus (Philippi, 1845),
Eucidaris tribuloides (Lamarck, 1816), Heliophora orbicularis
(Linnaeus, 1758), Paracentrotus lividus (Lamarck, 1816),
Sphaerechinus granularis (Lamarck, 1816), and Diadema
africanum (Rodríguez et al., 2013). Local primary production,
recruitment, settlement of new individuals or topographic and
substrate complexity are considered the main natural factors
driving their abundance patterns (Clemente and Hernández,
2008). Moreover, ocean circulation, salinity, or sea surface
temperature (Stobberup et al., 2004; Lázaro et al., 2005) are
frequently recognized as additional key factors that specifically
affect large-scale geographic echinoid assemblages. However,
sea-urchin population explosions have been detected over the
last decades, with the consequent loss of macroalgal covers
from the Sargassaceae family as dominant habitat-forming
species of the region (Tuya et al., 2004a,b). These losses are
particularly evident when high-density populations of both
A. lixula and D. africanum are reached due to their strong
capacity of modifying the benthic communities (Alves et al.,
2003). Although various authors have hypothesized that the
overfishing of natural predators of sea-urchins is the main factor
that favors their proliferation in the area (Tuya et al., 2004b),
there has been no holistic approach conducted to set a basis for
better understanding the different potential causes of sea-urchin
proliferation (Sangil et al., 2018; Gizzi et al., 2020).

Thus, the present study aims to provide the first
comprehensive compilation of the existing information on
the potential threats affecting macroalgal forests of Azores,
Webbnesia and Cabo Verde, focusing on the role of sea-urchins
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FIGURE 1 | Diagram illustrating the two-system rocky benthic bottoms: marine forests and sea-urchins barrens. Transition processes between states depending on
fishing activities and habitat degradations impacts (modified from Sala et al., 1998) (Symbols courtesy of the Integration and Application Network, University of
Maryland Center for Environmental Science (ian.umces.edu/symbols/).

in the maintenance of the so-called “alternate stable state.”
Evidence about the main anthropogenic pressures and other
environmental factors involved in the sea-urchin population
explosion historically detected are discussed and pondered across
NE Atlantic archipelagos.

SEA-URCHIN BARRENS AND
MACROALGAL FORESTS IN NE
ATLANTIC ARCHIPELAGOS

Azores
The Azorean archipelago (38.5◦N,–28◦E) is a group of nine
volcanic islands with coasts formed by cliffs and rocky
shores interspersed with sandy beaches (Borges, 2004). Waters
surrounding the Azores are mesotrophic with sea surface
temperature (SST) usually range between 15.5 and 23.2◦C
(Amorim et al., 2017; Sangil et al., 2018).

The Azores’ rocky coasts are mainly characterized by patchy
algae-based communities (Martins et al., 2005). The diversity
of algal species is much lower than that of the remaining
archipelagos, being Zonaria tournefortii and Dictyota dichotoma
dominant species (Neto et al., 2014; Sangil et al., 2018). The
diversity of herbivores is also low compared with the rest of the
archipelagos (Sangil et al., 2018). The sea-urchins population is
composed of A. lixula, P. lividus, and S. granularis (Hawkins et al.,
2000), species with remarkably lower voracity than D. africanum
(Bulleri et al., 1999; Alves et al., 2001). The species P. lividus and
A. lixula do not appear to coexist in the archipelago (Hawkins
et al., 2000). P. lividus was always found in shallow waters, while
A. lixula was present from depths of 10–18 m, suggesting that
this species could be responsible for the Azorean barrens. Those

areas with low densities of A. lixula showed well-established algae
communities. These covers were substantially reduced, or non-
existent, when the echinoid density surpassed 15 individuals m−2

(Marques, 1984). Consequently, the area below the low tide mark
has experienced zoning patterns from bottoms dominated by red
algae in the upper layers, giving way to A. lixula, S. granularis
and CCA in the low tidal zones (Hawkins et al., 2000). Although
D. africanum has been sporadically found on the southern island
of Santa Maria (Minderlein and Wirtz, 2014), it has not been
detected in the rest of the Azorean archipelago.

Webbnesia: Madeira, Selvagens, and
Canary Islands
Madeiran archipelago (32.4◦N,–17◦E) is formed by the
islands of Madeira, Porto Santo, Desertas, and the distant
southern Selvagens. The coastline in this archipelago is
predominantly rocky, with a mix of platforms, boulders, and
very few interspersed sandy-pebble beaches. The waters are
oligotrophic, and SST typically ranges between 17.0 and 23.5◦C
(Schäfer et al., 2019).

Sea-urchin species known to occur in Madeira archipelago
include P. lividus, A. lixula, S. granularis, D. africanum, with
lower abundances of A. elegans and C. longispinus (Wirtz, 1995).
Since the early 90’s the D. africanum populations in Madeira
Island are in full expansion (Abreu et al., 1995). The high
density of D. africanum appears to be reflected in the reduction
of canopy-forming algae abundance, transforming macroalgal
communities to mainly patchy cover of turf (Friedlander et al.,
2017). The high-density population of D. africanum has been
partly explained by the low control capacity of top-down
processes associated with the absence or very low predator
densities (Alves et al., 2001, 2003). Particularly, Alves et al. (2001)
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FIGURE 2 | Map of the oceanic archipelagos of Azores, Madeira, Canary Islands and Cabo Verde.

found high population densities of D. africanum (8–17 ind. m−2)
reaching a maximum record of 68 ind. m−2 in the southern coast
of Madeira, contrasting with low densities along the northwest
coast. The north and west coast of Madeira is often exposed to
rough waters, and thus lower recreational fishing pressure, which
may be responsible for these observed differences in D. africanum
density (Clemente et al., 2014; Friedlander et al., 2017). Similarly,
densities reported on Porto Santo Island (33.06◦N,–16.35◦E)
were also much lower, possibly due to its geomorphological
features characterized by large sandy accumulations (Hernández
et al., 2008b). Moreover, some sea-urchin specimens were found
at lower depths than in Madeira Island (i.e., 1 m at Porto
Santo pier), which is likely related to a lower wave exposure
(Alves et al., 2001).

The Selvagens Islands (30.14◦N,–15.86◦E) form an isolated
group of small islands and reefs located south of Madeira
Island (290 km approx.) and north of the Canary Islands

(170 km approx.). This sub-archipelago has been a Marine
Protected Area (MPA) for over 40 years being one of the most
pristine places in Webbnesia and one of the few intact marine
ecosystems in the NE Atlantic Ocean. Selvagens benthic bottoms
are dominated by turfs, erect algae and canopy-forming species
(Friedlander et al., 2017). Although D. africanum is the most
common mobile invertebrate in the Selvagens, its abundance is
65% lower than in Madeira (2.7 ind. m−2 vs. 4–7 ind. m−2)
(Friedlander et al., 2017).

The Canary Islands (28.53◦N,–15.74◦E), located near the
Northwest African Coast, are composed of seven islands that
present high geological and topographic variability. The waters
are oligotrophic, affected by a nutrient increase through the
upwelling, and annual variation in SST ranging from 18.0 to
24.0◦C (Valdazo et al., 2017; Sangil et al., 2018).

The most abundant sea-urchins’ species in coastal rocky
habitats of the Canary Islands are: P. lividus, A. lixula,
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FIGURE 3 | Rates of sea surface warming in NE Atlantic archipelagos, based
on 37 year of daily sea surface temperatures (SSTs; 1982–2018) from National
Oceanic and Atmospheric Administration (NOAA) 1/4 arc-degree Daily
Optimum.

S. granularis and D. africanum (Hernández et al., 2013; Sangil
et al., 2018). However, the barrens generated by D. africanum
are more widely spread throughout the archipelago (Brito, 2004;
Tuya et al., 2004b; Hernández et al., 2005, 2008a). D. africanum
barrens extend up to 50 m in depth, and occupy approximately
70% of the rocky bottoms habitats (Barquín-Diez et al., 2005).
The densities of D. africanum range between 6 and 12 ind.
m−2 (Clemente et al., 2014) and, although it presents high
spatial variability, is correlated with human activities (Hernández
et al., 2008a; Clemente et al., 2011). The highest densities
of D. africanum are found on Tenerife Island, which also
supports the highest fishing pressure, population density and
tourism development (Clemente et al., 2014). Densities of
D. africanum higher than 2 ind. m−2 forms barrens through
all the Canary Islands, reducing the cover of non-crustose
algae below 50% (Hernández et al., 2008b; Sangil et al., 2011).
More severe reductions (i.e., below 30% of algal cover) occurs
when the density of sea-urchins increases to 4 ind. m−2, where

the ecosystem shifts and becomes D. africanum dominated
(Clemente et al., 2007).

In the Canary Islands, MPAs have proven to be a successful
tool for the conservation of marine forests and the control of
D. africanum populations. For example, the Marine Reserve of
Mar de Las Calmas (El Hierro Island) and the MPA of the
southern coast of La Palma Island. Both of the aforementioned
areas are dominated by erect algal communities in the shallow
infralittoral and circalittoral beds (Hernández et al., 2005, 2008a,
Hernández, 2009; Sangil et al., 2012). Especially in the MPA of La
Palma where the densities of D. africanum are lower than those
found in the Selvagens, reaching maximum densities of 0.5 ind.
M−2 at depths of 10–15 m (Sangil et al., 2012). Interestingly,
individuals are smaller in these protected areas, related to lower
availability of food resources (Clemente et al., 2007; Hernández
et al., 2007) and higher abundances and biomass of predatory sea-
urchin fishes, which exert direct pressure on the larger population
sizes (Sangil et al., 2012).

Cabo Verde
Cabo Verde (14.91◦N,–23.50◦E) is an archipelago with an arid
climate located in the mid-Atlantic Ocean (570 km off the west
coast of Africa). SST usually ranges between 20 and 25◦C with
nutrient-rich waters supported by strong upwelling from the
coast of Senegal and Mauritania (Freitas et al., 2019).

A total of 4 species of sea-urchins appear in the Cabo Verde’s
coastal systems: A. elegans, D. africanum, E. tribuloides, and
H. orbicularis. Benthic ecosystems in Cabo Verde, as a tropical
region, have more complex trophic structures than that of
the remaining archipelagos, in addition to a greater diversity
of predators and herbivores. Shallow benthic systems of the
archipelago are dominated by algae, anthozoan communities
and D. africanum densities are low in the region [<1 ind.
m−2 (Entrambasaguas et al., 2008)], with no reports of barrens
originating from its grazing activities.

COASTAL FEATURES AND HUMAN
PRESSURES

Wave Exposure, Depth and Bottom
Complexity
Wave exposure and depth have been reported as important and
interacting environmental factors in determining sea-urchins’
abundances (Hernández et al., 2020). In strictly sheltered areas,
densities of D. africanum increased with water depth reaching
a maximum density at 15–20 m (Sangil et al., 2011). Also, in
Madeira Island, Friedlander et al. (2017) found a 35% increase in
D. africanum density at 20 m compared to 10 m. Some sheltered
coasts of the Canary Islands are still covered by erect algae in the
shallow levels, while on exposed coasts, the higher densities of
sea-urchins appear at greater depths, just below the shallow band
of macroalgae (Hernández et al., 2008a).

Substrate complexity is an important driver for D. africanum,
as this sea-urchin seemed to be associated with large and
medium-sized rocky habitats, which may be related to particular
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behavior and feeding size (Entrambasaguas et al., 2008). The
presence of boulders allows D. africanum to feed on epi- and
endolytic algae, depleting erect algae and leading to barrens
(Tuya et al., 2004b). Habitats with high topographic relief have
denser populations of D. africanum than less suitable flat areas
(Hernández et al., 2006a; Clemente et al., 2007), where low
complexity is related with macroalgae dominance (Hernández
et al., 2006a, 2008b; Clemente et al., 2007). Specifically, this
species needs holes for refuge due to its very large spines (up
to 500 mm long) and, therefore, it would be more exposed to
predators in rocky platforms (Hendler et al., 1995).

Overfishing
Marine forests owe their existence to the balance reached by
the different parts of the ecosystem, but the stressors derived
from human activities can alter their ecological status. The
disappearance of top predators due to overfishing has been
linked to the shift from macroalgal forest to sea-urchin barrens
(Tuya et al., 2004a, 2005; Clemente et al., 2007, 2010, 2011;
Sangil et al., 2011). Fishing pressure is particularly high on
coastal ecosystems of areas densely populated, which implies
a lower abundance of D. africanum predators, and, through a
cascade effect, a hyperabundance of sea-urchins, causing the
disappearance of macroalgal forests (Hernández et al., 2008b).
Recent studies also reported strong recreational fishing pressures,
reaching annual catches of almost 12,000 t in the Canary Islands
(Gordoa, 2019) and 1,500 t in Madeira (Martínez-Escauriaza
et al., 2020a,b). In Madeira, many recreational fishermen have
reported a decrease in catches, and attribute this to both (i)
the generalized degradation of coastal systems, and (ii) the
fishing of individuals below the minimum landing size (Hermida
and Delgado, 2016; Martínez-Escauriaza et al., 2020a). Fish
biomass is more than three times higher in Selvagens than
Madeira (Friedlander et al., 2017). Species known to feed and
control sea-urchins’ populations (e.g., Balistes capriscus, B. scrofa,
Canthidermis sufflamen, and S. cretense) were abundant in
the Selvagens compared to Madeira (Clemente et al., 2010;
Friedlander et al., 2017). These patterns are very similar to
those found in the Canary Islands, which show clear differences
between MPAs and unprotected areas about abundance and
biomass of these predatory species (Sangil et al., 2013).

Coastal Urbanization
Successful conservation and implementation of MPAs promote
stability and positive growth of macroalgal communities. In
contrast, poor macroalgal cover results from unprotected, and
consequently more human-impacted areas (Sangil et al., 2012,
2018; Friedlander et al., 2017). In fact, the number of inhabitants
has been positively correlated with the density of D. africanum,
highlighting the strong effect of the anthropogenic pressure on
the coastal bottoms of the region (Hernández et al., 2008b). Some
densely populated areas are exposed to high levels of habitat
loss and fragmentation, a threat that is considered to affect
global coastal diversity (Airoldi and Beck, 2007). Modification of
continuous natural rocky platforms can reduce the development
of macroalgae and reduce the habitat available for canopies
colonization (Cacabelos et al., 2016). Vertical substratum slope,
pollution and urbanization are the main drivers involved in the

distribution of Fucales (Fabbrizzi et al., 2020), although in the
Azores, limited-dispersal capacity from adults has been also cited
as a relevant factor limiting its ability to colonize artificial coastal
defense structures (Cacabelos et al., 2016). In fact, in Madeira,
extensive development and construction in marine and coastal
systems (the so-called “ocean sprawl”) has destroyed some of
the scarce natural rocky platforms in the island, diminishing
the suitable habitat available for canopy-forming macroalgae
communities. These human-related perturbations can lastly lead
to local changes in the light and turbidity regimes due to
modifications in coastal hydrodynamics (Tuya et al., 2002),
producing adverse effects on benthic communities. Changes in
land use, both inland and along the coasts of the islands can
increase loads of sediments, pollutant and nutrients charges
(Airoldi and Beck, 2007; Baioni et al., 2011; Smith, 2016).
Specially, sedimentation can affect the survival and recruitment
of erect algae and sea-urchins, and favoring the dominance of
turf (Airoldi, 2003; Schiel and Gunn, 2019). Long-term data
on water turbidity and sediment load is necessary to evaluate
the effects of these stressors across our study region and the
particular consequences for the conservation of their coastal
benthic communities.

CLIMATE CHANGE-RELATED EFFECTS

Ocean Warming
In the actual context of climate change, ocean warming implies
a global impact to be taken into account to study coastal benthic
communities (Steneck et al., 2002; Martín et al., 2012; Smale,
2020). The increase of NE Atlantic’s water temperatures in
recent decades has been higher than expected, especially for
the Azores, Webbnesia and Cabo Verde (Cropper and Hanna,
2014). This increase was higher than other areas with similar
climatic and geographical characteristics (Cropper and Hanna,
2014). This is reflected in the increase of the SST since 1982,
with an approximate increase of 0.3◦C per decade, being highest
in the Azores (Figure 3). Experimental studies have shown the
positive relationship of increasing temperatures on recruitments,
larval survival and development of D. africanum (Fuentes et al.,
2013). Previous studies in the Canary Islands have shown the
positive trend between the increase in temperatures and the
settlement of D. africanum, becoming exponential above 23◦C
(Hernández et al., 2006a, b). Warming also allows tropical
species to colonize new areas, the so-called tropicalization
process (Brito, 2004; Bianchi, 2007; Afonso et al., 2013; Ribeiro
et al., 2019; Schäfer et al., 2019). The detection of D. africanum
in the island of Santa Maria (Minderlein and Wirtz, 2014),
located in the south-eastern limit of the Azores, could be
an example of this tropicalization. The possible expansion
of tropical affinity species in the region seems to be favored
by the recent increase in water temperatures (Afonso et al.,
2013; Ribeiro et al., 2019). However, as only two individuals
have been recorded in 2010, the establishment of a resident
population of D. africanum in the Azorean archipelago seems
unlikely at present. For macroalgae formations, the increase
in temperatures has a negative impact (Wernberg et al., 2011).
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Various studies have shown that macroalgae, especially canopy-
forming species, are threatened by rising temperatures (Smale,
2020). Furthermore, marine heatwaves have also shown
significant impacts on coastal macroalgal formations (Frölicher
and Laufkötter, 2018; Filbee-Dexter et al., 2020; Verdura et al.,
2021). These extreme events are likely given the projected
climate change scenarios (Filbee-Dexter et al., 2020). In the
context of tropicalization, which the region currently finds
itself (Freitas et al., 2019), the role of rising temperatures
and marine heatwaves could be one of the main impacts for
marine forests.

Ocean Acidification
Acidification of the oceans and coastal areas is another process
related to climate change. In different experimental studies,
sea-urchins are shown to be especially vulnerable to ocean
acidification (OA) (Johnson et al., 2012; Byrne et al., 2013;
Calosi et al., 2013; Hall-Spencer and Allen, 2015). OA seems
to negatively affect their settlement and larval development
(Pecorino et al., 2014). Recent studies with species from the
region suggest that intertidal species (A. lixula and P. lividus)
are less vulnerable than subtidal species (D. africanum and
S. granularis) to future scenarios of acidification (García et al.,
2018). Furthermore, OA increases the feeding rates of juveniles of
P. lividus, yet differences in feeding rates of D. africanum on algae
reared under low pH were not found (Rodríguez et al., 2018).
Future scenarios of OA can have indirect effects over marine
forests, increasing herbivorous pressure in and affecting the
growth of macroalgae (Rodríguez et al., 2018). Many macroalgae
species have been tolerant to long-term increases in CO2 levels,
but habitats are significantly altered as pH decreases, being a
long-term impact (Porzio et al., 2011). Long-term effects need
to be explored in depth for NE Atlantic archipelagos, testing the
combined effect of increased temperatures and acidification of
coastal systems.

Stochastic Weather Events
Massive D. africanum mortality events have occurred in the
last decade in the region, affecting particularly to Madeira
and the Canary Islands (Clemente et al., 2014; Gizzi et al.,
2020). The first mass mortality event was recorded between
October 2009 and April 2010 (Clemente et al., 2014), and the
second in February 2018 (Gizzi et al., 2020; Hernández et al.,
2020). These massive mortality events have been attributed to
different impacts or environmental conditions such as changes
in temperature, salinity or pH that favor the proliferation of
disease-causing pathogens (Scheibling and Stephenson, 1984;
Girard et al., 2011; Gizzi et al., 2020). According to the “killer
storm” hypothesis (Scheibling and Hennigar, 1997; Scheibling
and Lauzon-Guay, 2010), strong storms would have generated
a pronounced movement of underwater sediments and large-
scale vertical mixing of particles. This mixing could promote the
vertical movement of infectious agents, as the amoeba Paramoeba
brachiphila, and its subsequent sedimentation in sea-urchins,
causing infections and mortality (Hernández et al., 2020). The
killer storms were also described in other latitudes typically
involving tropical storms (Scheibling and Hennigar, 1997; Feehan
et al., 2016). After the decrease in the abundance of sea-urchins
at specific points, a slow colonization by fucoids has been
observed, persisting for at least 2 years (Clemente et al., 2014),
but further observations will be necessary to fully address the
potential re-growth. The low frequency of these storms in the
region can explain the persistence for decades of sea-urchin
barrens in the Canary Islands and Madeira (Hernández, 2017).
However, this scenario could change in the coming decades, as
the magnitude and frequency of extreme events are expected
to increase in the North Atlantic (Pardowitz, 2015). For this
reason, attention should focus on possible new massive mortality
events as a consequence of meteorological processes, as well as
the consequences for the benthic macroalgal communities due to
the sudden mortality of sea-urchins.

TABLE 1 | Interactions of discussed drivers and impacts over marine forests and sea-urchin barrens.

Coastal features and human pressures Climate change-related effects

Bottom
complexity

Wave
exposure

Depth Overfishing Coastal
urbanization

Ocean
warming

Ocean
acidification

Stochastic
weather events

Sea-urchin’s barrens • ◦ • • • • ◦ ◦

Marine forests ◦ • ◦ ◦ ◦ ◦ ◦ ◦

Archipelago

Azores • • • • • • • •

Madeira • • • • • • •

Canary Islands • • • • • • • •

Cabo Verde • • • • • • • •

Source 1–5 1,6–9 1,6–9 5,7,10–16 4,8,17–19 3,20–22 23 24–26

1: Hawkins et al., 2000; 2: Entrambasaguas et al., 2008; 3: Hernández et al., 2006a; 4: Hernández et al., 2008b; 5: Clemente et al., 2007; 6: Hernández et al., 2008a;
7: Sangil et al., 2011; 8: Friedlander et al., 2017; 9: Hernández et al., 2020; 10: Tuya et al., 2004a; 11: Tuya et al., 2005; 12: Clemente et al., 2010; 13: Clemente et al.,
2011; 14: Hermida and Delgado, 2016; 15: Martínez-Escauriaza et al., 2020a; 16: Martínez-Escauriaza et al., 2020b; 17: Tuya et al., 2002; 18: Sangil et al., 2012; 19:
Sangil et al., 2018; 20: Hernández et al., 2006b; 21: Sansón et al., 2013; 22: Freitas et al., 2019; 23: García et al., 2018; 24: Clemente et al., 2014; 25: Hernández et al.,
2020; 26: Gizzi et al., 2020.
These interactions can be positive (•) or negative (◦) for each state. Interactions have been categorized as evidence (•), correlative (•), hypothesizes (•) or circumstantial
(•) according to the bibliography consulted for each of the archipelagos present in our study area.
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FIGURE 4 | Different theoretical scenarios of restoration efforts: (•) MPA: no-take areas and restoration actions (passive + active, e.g., sea-urchin’s eradication,
revegetation, human local pressures mitigation, and climate-change mitigation policies), (•) marine reserve (passive: non-active protection), (•) restoration actions
(active), and (•) outside reserve (no management) with the hypothetical tipping point to overcome. For those highly degraded communities, only a combined
management of active and passive activities is suggested as the option able to have a long-term recovery scenario. MPA, marine protected area. Symbols courtesy
of the Integration and Application Network, University of Maryland Center for Environmental Science (ian.umces.edu/symbols/).

CONCLUSION AND CONSIDERATIONS
FOR FUTURE RESTORATION ACTIONS

In this study we have chosen a series of factors and impacts
available in the literature (Table 1). We assume that there are
other important drivers, not explored in the region yet, in
the development and maintenance of sea-urchin’s barrens that
should be studied in future works in the NE Atlantic archipelago
(e.g., nutrient regimes, bio-invasions, light pollution). Most of
the information identified as evidenced in this work comes from
studies developed in the most studied areas of the region, the
archipelago of the Canary Islands and the archipelago of Madeira.
Even so, it is necessary to expand the study of these drivers in
the region, in order to identify the main impacts and highlighting
those that currently suppose correlative factors and hypotheses.

In general terms, the macroalgal communities of the NE
Atlantic archipelagos have suffered a dramatic decline due to
the interaction of different factors. An increase in grazer activity
as a consequence of the explosion of sea-urchin populations
due to the cascading effect of overfishing, seems to be a
relevant factor in maintaining these habitats in the “barren” state
(Figure 4). However, it is important to highlight that this has
not been a common pattern throughout the coast of the different
archipelagos, since there are still areas in the region where
we can find well-developed macroalgal communities. Clearly,
it is a consequence of the high variability on the conditions

and the interplay of multiple environmental factors (e.g.,
level of protection, sedimentary processes, coastal urbanization,
substrate complexity, climate change effects, extreme events) of
the areas that modulate the sea-urchin population dynamics
(Figure 4). In fact, the disappearance of canopy-forming species,
especially in the Webbnesia, can have different reasons, with
overfishing, habitat fragmentation, or processes related to climate
change acting in different ways. Degradation of these ecosystems
created a perfect scenario for sea-urchins proliferation, boosted
by the elimination of their predators by overfishing and creating
alternative stable barren systems. The recovery of key predatory
fishes has been identified as the more efficient mechanism for
the regulation of sea-urchin populations (Clemente et al., 2010).
Regulation of fisheries can lead the recovery of macroalgal forests
by cascade effects, promoting the conservation of predatory
fishes to maximize predation across the size spectrum of
D. africanum (Clemente et al., 2010). The MPA in La Palma
Island is a clear successful example of how to recover an
area dominated by urchin barrens and achieve well-developed
macroalgae habitats. In addition, it shows how a well-managed
protected area can reach these status changes in a short period
of time 4 years (Sangil et al., 2012). Another example of success
are the remote Selvagens Islands, currently representing one of
the most pristine ecosystems of the NE Atlantic (Friedlander
et al., 2017). However, other cases have shown how protection
as an isolated passive action has not produced the desired
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consequences in the food chains in a long term, and even the
biomass of sea-urchins increase directly (Malakhoff and Miller,
2021). The success of future actions for restoration of marine
forests need to consider this reality and assume that passive
restoration efforts are probably not enough (Figure 4). We
suggest that to achieve the recovery of the marine forests in
those degraded areas of the region, it is necessary to carry
out a series of active actions, such as fishing regulation (Sangil
et al., 2012), sea-urchin complete eradication and macroalgal
revegetation (Medrano et al., 2020). In those more degraded
areas, where the pressure of propagules of canopy-forming
macroalgae is not enough, it will be necessary to carry out
revegetation actions from source populations (Medrano et al.,
2020). Furthermore, Cystoseira/Gongolaria/Ericaria are genus
with low-dispersal capacity without planktonic stages (Susini
et al., 2007). For this reason, the main restoration techniques
focus on the translocation of fertile branches or individuals
that can directly release the propagules where they are placed
(Verdura et al., 2018; Medrano et al., 2020). Due to its dispersal
strategy there may be limitations of connectivity, and as a
consequence, smaller population gene pools and sizes render
populations more vulnerable to threats (Buonomo et al., 2017). In
future climate change scenarios, it may be necessary to use genetic
techniques allowing the optimal selection of individuals or
populations that are more resistant to the resulting impacts, thus
increasing the resilience and adaptive capacity of the restored
populations (Coleman et al., 2020). But these measures can be
insufficient if they are not combined with the establishment
of well-enforced No-Take areas (Medrano et al., 2020). The
creation of marine reserves without active protection planning
does not reach the minimum levels for the maintenance of
the eco-services that these systems provide (Sangil et al., 2012;
Figure 4). Recovery will definitely depend on first establishing
important ecological protection rules, e.g., the successful MPAs
in the region. However, the combination of multiple human

pressures left the coastal system in a point of no return where
the effectiveness of restoration actions will inevitably pass by the
implementation of additional active management interventions,
in order to help the system to overcome the tipping point and
reach a long-term re-establishment of the macroalgal forests.
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