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The use of top-consumers as bioindicators of the health of food webs is hampered
by uncertainties in their effective use of resources. In this study, the abundance of
stable nitrogen isotopes in amino acids from homogenised eggs of the Yellow-legged
Gull (Larus michahellis) allowed to identify variations in trophic resource exploitation
between geographically adjacent nesting colonies in the Ria de Vigo (NW Spain) that
exhibited marked differences in pollutants. Eggs from nests in the Cíes Islands (located
in a National Park) showed a large variability in stable carbon and nitrogen isotopes in
bulk egg content encompassing that of eggs from Vigo city (a major fishing harbour).
However, both colonies differed in the relative concentration and abundance of nitrogen
isotopes of lysine, an essential amino acid present in marine prey, but also extensively
used in feed stocks for poultry and swine. Notwithstanding the similarity in trophic
position for both colonies, gulls from Cíes Islands may have acquired a substantial
fraction of lysine from garbage dump sites, while those of the urban colony relied on fish
discards. This unexpected conclusion is partly supported by the large variability reported
for gull’s diet in this region and calls for detailed estimations of diet when assessing the
conservation status and pollution risks of marine ecosystems.
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INTRODUCTION

Top consumers from oceanic food webs are good indicators of the biogeochemistry and
conservation status of marine ecosystems. They integrate processes operating at lower food web
levels and thus represent the result of ecosystem functioning at large spatial and temporal scales
(Hebert et al., 2016; Ruiz-Cooley et al., 2017). Estimations of their trophic position (TP) are key
to determine ecosystem properties as food-chain length (Vander Zanden and Fetzer, 2007; Reum
et al., 2015) or the biomagnification of pollutants (Storr-Hansen et al., 1995; Dietz et al., 2000;
Kelly et al., 2008). For instance, changes in TP are indicative of alterations in food web structure
(Jenkins and Davoren, 2020) or in nutrient inputs (Ruiz-Cooley et al., 2017). Particularly, seabirds
have been extensively used as biomonitors of persistent organic and trace metal contaminants (e.g.,
OSPAR, 1999), with biomagnification effects critically dependent on their TP (Ramos et al., 2013;
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Gatt et al., 2020). Methodological uncertainties, however, difficult
the accurate determination of TP in these organisms.

Direct quantification of diets cannot be achieved for most field
populations, as they may be inaccessible for long periods (e.g.,
Matias and Catry, 2010; Gatt et al., 2020) and the analysis of
stomach contents, pellets or regurgitates cannot identify all the
consumed prey (González-Solís, 2003; Abdennadher et al., 2010;
Moreno et al., 2010; Calado et al., 2018; Méndez et al., 2020).
Alternative determinations based on the progressive enrichment
in heavy nitrogen isotopes (expressed as δ15N) through the
food web allow for estimations of TP and diet composition
integrated in space and time, but are highly dependent on factors
as the appropriate selection of reference baselines (Post, 2002),
the assumptions of the enrichment model (Hussey et al., 2014;
Jennings and van der Molen, 2015) and the tissue analysed (Caut
et al., 2009; Hebert et al., 2016). Nevertheless, these limitations
have not impeded the extensive use of δ15N in bulk tissues to
infer TP and biomagnification of pollutants in many studies (e.g.,
Abdennadher et al., 2010; Ramos et al., 2013). The application
of compound-specific isotopic analyses (e.g., δ15N in amino
acids) have reduced some of the uncertainties in TP estimations,
because the changes in the nutrient sources at the base of the
food web can be accounted for Chikaraishi et al. (2009). Even
when there are still uncertainties in the variability of the isotopic
enrichment along the food web (McMahon and McCarthy, 2016;
Ohkouchi et al., 2017; Whiteman et al., 2019) the new estimations
based on amino acids are being increasingly applied to marine
birds (McMahon et al., 2015; Wu et al., 2018; Gatt et al., 2020).

Eggs of the Yellow-legged Gull (Larus michahellis) have
been used to monitor organic and trace metal pollutants
(Abdennadher et al., 2010; Ramos et al., 2013; Otero et al., 2018;
Viñas et al., 2020). The large feeding plasticity reported for this
species, however, difficult the identification of the sources of
pollutants. For instance, gull colonies near urban areas have been
shown to consume more terrestrial and anthropogenic resources
than marine prey (Arizaga et al., 2013; Méndez et al., 2020;
Zorrozua et al., 2020). A previous study of two colonies only
10 km apart in the Ria de Vigo (NW Spain) revealed significant
differences in the load of pollutants in their eggs, pointing to a
rapid adaptation to local feeding resources (Viñas et al., 2020).
The colony nesting on the Cíes Islands (located in a marine
protected area) showed lower concentrations of pollutants and a
wider trophic niche than the colony nesting in the industrialised
Vigo city. Furthermore, the estimated diet composition in the
region, including colonies in the Cíes Islands, showed marked
year to year variations related to the availability of marine vs.
anthropogenic resources, the latter including mainly beef, pork,
and chicken remains (Moreno et al., 2010; Calado et al., 2020).
These findings suggest that major changes in the diet of the
Yellow-legged Gull may affect TP and therefore TP can be
used as an indicator of changes in the trophic structure of the
food web. Alternatively, pollution loads could be caused by the
differential exploitation of trophic resources without a substantial
change in TP.

The objective of this study is to determine the trophic
position of Yellow-legged Gull in two colonies differing in the
accumulation of pollutants (Viñas et al., 2020). We applied for

the first time estimations derived from the amino acid stable
isotope composition of eggs, allowing to infer differences in
trophic position and diet between the gulls in the two colonies.
These estimations aimed to assist in the interpretation of the
differential impact of contaminants in these colonies by revealing
the sensitivity of TP estimations to diet variability.

MATERIALS AND METHODS

Sampling
Yellow-legged Gull eggs were collected from nests in the Cíes
Islands (11 eggs) and in the city of Vigo (7 eggs) during
the breeding season of 2011 (April to early August). First
laid eggs in each nest were selected for analysis, weighed and
measured (length and width) before opening (Supplementary
Table 1). Embryonated eggs were discarded and the remaining
were individually homogenised, stored frozen (−20◦C), and
freeze-dried before analysis. Further details on sampling were
provided in Viñas et al. (2020).

Analysis
Two types of isotopic determinations were made. First, C:N ratios
and natural abundances of carbon (δ13C) and nitrogen (δ15N)
stable isotopes were determined in bulk egg samples using an
isotope ratio mass spectrometer coupled to an elemental analyzer.
Egg samples were analysed in triplicate with precision < 0.05h
for both isotopes. Due to the high lipid content of egg samples,
δ13C values were corrected using the C:N ratio of each sample

TABLE 1 | Mean and sd trophic position values (TP) estimated for gull species
using stable isotopes in this study and in the literature.

Species Mean SD n Zone References

Larus michahellis1 3.96 0.67 18 Galicia (NE Atlantic) This study

Larus michahellis2 3.86 0.47 18 Galicia (NE Atlantic) This study

Larus michahellis3 3.70 0.42 60 Tunis
(Mediterranean
Sea)

Abdennadher
et al., 2010

Larus michahellis4 3.91 1.56 30 S Portugal (NE
Atlantic)

Lopezosa et al.,
2019

Larus atlanticus3 3.20 0.32 11 Patagonia (SW
Atlantic)

Forero et al.,
2004

Larus dominicanus3 3.80 0.14 229 Patagonia (SW
Atlantic)

Forero et al.,
2004

Larus argentatus3 3.93 0.51 187 Great Lakes Hebert et al.,
1999

Larus argentatus3 3.29 0.25 16 Baltic Sea Sørmo et al.,
2011

Larus argentatus5 3.60 0.40 4 Lake Huron Hebert et al.,
2016

N, number of data. Details on the estimation models are given in the section
“Materials and Methods.”
1δ15Nbulk in eggs, one baseline, SD = propagated error.
2δ15NAA in eggs, 2 TDF, SD = propagated error.
3δ15Nbulk in feathers, one baseline; SD = reported SD.
4Calculated from original δ15Nbulk in feathers and diet data, 3 baselines (pelagic
fish, demersal fish, terrestrial sources), SD = propagated error.
5δ15NAA in muscle, 2 TDF (terrestrial, aquatic), SD = reported SD.
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(Elliott and Elliott, 2016). These analyses were described in more
detail in Viñas et al. (2020).

Second, 10 mg aliquots of the homogenised eggs were also
used for determinations of δ15N in individual amino acids
(Chikaraishi et al., 2009). Samples were hydrolysed with 6N HCl,
esterified with acetyl chloride:2-propanol, and treated with a
mixture of 3:1 diclomethane:trifluoracetic anhydride (McCarthy
et al., 2013; Mompeán et al., 2016). Derivatised amino acids
were purified by solvent extraction in 1:2 chloroform:phosphate
buffer and centrifugation (Loick et al., 2019), evaporated at
room temperature under N2, and stored at −20◦C in 3:1
diclomethane:trifluoracetic anhydride for up to 6 months until
isotope analysis. The individual amino acids were separated in a
chromatography column (TraceGOLD TG-5MS, 60 m, 0.32 mm
ID, 1.0 µm film) using a gas chromatograph (Trace1310GC,
Thermo Fisher Scientific), and subsequently injected into a
mass spectrometer (DeltaV Advantage, Thermo Fisher Scientific)
via a continuous flow interface and combustion module (GC
Isolink, Thermo Fisher Scientific). Amino acid δ15N values were

calibrated with the values obtained for isolated standards (Shoko
Science) analysed by combustion as described for bulk analysis,
and further corrected using an internal L-norleucine standard
(SIGMA) of known isotopic composition added to each sample.
The molar fraction of each amino acid (% molar) was also
determined in the same analytical run by calibration of the
spectrometric signals with amino acid standards (McCarthy et al.,
2013). Precision (±SE) of triplicate samples (two injections per
sample) was<0.6h per individual amino acid.

Values of δ15N and %molar were obtained for trophic and
source amino acids (McClelland and Montoya, 2002; McCarthy
et al., 2013; McMahon and McCarthy, 2016). Trophic amino
acids included alanine (Ala), leucine (Leu), isoleucine (Ile),
proline (Pro), valine (Val), and the mixtures of glutamine
(Gln) and glutamic acid (Glu), and of aspartamine (Asn) and
aspartic acid (Asp). The latter mixtures were caused by the
acid hydrolysis and were termed as Glx and Asx, respectively.
Source amino acids included glycine (Gly), threonine (Thr),
serine (Ser), methionine (Met), phenylalanine (Phe), and lysine

FIGURE 1 | Box plot of (A) δ15Nbulk , (B) lipid-corrected δ13Cbulk , (C) δ15Ntrp, and (D) δ15Nsrc for Yellow-legged Gull eggs sampled in Cíes Islands (black) and Vigo
(red). Each box encompasses the 25–75% percentiles, the median is indicated by the horizontal line, and the whiskers indicate the range excluding outliers
exceeding 1.5 (circles) or 3 times (asterisks) the interquartile range.
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(Lys). The representation of these amino acids in the bulk protein
was assessed by correlation of their molar-weighted average
δ15N (δ15NTHAA) with δ15N values for bulk samples (δ15Nbulk).
Similarly, the correlations between molar-weighted averages of
trophic (δ15Ntrp) or source amino acids (δ15Nsrc) with δ15Nbulk
were used to determine the relative importance of variations
in trophic vs. nitrogen source factors for the interpretation of
δ15Nbulk.

Diet Estimations
The potential contribution of marine and anthropogenic food
sources to the diet of the gulls of each colony was estimated from
the δ15N signature of source amino acids. Reference values for
marine sources were provided by sardines (Sardina pilchardus)
and anchovies (Engraulis encrasicholus) collected in spring (April
2017 and April 2019) near the Ria de Vigo as part of a regular
fish survey (see Bode et al., 2018). Anthropogenic sources were
provided by samples of beef, pork and chicken meat obtained
from local markets. Four individuals of each fish species and three
replicates of each meat type were analysed as described for the
gull eggs. The potential contribution of these sources to the gulls

diet were estimated using the Mix SIAR Bayesian mixing model
(SIAR v4.1.3) of Stock and Semmens (2013) by using only the
δ15N values of individual amino acids that varied significantly
between colonies and assuming no isotopic fractionation between
sources and eggs. This simplified approach was intended only to
highlight the potential implications of the marked differences in
δ15N among the sources.

Trophic Position
Estimations of the trophic position of Yellow-legged Gull
individuals were made using the δ15N values of representative
trophic (Glx) and source (Phe) amino acids (TPAA) and a model
considering two trophic discrimination factors (McMahon and
McCarthy, 2016):

TPAA = 2+ (
δ15NGlx−δ15NPhe−TDFp − β

TDFb
) (1)

Where, β is the difference between Glx and Phe in primary
producers, and TDFp and TDFb are the trophic discrimination
factors for plankton and marine birds, respectively. Mean (±SE)
values were 3.4 ± 0.9h for β (Chikaraishi et al., 2009),

FIGURE 2 | Mean ± SE (A) δ15N (h) and (B) molar percent of trophic and source amino acids for Yellow-legged Gull eggs sampled in Cíes Islands (black dots) and
Vigo (red dots). The arrows indicate significantly different medians (Kruskal-Wallis, P < 0.05).
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7.6± 1.2h for TDFp and 3.5± 0.4h for TDFb (McMahon et al.,
2015; Wu et al., 2018; Gatt et al., 2020). As there was isotopic
fractionation between the different tissues, increments of 2.5h
and 0.9h were applied to the measured values of δ15NGlx and
δ15NPhe, respectively, to produce TP estimations equivalent to
those obtained for the muscle of adult gulls (Hebert et al., 2016).

For comparative purposes, additional TP estimations were
made using the measured δ15Nbulk in eggs using the classical
model (Post, 2002):

TPbulk = 2+ (
δ15Nbulk−δ15Nzoo

TDFz
)

where, δ15Nzoo was the value for zooplankton samples
collected in the nearby shelf during spring 2011
(mean ± se = 5.97 ± 0.92h, n = 14) as described in Bode
et al. (2018), and TDFz = 3.4h (Post, 2002). The error for all TP
estimations was computed by error propagation by taking into
account the analytical errors in δ15N measurements in bulk or
trophic and source amino acids, as well as the errors reported for
TDF and β values employed (Post, 2002; Ohkouchi et al., 2017).

Further comparisons of TP were made with those reported
in the literature for Yellow-legged Gull and similar species
(Table 1). In the case of data reported in Lopezosa et al.
(2019), TP was estimated from the reported δ15Nbulk in body
feathers and diet data using the model described in Hebert et al.
(2016) by considering the consumption of pelagic fish, demersal
fish, and garbage.

Statistics
Differences in isotopic measurements between eggs from Cíes
and Vigo colonies were analysed by means of non-parametric
ANOVA (Kruskal-Wallis). Regressions between variables were
computed using reduced major axis regression, as there were
large differences in the measurement error of the variables.
Statistical analyses were performed using SPSS 17.0 (SPSS Inc.)
and Past 4.0 (Hammer et al., 2001).

RESULTS

There were no significant differences in median bulk δ15N or
δ13C between both colonies, nor in averaged δ15N values for
trophic or source amino acids (Kruskal-Wallis test, P > 0.05,
Figure 1). However, the weighted means of δ15N for total
amino acids (δ15NTHAA) and trophic amino acids (δ15Ntrp) were
linearly correlated with bulk δ15N (P < 0.001, n = 16), while the
means for source amino acids showed no correlation (P > 0.05,
Supplementary Figure 1).

Values of δ15N values for most amino acids were similar for
the two colonies (Figure 2A), except in the case of lysine that
showed lower values for the Vigo colony (Kruskal-Wallis test,
P < 0.05). Mean ± SD δ15N values for lysine in eggs from the
Cíes Islands were 1.50± 1.18h (n = 9) while in those from Vigo
were 4.68 ± 0.77h (n = 7). Even when adjusted for variations
in the δ15N of the canonical source amino acid phenylalanine,
the differences in isotopic composition of Lys between colonies
persisted, and were indicative of differences in the use of marine

FIGURE 3 | Box plot of trophic position of Yellow-legged Gull estimated from
(A) bulk δ15N or (B) amino acid δ15N for samples from Cíes Islands (black)
and Vigo (red). Boxes and symbols as in Figure 1.

resources (Supplementary Table 2). The eggs from the Cíes
Islands had also lower mean relative molar concentration of
lysine and higher concentration of alanine than those from Vigo
(Kruskal-Wallis tests, P < 0.05, Figure 2B).

As for gull eggs, there were also significant differences in
Lys δ15N among food sources (Mann-Whitney test, P < 0.05,
Supplementary Figure 2A). Using these values, the estimations
of diet suggested that, notwithstanding marine sources had a
major contribution potential for both colonies, the gulls from
Cies had a higher contribution of anthropogenic sources than
those from Vigo (Supplementary Figure 2B).

The estimations of TP (Table 1) indicated that the studied
Yellow-legged Gulls were almost tertiary consumers (i.e., TP ca.
3) and revealed no significant differences using either bulk or
amino acid δ15N (Kruskal-Wallis test, P > 0.05). Besides, there
were no significant differences in TP between colonies (Figure 3,
Kruskal-Wallis test, P > 0.05).
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DISCUSSION

The results of this study represent the first estimation of
Yellow-legged Gulls TP obtained with amino acid δ15N. These
estimations are comparable to those obtained using bulk δ15N
in this and previous studies in the same and related gull
species (Table 1), and in other marine birds (Gatt et al., 2020).
Furthermore, the significant correlation between δ15N of trophic
amino acids and bulk δ15N (and the lack of correlation for δ15N
in source amino acids) supports previous assumptions using bulk
δ15N as an index of TP (Abdennadher et al., 2010; Muñoz-Arnanz
et al., 2012; Pedro et al., 2013; Calado et al., 2018). However,
the determination of δ15N in individual amino acids provided
additional information on the variability of feeding among
individuals that complements TP estimations. For instance, the
similarity in TP between the studied colonies supports that the
differences in pollution loads reported in Viñas et al. (2020)
were caused by changes in diet unrelated to TP, even when
detailed diet composition was not available for the individuals
studied. Similar conclusions were reached in other studies where,
diet and TP could be determined (Muñoz-Arnanz et al., 2012;
Ramos et al., 2013).

The low δ15N in lysine found in eggs from the Cíes Island
colony suggest the consumption of non-marine prey. First,
because the mean difference between δ15N of Lys and Phe
for the Cíes eggs was significantly lower than values typical
of phytoplankton (Nielsen et al., 2015). Second, because the
estimated contributions of anthropogenic sources to the diet in
Cíes were generally higher than those in Vigo (Supplementary
Figure 2). This is an unexpected result, as the gulls from
the islands would have, in principle, more access to marine
prey than those nesting in the city. Lysine is an essential
amino acid in the diet of animals and is one of the major
additives to feed stocks, notably for poultry and swine raising
(Toride, 2002). It is produced industrially through fermentation
with the addition of sugars and inorganic nitrogen (Ikeda,
2017). Industrial lysine is likely to have low δ15N, since
ammonium derived from atmospheric nitrogen represents the
most economic source for fertilizers (Smil, 2001). For instance,
the values of Lys δ15N measured in beef, pork and chicken
meat in this study were lower than those measured in fish.
These results agree with those reported for bulk δ15N from
chick gull regurgitates in the Bay of Biscay (Arizaga et al.,
2013). Therefore, a substantial consumption of rearing animals
remains by gulls from the Cíes Island colony cannot be
discarded, as noted by previous studies (Moreno et al., 2010).
Given the large variability reported in the diet of the Yellow-
legged Gull, it would be not surprising that the Cíes Islands
colony partly relied on garbage, at least during the time frame
considered in this study. This is supported by the year-to-
year reduction in the consumption of fish by this species
along the NW Spanish coast and attributed to the decline
in sardine populations (Calado et al., 2020). Furthermore, the
reported mean composition of the gull diet in this region
indicated the dominance of anthropogenic over marine food
items during 2010, an exceptional contribution compared to
the series for the whole recording period (Supplementary

Table 3). In this regard, it must be noted that the isotopic
composition of eggs is considered representative of both recent
(ca. 1 month) and past (ca. 1 year) diet of the breeding
adult females (Hebert et al., 2016). The high consumption
of marine resources in Vigo agrees with the general pattern
reported for the region and could be favoured by the proximity
of the fishing harbour, one of the largest in Europe with
84,000 metric tons of fresh marine products landed in 2011
(Port Authority of Vigo, 2012). Fish offal would be a favoured
resource for gulls nesting in Vigo, as reported for similar
species elsewhere (Hebert et al., 1999; González-Solís, 2003;
Calado et al., 2018).

Differences in diet, thus, were the likely cause of the high
levels of pollutants in eggs from the Vigo colony (Viñas et al.,
2020). Marine fishes of high TP were reported to bioaccumulate
organic and inorganic pollutants. For instance, Hg compounds
in tuna (e.g., Méndez et al., 2001) can reach concentrations
equivalent to those found in the gull eggs from Vigo (Viñas et al.,
2020). These results imply that biomagnification does not only
depend on TP but also on the diet of the consumer species.
Therefore, future assessments of pollution risks in food webs
would require coupled studies of diet and TP. Gull diet can be
reconstructed from observations of feeding remains or stomach
contents, but also from instrumental techniques as the analysis
of marker fatty acids (Hebert et al., 2016). The latter can be very
sensitive when coupled to stable isotope determinations (Twining
et al., 2020). The application of these techniques will help to
determine the appropriate biomagnification factors when the
monitored species, as the Yellow-legged Gull, feeds on different
habitats or food webs.

Conclusion
Our study shows that reliable TP estimations for the yellow-
legged gull can be obtained using δ15N either in bulk
homogenised eggs or in individual source and trophic amino
acids. However, the latter technique would be preferred because
data or assumptions about the baseline reference values from
other species are not required, and because it can provide
valuable information on the variability in diet among individuals.
Indeed, diet, rather than TP, appears as the dominant factor
affecting the bioaccumulation of pollutants in the Yellow-
legged Gull.
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