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Marine macrophytes, including seagrasses and macroalgae, form the basis of
diverse and productive coastal ecosystems that deliver important ecosystem services.
Moreover, western countries increasingly recognize macroalgae, traditionally cultivated
in Asia, as targets for a new bio-economy that can be both economically profitable and
environmentally sustainable. However, seagrass meadows and macroalgal forests are
threatened by a variety of anthropogenic stressors. Most notably, rising temperatures
and marine heatwaves are already devastating these ecosystems around the globe,
and are likely to compromise profitability and production security of macroalgal farming
in the near future. Recent studies show that seagrass and macroalgae can become
less susceptible to heat events once they have been primed with heat stress. Priming
is a common technique in crop agriculture in which plants acquire a stress memory
that enhances performance under a second stress exposure. Molecular mechanisms
underlying thermal priming are likely to include epigenetic mechanisms that switch state
and permanently trigger stress-preventive genes after the first stress exposure. Priming
may have considerable potential for both ecosystem restoration and macroalgae farming
to immediately improve performance and stress resistance and, thus, to enhance
restoration success and production security under environmental challenges. However,
priming methodology cannot be simply transferred from terrestrial crops to marine
macrophytes. We present first insights into the formation of stress memories in both
seagrasses and macroalgae, and research gaps that need to be filled before priming can
be established as new bio-engineering technique in these ecologically and economically
important marine primary producers.

Keywords: DNA methylation, plasticity, stress memory, bio-engineering, seagrass, macroalgae farming, kelp
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INTRODUCTION

Marine macrophytes, including seagrasses and macroalgae, form
the foundational basis of some of the most productive and
diverse coastal marine ecosystems on the planet (Larkum et al.,
2006; Costanza et al., 2014; Klinger, 2015; Teagle et al., 2017)
that provide ecosystem services worth US$ 28.9 ha−1 year−1

(Costanza et al., 2014). Moreover, macroalgae, traditionally
cultivated in Asia (Chopin, 2017; Hu et al., 2021) at an annual
value of US$ 13.3 billion (FAO, 2020), are increasingly recognized
in Europe and America as a target for a new, highly profitable, and
environmentally sustainable bioeconomy (Skjermo et al., 2014;
Stévant et al., 2017; Grebe et al., 2019; Araújo et al., 2021).

Marine macrophytes are increasingly threatened by a variety
of anthropogenic stressors, including coastal development,
invasive species, agricultural run-offs, dredging, aquaculture,
and rising sea levels (Orth et al., 2006; Krumhansl et al.,
2016; Chefaoui et al., 2018; Filbee-Dexter and Wernberg, 2018).
Nearly one-third of global seagrass areas have disappeared
over the last 100 years (Waycott et al., 2009) and 60% of
macroalgal forests have been in decline over the past 2–5 decades
(Wernberg et al., 2019).

Above all, temperature is the most important range-limiting
factor for marine macrophytes (Jueterbock et al., 2013; Repolho
et al., 2017; Assis et al., 2018; Duarte et al., 2018; Martínez
et al., 2018). Rising ocean temperatures, interfering with
reproduction, development, and growth (Breeman, 1990; Short
and Neckles, 1999), are fundamentally altering genetic diversity
and adaptability (Coleman et al., 2020; Gurgel et al., 2020), and
devastating macroalgal forests and seagrass meadows around
the globe (Arias-Ortiz et al., 2018; Filbee-Dexter et al., 2020;
Smale, 2020). In response, large-scale restoration efforts aim to
avert severe ecological and economic consequences (Eger et al.,
2020; Fredriksen et al., 2020; Layton et al., 2020; Tan et al.,
2020; Vergés et al., 2020). Modeling studies, based on projected
carbon emission scenarios, predict that poleward range shifts
will intensify (Jueterbock et al., 2013; Valle et al., 2014; Assis
et al., 2016, 2017; Chefaoui et al., 2018; Wilson and Lotze, 2019).
Even if rising sea temperatures remain below lethal limits, they
reduce macroalgal growth and performance (Nepper-Davidsen
et al., 2019; Hereward et al., 2020; Smale et al., 2020), increase
disease outbreaks and biofouling (Harley et al., 2012; Nepper-
Davidsen et al., 2019; Qiu et al., 2019; Smale et al., 2020), and
radically alter ecological interactions that determine persistence
(Provost et al., 2017; Vergés et al., 2019)–thus compromising
future sustainability of natural habitats, and production security
of associated industries.

PRIMING POTENTIAL IN MARINE
MACROPHYTES

Priming, a Common Technique for Crop
Enhancement
In agriculture, priming (Box 1) is a commonly employed
technique to enhance crop resistance to environmental

challenges, including pathogen infections, hot, cold, dry, or
saline conditions (Ibrahim, 2016; Pawar and Laware, 2018;
Wojtyla et al., 2020); in some cases even across generations
(transgenerational priming, Box 1) (Herman and Sultan, 2011;
Lämke and Bäurle, 2017; Benson et al., 2020). For example,
reproductive output of F3 Arabidopsis progeny increased five-
fold under heat stress (30◦C) if the F0 and F1 generations had
previously experienced the same stress (Whittle et al., 2009).
Seed priming also synchronizes germination and improves vigor,
leading to improved crop establishment and yield (Pawar and
Laware, 2018). Priming is now considered a promising strategy
for crop production in response to future climate (Wang et al.,
2017; Mercé et al., 2020), and may have large potential to alleviate
negative climate change impacts on marine macrophytes as well
as to enhance yield in macroalgae production.

Mechanisms Underlying Priming
Priming relies on the formation of a molecular stress memory
(Box 1), a process that can include epigenetic mechanisms
such as microRNAs (miRNAs), histone modifications, and DNA
methylation (Iwasaki and Paszkowski, 2014; Balmer et al., 2015;
Crisp et al., 2016; Hilker et al., 2016; Wojtyla et al., 2016; Gallusci
et al., 2017; Lämke and Bäurle, 2017; Bäurle, 2018; Figure 2).
Epigenetic mechanisms do not alter the DNA sequence but
have the potential to change gene expression (Bossdorf et al.,
2008). Stress memory based on non-coding RNA and histone
modifications generally lasts no longer than several hours or days
(Mathieu et al., 2007; Cedar and Bergman, 2009; Lämke and
Bäurle, 2017; Kumar, 2018), with some exceptions (Huang et al.,
2013; Bilichak et al., 2015; Morgado et al., 2017). In contrast,
DNA methylation is more stable, and can even be heritable
across generations (Boyko et al., 2010; Ou et al., 2012; Verhoeven
and van Gurp, 2012; Bilichak and Kovalchuk, 2016; González
et al., 2017). For example, mediation of transgenerational priming
via inherited DNA methylation has been demonstrated in the
plant Polygonum persicaria, in which demethylation of offspring
with zebularine removed the adaptive effect of parental drought
exposure in the form of longer root systems and greater biomass
(Herman and Sultan, 2016).

Indications of Priming in Macrophytes
Recent studies show that seagrass can become less susceptible
to heat events if it has been primed to stressful temperatures
(Figure 1). For example, primed individuals (6 days at 29◦C,

BOX 1 | Glossary of priming-related terms.
Priming–A plant’s ability to acquire a stress memory, enhancing its
performance when exposed to a second stress by allowing it to respond
faster, stronger, or in response to a lower threshold compared to a naïve plant
(Figure 1A). Priming is often used synonymously with hardening,
conditioning, or acclimation.

Stress memory–A stress-induced alteration in epigenetic state that may last
under mitotic cell divisions and results in priming.

Transgenerational priming–Stability of a stress memory under meiotic cell
divisions across at least one generation that benefits the progeny of primed
parental plants.
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FIGURE 1 | Concept of priming and potential for its application in macroalgae and seagrass. (A) A primed organism responds faster, earlier, stronger or to a lower
threshold of a stressful triggering stimulus as compared with a naïve organism. (B) A naïve organism is primed by building up a memory of a certain stress stimulus.
The stress memory is more likely to be heritable across asexually produced generations than across sexually produced generations because of epigenetic
reprogramming under gametogenesis (meiosis) and embryogenesis. (C) At which stage priming is best applied depends on the stability/transfer of a priming memory
across the life cycle stages of kelp and seagrass. The state of the art, challenges and knowledge gaps to establish priming as a novel bio-engineering technique in
marine macrophytes are listed for macroalgae and seagrass, respectively.
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FIGURE 2 | Genetic versus epigenetic mechanisms underlying stress adaptation and their relevance for restoration and farming of marine macrophytes.
Environmental stress can alter the phenotype of marine macrophytes by positive selection of pre-adapted genotypes or of new beneficial mutations, resulting in
genetic adaptation of the population within several generations. In contrast, epigenetic mechanisms, comprising ncRNAs, DNA methylation, and histone
modifications, contribute to phenotypic plasticity by altering the expression patterns of genes within a single generation. The key characteristics with respect to the
application potential of genetic and epigenetic mechanisms for farming and restoration of marine macrophytes, are listed at the bottom.

4◦C above natural conditions) of the seagrass species Zostera
muelleri and Posidonia australis showed significantly enhanced
photosynthetic capacity, leaf growth, and chlorophyll a content
after exposure to heat stress (32◦C for 9 days) compared with
naïve plants (Nguyen et al., 2020). Moreover, previous exposure
of Zostera marina to simulated warming (15◦C for 45 days,
2◦C above control temperature) resulted in an increase in clonal
shoot production and shoot length, as well as a decrease in
leaf growth rates and in the ratio of below to above ground
biomass (DuBois et al., 2020). Vegetatively grown shoots of

primed parental plants could maintain biomass production under
a second warming event (ca. 16◦C for 40 days) but not shoots
of naïve parental plants. The changes, which lasted for several
years across multiple clonal generations after the stress was
removed, would likely be adaptive in a warmer environment by
reducing the respiratory burden of non-photosynthetic tissues.
As discussed in Nguyen et al. (2020), heat priming may
explain why the Mediterranean seagrass Posidonia oceanica did
not suffer high mortality rates after intense and long-lasting
heat-waves in 2012, 2015, and 2017 (Darmaraki et al., 2019),
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in contrast to an extensive die-off after the 2006 heatwave
(Marbà and Duarte, 2010).

Evidence that epigenetic modifications contribute to form a
thermal stress memory in seagrass is suggested by significant
stress-induced regulation of methylation-related genes, in
particular histone methyltransferases (Nguyen et al., 2020), and
a change in DNA-methylation patterns that lasted for at least
5 weeks following exposure to heat stress (Jueterbock et al., 2020).
A 5-week heat-stress memory is potentially long enough to heat-
harden the same generation of previously exposed shoots. This
methylation memory involved CG hyper-methylation and, thus,
potentially constitutive upregulation (Zhang et al., 2006; Yang
et al., 2014; Dubin et al., 2015; Niederhuth and Schmitz, 2017)
of genes involved in the breakdown of heat-denatured proteins
(Feder and Hofmann, 2002); which would be expected to provide
a faster or stronger protective response upon exposure to a
second heat stress.

In fucoid macroalgae, priming was shown to enhance
resistance to dry and cold conditions (Schonbeck and Norton,
1979; Collén and Davison, 2001). Moreover, in the kelp
Laminaria digitata, gametophyte exposure to low temperatures
(5◦C versus 15◦C) significantly enhanced growth of the derived
sporophytes under benign conditions (5 and 15◦C) (Liesner
et al., 2020). A small number of studies suggest that macroalgal
performance under heat stress may be bio-engineered by thermal
priming (Figure 1). First, priming the gametophyte generation
of the kelp Alaria esculenta for 3 days at 22◦C (compared with
12◦C) enhanced their survival under increased temperatures,
and the growth of the derived sporophyte generation (Quigley
et al., 2018). Second, cultivation of Saccharina japonica
gametophytes at 22–24◦C increased the heat-tolerance of the
derived sporophytes by 2◦C (Wu and Pang, 1998) in Bricknell
et al. (2021). Third, in the fucoid brown alga Fucus vesiculosus,
storage of parental tissue at a higher temperature (14◦C versus
4◦C), or acclimation of embryos to 29◦C significantly increased
their survival by 30–50% under 33◦C (Li and Brawley, 2004).
Fourth, individuals of the red alga Bangia fuscopurpurea primed
for 3 days at 28◦C could survive 1 week at 32◦C significantly
better than naïve individuals (Kishimoto et al., 2019). The
priming stress caused an increase in the saturation level of
membrane fatty acids, suggesting that altered membrane fluidity
is part of the species’ heat stress memory. However, this memory
lasted for only 5 days after the primed individuals were returned
to benign conditions (15◦C).

DISCUSSION – PROSPECTS AND
CHALLENGES OF PRIMING IN MARINE
MACROPHYTES

Distinguishing Priming From Selection
Just as thermal stress in natural settings can cause mortality
and selection (Coleman and Wernberg, 2020; Coleman et al.,
2020; Gurgel et al., 2020), priming induced mortality could
inadvertently result in selection of pre-adapted genotypes–which
may explain the observed transfer of positive effects from the

primed gametophyte to the derived sporophyte generation of
kelp (Quigley et al., 2018; Liesner et al., 2020). In order not
to falsely ascribe improved stress tolerance to the formation
of a molecular stress memory, it is critical to distinguish
between priming and selection. This could be achieved through
establishing correlations between positive priming effects and
priming-induced epigenetic shifts that are independent from
priming-induced genetic shifts by using partial mantel tests and
multivariate redundancy analysis (Foust et al., 2016; Gugger et al.,
2016; Herrera et al., 2016; Oksanen et al., 2016; Jueterbock et al.,
2020). Moreover, tests for outlier loci that have become dominant
allelic variants under positive selection (Narum and Hess, 2011;
Günther and Coop, 2013; Ahrens et al., 2018) should be carried
out in order to prove that positive priming effects cannot be
explained by the survival of adapted genotypes.

Specificities of the Brown Algal
Methylome
While the presence of cytosine methylation has been reported
for green algae, red algae, dinoflagellates, and diatoms (Maumus
et al., 2011; Tirichine and Bowler, 2011; Veluchamy et al., 2013;
Bräutigam and Cronk, 2018; Lee J. M. et al., 2018), it is still
not clear which brown algae share a lack of DNA methylation
with the filamentous brown alga Ectocarpus sp. (Cock et al.,
2010), in which epigenetic variation may be instead mediated
at the chromatin level by histone modifications (Bourdareau
et al., 2020) or via stress responsive miRNAs (Cock et al.,
2017). Recently, DNA methylation was detected in the kelp
S. japonica (Fan et al., 2019). The kelp methylome has been
shown to change between life-cycle stages, to correlate with gene
expression, and to differ from that of plants and microalgae. For
example, methylation occurs predominately in CHH sequence
contexts, which transfer methylation less reliably across mitotic
cell divisions than CG sites (Law and Jacobsen, 2010). Moreover,
DNA methylation appears to rely on a DNA methyltransferase
(DNMT2) that is of low efficiency compared with other DNMTs,
belonging to a class that mainly catalyzes tRNA methylation in
plants and animals (Fan et al., 2019). How these specificities
affect the functional role of the kelp methylome with respect to
molecular stress memory remains unexplored.

Integrative Analyses
Parallel recording of epigenetic and transcriptomic priming
responses can allow the identification of priming-induced
epialleles that correlate with gene expression patterns and
therefore potentially explain enhanced stress resistance (e.g., heat
shock proteins). For example, that heat-induced methylation
changes could be involved in stress acclimation of the red alga
Pyropia haitanensis, was suggested by their correlation with the
expression of stress-responsive genes (Yu et al., 2018). Penalized
regression methods present promising integrative multi-locus
models to test for statistical relationships between different
“omics” data sets as they can overcome the challenge of having
a small number of individuals (n) relative to the number of
parameters (p) (Pineda et al., 2015; Lien et al., 2018; Zhong
et al., 2019). Causal effects of DNA methylation on improved
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phenotypes may be possible to model with structural equation
modeling (SEM), an established multivariate method that is
relatively new to the field of molecular biology (Igolkina and
Samsonova, 2018; Fatima et al., 2020). To demonstrate a causative
relationship between priming memories and adaptive phenotypic
changes requires experimental removal of DNA methylation,
e.g., using Zebularine or 5-Azacytidine (Griffin et al., 2016),
or targeted modifications of epigenetic marks, e.g., using the
CRISPR-Cas system (Xu et al., 2016).

Inferences about the functional effect of molecular priming
memories rely on the availability of annotated genomes, which
are still scarce for marine macrophytes. Genomes have been
published for six brown macroalgae: Ectocarpus sp. (Cock et al.,
2010), S. japonica (Ye et al., 2015), Undaria pinnatifida (Shan
et al., 2020), Cladosiphon okamuranus (Nishitsuji et al., 2016),
Nemacystus decipiens (Nishitsuji et al., 2019), and Sargassum
fusiforme (Wang et al., 2020). Published seagrass genomes include
Z. marina (Olsen et al., 2016), Z. muelleri (Lee et al., 2016),
and Halophila ovalis (Lee H. et al., 2018). Thus, the assembly
and annotation of genomes, particularly of species of high
ecological or commercial relevance, is a key priority in priming-
related research.

Stability and Transfer of the Priming
Memory
Multi-generational stability of the priming memory
(transgenerational priming) is more important for the
application of priming in restoration than in cultivation.
Macroalgal cultivation naturally allows for annual re-priming
during the few weeks the macroalgae are cultivated under
controlled laboratory conditions. For example, for kelps, priming
could be annually applied to either the haploid gametophyte
cultures or to the young diploid sporophytes before being
deployed at sea until harvest. While priming of the gametophytes
would require the least resources (i.e., space and water), it is
not clear to what extent epigenetic reprogramming during
fertilization would affect transmission of a priming memory
to the sporophyte generation. To characterize the transfer of
priming memories via small life-cycle stages such as meiospores,
gametes, and zygotes may become possible with new single-cell
‘omics technologies (Wang and Bodovitz, 2010; Zhu et al., 2020)
that allow to sequence at DNA quantities which are too low for
more traditional high-throughput sequencing technologies.

For restoration of kelp forests and macroalgae beds, thermal
priming could be applied to the newly developed restoration tool
“Green gravel,” where macroalgae are seeded on rocks and reared
in the laboratory until reaching a size of 2–3 cm (Fredriksen
et al., 2020). Specifically, priming could be used to enhance
initial survival of gametophytes and juvenile sporophytes to
the generally harsher conditions in degraded areas where an
adult canopy is lacking. However, if not transferred across
generations, any positive priming effect will last, at most, until
the primed individuals have died, and will not provide long-
term protection against recurrent stress. Some macroalgae grow
vegetatively (e.g., Ecklonia brevipes; Coleman and Wernberg,
2018), allowing to compare the longevity of priming effects under

different modes of reproduction in macroalgae being applied in a
restoration context.

In seagrass meadows, priming memories are likely to be more
stable across vegetatively/mitotically grown generations than
across sexually produced generations because epigenetic marks
are often reset during meiosis and embryogenesis (Figure 1C;
Hirsch et al., 2012; Douhovnikoff and Dodd, 2014; Dodd and
Douhovnikoff, 2016; González et al., 2017). While direct tests
for predicted sexual-asexual differences in the transgenerational
stability of epigenetic marks are virtually lacking (Verhoeven
and Preite, 2014), a unique system to test these differences is
provided by the dramatic range in clonal diversity and life history
strategies of seagrasses, ranging from predominantly vegetative to
predominantly sexual reproduction (Kilminster et al., 2015).

Clonal seagrass meadows further provide a unique potential
to study whether communication of epigenetic information
across physically connected shoots allows the acquisition of a
collective stress memory to prepare interconnected ramets for
a range of future environmental challenges (Latzel et al., 2016).
The transport of epigenetic information from somatic tissue to
the germline via miRNAs (small ncRNAs that can cross cell
barriers) has been demonstrated in humans and the nematode
Caenorhabditis elegans (Creemers et al., 2012; Devanapally et al.,
2015; Sharma, 2015; Szyf, 2015). Whether such communication
may extend across interconnected ramets of the same clone has
never been tested.

Prospects to Explore Priming as
Biotechnological Tool in Marine
Macrophytes
Priming has a large potential to enhance restoration success
of macroalgal forests and seagrass meadows, and to ensure
production security of macroalgal biomass under environmental
challenges. Because primed organisms are not considered
genetically modified, they can be grown in countries where GMO
restrictions apply. Moreover, priming would likely be a less
controversial and more socially acceptable way to boost resilience
in macrophytes relative to the proposed gene editing approaches
(Coleman and Goold, 2019). However, priming cannot be simply
transferred from terrestrial plants to marine macrophytes. In
particular, brown and red macroalgae are distantly related to
terrestrial plants, and kelps have complex heteromorphic life
cycles with free-living gametophyte generations. Thus, in order
to identify whether priming can be established as a novel
bio-engineering technique for marine macrophytes, we need
ambitious fundamental research that uses complex experimental
setups combined with multivariate analyses that can integrate
multiple high-throughput sequencing datasets to test at which
intensity, duration, and life-cycle stage priming has a positive and
long-term effect without inducing selection or high mortality. For
priming to be of commercial value to the macroalgae farming
industry, we must further assess whether the cost factor added to
the cultivation process pays off by enhancing yield even in years
where the macroalgae are not exposed to stress or by providing
cross-protection to other relevant stressors (Hilker et al., 2016).
Despite these knowledge gaps, priming should be explored as
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a tool to boost resilience of both seagrass and macroalgae to
secure their ecological and economic values in future oceans.
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