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Vessel biofouling is a major pathway for the introduction, establishment, and
subsequent spread of marine non-indigenous macro-organisms. As a result, national
and international regulations and guidelines have been implemented to manage the
risks associated with this pathway, yet widespread enforcement and uptake are still in
their infancy. By comparison, translocation of marine pathogens by vessel biofouling
has received little attention despite a mounting body of evidence highlighting the
potential importance of this pathway. Using molluscan pathogens as a model, this
paper examines the potential for translocation of marine pathogens via the vessel
biofouling pathway by reviewing: (1) examples where vessel biofouling is suspected to
be the source pathway of non-indigenous pathogen introduction to new areas, and
(2) the association between pathogens known to have detrimental effects on wild and
farmed mollusk populations with species known to foul vessels and anthropogenic
structures. The available evidence indicates that vessel biofouling is a viable and
important pathway for translocating marine pathogens, presenting a risk to marine
values (i.e., environmental, economic, social, and cultural). While preventive measures to
minimize the translocation of macro-organisms are the most efficient way to minimize the
likelihood of associated pathogen translocation, the application of reactive management
measures to biofouled vessels, including post-filtration treatment, requires further and
explicit consideration.

Keywords: vessel biofouling, pathogens, mollusks, in-water cleaning, marine biosecurity

INTRODUCTION

The International Maritime Organization (IMO) defines biofouling as the growth and
accumulation of organisms on immersed ship surfaces or structures (International Maritime
Organization [IMO], 2011). Typically, any substrate placed in natural waters is quickly colonized by
micro-organisms (creating a biofilm, also known as the slime layer) that is followed by a succession
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of diverse sessile or sedentary micro- and macro-organisms
(Flemming, 2002; Aldred and Clare, 2008; Amara et al., 2018).
Vessel biofouling is acknowledged as a major, and perhaps the
most important, pathway for the introduction, establishment,
and subsequent spread of marine non-indigenous macro-
organisms (Drake and Lodge, 2007; Hewitt and Campbell, 2010;
Bell et al., 2011; Ruiz et al., 2015; Bailey et al., 2020). Similar to
the concerns over the transport of human pathogens in ships’
ballast water (McCarthy and Khambaty, 1994; Ruiz et al., 2000a;
Cohen et al., 2012), the potential for vessel biofouling to act
as a vector for non-indigenous pathogens has been highlighted
for some time (e.g., Howard, 1994). Pathogens have been found
in biofilms growing on vessel surfaces (e.g., Drake et al., 2007;
Shikuma and Hadfield, 2010), and mature organisms within
vessel biofouling assemblages are more likely to harbor pathogens
than their younger or larval planktonic stages associated with
ballast water (Hine, 1995). For the purpose of this document,
the term pathogen is used to include viruses, bacteria, protists,
and fungi that cause disease in other organisms; the term vessel
is used to include every description of ship, boat, or other craft
used in water navigation, i.e., both recreational and commercial
vessels are included.

The role of anthropogenic vectors in global scale biotic
exchange is largely based on patterns and processes linked to
macro-organism translocations and biogeography (Ruiz et al.,
2000b; Pagenkopp-Lohan et al., 2020), thus the magnitude and
impacts of marine micro-organism translocations are likely
“vastly underestimated” (Pagenkopp-Lohan et al., 2020). Practical
difficulties in micro-organism identification and detection, and a
lack of baseline knowledge about native organism geographical
ranges, however, have hampered research efforts (Davidson et al.,
2013; Pagenkopp-Lohan et al., 2020).

In the risk analysis to support implementation of
New Zealand’s biofouling regulations (Ministry for Primary
Industries New Zealand [MPI], 2018), Bell et al. (2011) identified
recent changes to shipping patterns including increased shipping
volumes, expansion of trade routes, and increased vessel
speeds were providing a greater likelihood of translocation of
marine non-indigenous macro-organisms. The delivery rate
of micro-organisms associated with vessel biofouling may be
similarly increasing over time (Pagenkopp-Lohan et al., 2020).
The role of shipping, particularly vessel biofouling, in pathogen
translocations may, therefore, undermine regulations and
improved management practices aimed at addressing the major
anthropogenic vectors for historical pathogen translocations,
such as aquaculture and fisheries stocking (Williams et al.,
2013; Georgiades et al., 2016; Pagenkopp-Lohan et al., 2020).
While vessel biofouling has also been subject to increased
scrutiny and management in some jurisdictions (Georgiades
et al., 2020; Scianni et al., in press), it remains a largely
unregulated broad-scale vector of organisms both domestically
and internationally.

The threats posed by non-indigenous pathogens are similar
to marine non-indigenous macro-organisms: once established
they are difficult to control, and eradication is often infeasible
or unsuccessful (Centre for Environment, Fisheries and
Aquaculture Science [CEFAS], 2009; Georgiades et al., 2020).

Prevention is therefore the only effective measure (Centre for
Environment, Fisheries and Aquaculture Science [CEFAS],
2009; Georgiades et al., 2016). This is particularly the case for
shellfish aquaculture and fisheries, where the introduction and
establishment of novel pathogens can have devastating effects.
For example, Bonamia ostreae and Marteilia refringens drastically
reduced European production of cultured flat oysters (Ostrea
edulis) from 29,595 t in 1961 to 5,921 t in 2000 (Culloty and
Mulcahy, 2007). Between 1980 and 1983 alone, estimated losses
in France included a 20% reduction of employment within the
industry, US$ 240 million turn-over, and US$ 200 million of
added value [Meuriot and Grizel (1984) in Arzul et al., 2006].
European flat oyster production has stabilized but at low levels
(< 3,000 t; Goulletquer, 2004), using modified husbandry
techniques with lower employment than the industry had
historically provided (Arzul et al., 2006; Culloty and Mulcahy,
2007). Based on these impacts, introduction of B. ostreae to
New Zealand in 2015 led to the pre-emptive depopulation of all
farmed flat oyster (O. chilensis) stock to protect uninfected areas,
particularly the Bluff wild oyster fishery at the southern tip of the
South Island (Farnsworth et al., 2020).

The ostreid herpes virus microvariant 1 (OsHV-1) has caused
mass mortalities in spat and juvenile Pacific oysters (Crassostrea
gigas) in France (Ségarra et al., 2010), Australia (Paul-Pont
et al., 2014), and New Zealand (Bingham et al., 2013). During
initial outbreaks, stock losses of up to 100% were recorded
(Keeling et al., 2014; European Food Safety Authority [EFSA],
2015), and the disease halved New Zealand’s Pacific oyster
production (Johnston, 2014). The immediate impacts to industry
and biosecurity response costs for OsHV-1 and B. ostreae in
New Zealand have far outweighed those related to marine non-
indigenous macro-organisms (Georgiades et al., 2020).

The introduction of Haplosporidium nelsoni to the mid-
Atlantic coast of the United States in the 1950s also had extensive
impacts on Crassostrea virginica populations, with mortality
exceeding 90% in Delaware and Chesapeake Bays (Haskin and
Ford, 1982; Haskin and Andrews, 1988). Between 1958 and
1983, it was estimated that H. nelsoni had reduced oyster
landings in Delaware Bay by two-thirds (Haskin and Ford, 1982).
The introduction of H. nelsoni, combined with pollution and
oyster overharvesting, drove large-scale ecological impacts on
Chesapeake Bay (Kemp et al., 2005), and extensive management
and restoration efforts have achieved relatively modest success
(National Research Council., 2004). The fishery in Chesapeake
Bay declined to 2% of its historical catch in 30 years, and
introduction and culture of non-native oyster species (including
C. gigas and C. ariakensis) was seriously considered (Mann et al.,
1991; Calvo et al., 1999; Tamburri et al., 2008).

While vessel biofouling regulations have been enacted by some
jurisdictions (California Code of Regulations, 2017; Ministry for
Primary Industries New Zealand [MPI], 2018; Georgiades et al.,
2020), these are focused largely on preventing the translocation of
marine non-indigenous macro-organisms (e.g., Bell et al., 2011).
New information on translocation of pathogens associated with
biofouling is emerging, however (e.g., Lane et al., 2018; Itoh et al.,
2019; Costello et al., 2020; Lane and Jones, 2020; Pagenkopp-
Lohan et al., 2020). Biofouling management measures routinely
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applied to vessels, such as in-water cleaning of macrofouling
[i.e., reactive in-water cleaning (RIC)], are also cause for concern
as they may increase the likelihood of pathogen release and
establishment into new areas (Scianni and Georgiades, 2019).

In light of the major negative consequences novel pathogen
introductions have thus far caused, understanding the risk
of pathogen translocation by vessel biofouling is critical to
inform biosecurity guidelines, regulations, and management
approaches to protect marine values such as biodiversity,
customary and recreational practices, fisheries, and aquaculture.
This analysis reviews the literature to investigate the likelihood
of this translocation pathway, including the ramifications for
vessel maintenance, and discusses potential risk management
options, as appropriate.

ANALYSIS

Analysis Scope
This analysis primarily focuses on the pathogens of mollusks as
a model. There are numerous World Organization for Animal
Health (OIE) listed or emerging molluscan pathogens that are
of major concern for jurisdictions worldwide (Bower, 2017; OIE,
2020). The implications, conclusions, and recommendations
drawn from the molluscan model may have broad application to
other marine and human pathogens.

Pathogen Translocation Associated With
Vessel Biofouling
Howard (1994) noted that the domestic transfer of B. ostreae
from Cornwall to Plymouth (England) likely occurred with
biofouling, which included live mollusks, on concrete barges.
This conclusion was based on Plymouth having no history of
the disease nor any reason to receive live oyster transfers for
aquaculture purposes (Howard, 1994). The spread of B. ostreae
has also been linked to vessel biofouling in the Netherlands (van
Banning, 1991) and Ireland (Culloty and Mulcahy, 2007).

Bonamia ostreae was detected in the Southern Hemisphere
(New Zealand) in 2015 (Georgiades, 2015; Lane et al., 2016)
and was most likely introduced by vessel biofouling (Lane et al.,
2020). The spread of B. exitiosa, from southern New Zealand
to the Northern Hemisphere (Bishop et al., 2006; Abollo et al.,
2008; Longshaw et al., 2013) and Argentina (Kroeck and Montes,
2005), has similarly been associated with shipping (Hill-Spanik
et al., 2015; Lane et al., 2018). B. ostreae and other molluscan
pathogens are associated with non-indigenous ascidians (Costello
et al., 2020), highlighting the potential role of non-molluscan
biofouling species as vectors of this pathogen.

Vessel biofouling is suggested as responsible for the
introduction of OsHV-1 into New Zealand (Lane et al.,
2020) and Australia (Fisheries Research and Development
Corporation, 2011; Whittington et al., 2018), and its subsequent
Australian spread to Tasmania and South Australia (Deveney
et al., 2017). Fuhrmann and Hick (2020) found that laboratory
transmission of OsHV-1 between donor and naive Pacific oysters
via a simulated biofouling scenario was plausible but complex.
While transmission from other biofouling species was not

observed by Fuhrmann and Hick (2020), the association of
OsHV-1 with some biofouling organisms (i.e., bryozoan species)
suggested that they may protect the virus from degradation
(Martenot et al., 2015; Hick et al., 2016). OsHV-1 transmission to
naive Pacific oysters has also been shown following cohabitation
with exposed wild crabs (Carcinus maenas; Bookelaar et al., 2018)
and mussels (Mytilus spp.; O’Reilly et al., 2018). These taxa have
previously been identified within vessel biofouling assemblages
(Visscher, 1928; Apte et al., 2000; Moshchenko and Zvyagintsev,
2001; Coutts et al., 2003). The mechanisms by which marine
non-indigenous species can affect pathogen-host interactions
are complex (Goedknegt et al., 2016), which has possible
implications for their association and transport by vessels.

Vessel movements have also been linked to the introduction
of H. nelsoni to the United States and Canada either through
biofouling or release of H. nelsoni spores by ballast water
discharges (National Research Council., 2004; Stephenson and
Petrie, 2005). Hine (1996) highlighted the biofouling pathway as
a risk for spreading Perkinsus marinus, and Pagenkopp-Lohan
et al. (2018) and Itoh et al. (2019) further demonstrated the
potential for shipping to contribute to the long-range dispersal
of Perkinsus species.

In addition to pathogens, it is also noteworthy that parasitic
invertebrates may be translocated by vessel biofouling (Davidson
et al., 2013). Parasitic invertebrates were found to infect 7.8%
of mussels sampled from 23 vessels operating on the U.S.
West Coast, including the parasitic copepods Pseudomyicola
spinosus and Modiolicola gracilis. Transport of infected mussels
by international shipping has also been implicated in the
intercontinental spread of a molluscan transmissible neoplasia
(Yonemitsu et al., 2019).

In assessing pathogen risks associated with translocation of
mollusk shells for reef restoration, Diggles (2020) noted the
potential of molluscan pathogens, including iridoviruses, OsHV-
1, and Bonamia species, to be introduced to Australia by
vessel biofouling specifically and others, including H. nelsoni
and Perkinsus species, by shipping more generally. The
Australian Government Field Identification Guide for Aquatic
Animal Diseases (Department of Agriculture, Water and the
Environment, 2020) also recognizes vessel biofouling as a
potential pathway for translocating various Bonamia species and
OsHV-1. These examples show that the role of shipping, and
more specifically vessel biofouling, in pathogen translocation is
increasingly recognized as a serious risk factor for increasing the
incidence of infection and disease outbreaks at various scales
(within regions and over long-distance oceanic scales).

Associations of OIE-Listed and Other
Important Pathogens With Known
Biofouling Species
The OIE is an intergovernmental organization established to
promote global animal health (OIE, 2019). To facilitate health
certification and reduce risk in the trade of aquatic animals
and their products, the OIE Aquatic Animal Health Standards
Commission compiles the Manual of Diagnostic Tests for Aquatic
Animals (the Aquatic Manual), records species known to be
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susceptible to listed pathogens, and provides standardized,
validated approaches for diagnosis.

The chapters of the OIE Aquatic Manual (OIE, 2019)
specific to molluscan pathogens show that many known
susceptible species are associated with biofouling of vessels,
anthropogenic structures within harbors, hard substrates, or
offshore installations (Table 1). Further, many of these pathogens
either have poorly understood life cycles (e.g., B. exitiosa) or have
been shown to survive outside the host for periods of weeks to
months (e.g., B. ostreae, P. marinus, and P. olseni; OIE, 2019).
There are also many molluscan pathogens that, although not
listed by the OIE, cause substantial impacts and are associated
with biofouling species (Table 2).

Pathogen translocation via the biofouling pathway adds
further layers of complexity to factors that influence pathogen
transmission and disease dynamics (Fuhrmann and Hick, 2020;
Lane et al., 2020). These parameters include pathogen life cycles,
host specificity and susceptibility, infective dose, survival outside
host, and susceptible host life stages (OIE, 2019; Pagenkopp-
Lohan et al., 2020). To understand the translocation dynamics
of these pathogens, presence of host or carrier species on vessel
submerged surfaces, exposure of those species to pathogens prior
to transit, prevalence and intensity of infection, and time of
year (i.e., both seasonal dynamics and environmental conditions
encountered) need to be considered.

Introduction of pathogens to new environments is influenced
by vessel itinerary (i.e., places visited and duration of stay)
and the type and duration of exposure of hosts in recipient
environments. For example, exposure may occur as a result
of pathogen shedding from organisms on a vessel, release of
macro-organisms from the vessel surface, or an uncontained
release of biofouling and pathogens following in-water cleaning.
Characteristics of the recipient environment also need to be
considered, including temperature, salinity, pollution, and—
importantly—the presence, proximity, and density of susceptible
host or carrier species (OIE, 2019; Lane et al., 2020; Pagenkopp-
Lohan et al., 2020).

Receiving environments for vessels are typically ports and
marinas which, being heavily modified, offer a variety of habitats
for colonization by sessile and mobile taxa, including non-
indigenous species (Ruiz et al., 1997; Johnston et al., 2017).
These environments are often enclosed, leading to high particle
retention (Gadd et al., 2011; Morrisey et al., 2013), thus, if
released, pathogens may stay in contact with host species that
are present for longer periods at potentially infective doses.
The presence of artificial and modified habitats, combined with
relatively high retention, enhances conditions for introduction,
establishment, and spread of new non-indigenous macro-
organisms (Floerl et al., 2009; Ruiz et al., 2009; Johnston
et al., 2017) and associated pathogens. Following arrival and
colonization, domestic vessels provide a vital link for spread from
primary infected areas via movement of associated ballast water
(Inglis et al., 2013) and biofouling, including fouled vessels that
transit aquaculture zones (Sim-Smith et al., 2016).

Not every mollusk that is translocated with vessel fouling
will cause a novel pathogen to establish with subsequent
consequences (e.g., Gias and Johnston, 2010; Davidson et al.,

2013; Fuhrmann and Hick, 2020). Mounting evidence from
laboratory and field observations as well as documented
consequences, however, indicates that the risks associated with
this pathway are non-negligible and that risk management
measures may be justified. The evidence chain outlined here
is consistent with the criteria applied to assess the risks
associated with vessel biofouling for marine non-indigenous
macro-organism translocations (Bell et al., 2011), which was
a key step that led to biofouling regulations in New Zealand
(Georgiades et al., 2020).

Mollusks are, importantly, not the only taxa associated with
vessel biofouling that may translocate pathogens of concern. The
invasive crabs Eriocheir sinensis and C. maenas are associated
with fouled vessels (Peters and Panning, 1933 in Herborg et al.,
2003; Coutts et al., 2003) and are susceptible hosts or carriers
of several pathogens with well-documented consequences to
marine values, including fisheries and aquaculture (Table 3).
Parasitic invertebrates can also be translocated by barnacles,
including the castrating isopod Hemioniscus balani (Davidson
et al., 2013). Human pathogens, such as Vibrio cholerae, Vibrio
parahaemolyticus, and Escherichia coli, have also been found in
the surface biofilms of vessels (Shikuma and Hadfield, 2010;
Revilla-Castellanos et al., 2015).

Potential Management Options
Pathogens can be released from vessel biofouling by being: (a)
sloughed from the attached biofilm, (b) dispersed by proactive
in-water cleaning (PIC), (c) shed from macrofouling that remains
intact on the vessel, (d) shed with macrofouling released during
normal vessel operations (i.e., drop-off of attached species or
active escape of mobile species), or (e) dispersed with or without
their hosts during application of RIC. We have identified a
two-pronged approach to protect marine values from pathogen
introductions associated with vessel biofouling by: (1) limiting
the volume and frequency of pathogen translocations via ongoing
vessel transportation (i.e., propagule pressure; Lockwood et al.,
2005) and (2) avoiding pathogen releases by reactive management
activities. The methods used to achieve these approaches all have
associated advantages and disadvantages (Table 4).

The maritime antifouling industry is established to prevent
and manage biofouling on vessels. The primary focus has
been on surface paints or coatings on the immersed surfaces
of ships to prevent macrofouling growth (using biocides,
such as copper- and zinc-based compounds) and/or restrict
macrofouling adhesion (non-biocidal or fouling-release, such
as silicone-based coatings; Dafforn et al., 2011; Lewis, 2020).
The use of biocidal coatings represents a trade-off between
vessel fuel efficiency, reduced exhaust emissions, and reduced
translocation of non-indigenous species, versus environmental
impacts of the biocides (Dafforn et al., 2011; Scianni and
Georgiades, 2019; Richir et al., 2021). Even though these
coatings have evolved toward more sophisticated, cost effective,
and environmentally acceptable products, antifoulants do not
prevent biofilm formation (Dobretsov, 2010) or incidental
macrofouling that establishes during vessel in-service periods
(i.e., the time between vessel dry-docking; Georgiades and
Kluza, 2017). There are areas of ships that cannot be painted
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TABLE 1 | OIE-listed molluscan pathogens associated with known fouling species and their size (Bower, 2017; OIE, 2019).

Pathogen
and
OIE chapter

Susceptible species
associated with
fouling

Fouling type Fouling reference Particle size (µm)

Bonamia exitiosa
OIE (2019)
Chapter 2.4.2

Ostrea chilensis
O. angasi
O. edulis
O. stentina

Vessels
Harbors
Vessels
Settlement plates

Smith et al. (2016)
Lewis (1982, 1986)
Howard (1994)
Hamaguchi et al. (2017)

2.4 ± 0.5

Bonamia ostreae
OIE (2019)
Chapter 2.4.3

O. edulis
O. chilensis
O. puelchana*
O. angasi*

Vessels
Vessels
Harbors
Harbors

Howard (1994)
Coutts and Dodgshun (2007)
Schwindt et al. (2014)
Lewis (1982, 1986)

3 ± 0.3

Marteilia refringens
OIE (2019)
Chapter 2.4.4

O. edulis
Mytilus edulis
M. galloprovincialis
O. stentina
Xenostrobus securis
O. chilensis*
O. puelchana*
O. angasi*
O. denselamellosa*

Vessels
Vessels
Vessels
Settlement plates
Vessels
Vessels
Harbors
Harbors
Offshore structures

Howard (1994)
Visscher (1928)
Apte et al. (2000)
Hamaguchi et al. (2017)
Barbieri et al. (2011)
Coutts and Dodgshun (2007)
Schwindt et al. (2014)
Lewis (1982, 1986)
Tao and Wenxia (2002)

4–40

Ostreid
herpesvirus 1 µvar
OIE (2019)
Chapter 2.4.5

Crassostrea gigas
C. angulata

Vessels
Vessels

Brock et al. (1999)
Ojaveer et al. (2018)

0.07–0.35

Perkinsus marinus
OIE (2019)
Chapter 2.4.6

C. virginica
C. gigas
C. ariakensis
C. rhizophorae
C. corteziensis
Mya arenaria***

Vessels
Vessels
Vessels
Vessels
Hard substrate
Vessels

Woods Hole Oceanographic Institution
(WHOI) (1952)
Brock et al. (1999)
National Research Council. (2004)
Farrapeira et al. (2010)
Angell (1986)
Carlton (1999)

2–15

Perkinsus olseni**
OIE (2019)
Chapter 2.4.7

C. ariakensis
C. sikamea
Pinctada margaritifera
P. martensii
P. fucata

Vessels
Hard substrate
Offshore structures
Offshore structures
Hard substrate

National Research Council. (2004)
Hamaguchi et al. (2013)
Yan et al. (2006)
Yan et al. (2006)
Alagarswami (1977)

5–15

Mikrocytos mackini
OIE (2019)
Chapter 2.4.9

C. gigas
C. virginica
O. edulis
O. lurida

Vessels
Vessels
Vessels
Vessels

Brock et al. (1999)
Woods Hole Oceanographic Institution
(WHOI) (1952)
Howard (1994)
Brock et al. (1999)

2–3

*Infected when deployed in a known infected area although pathogen identification not completed to molecular level.
**Perkinsus olseni has an extremely wide host range. Members of the families Arcidae, Malleidae, Isognomonidae, Chamidae, and Veneridae are particularly susceptible.
***Primarily an infaunal clam. Associated (nestled) in a biofouling community but not sessile or attached in this sense.

(e.g., anodes), are difficult to paint (e.g., dry-dock support
strips), or experience sub-optimal coating performance because
of surface or hydrodynamic issues (e.g., sea chests, gratings,
rudders, and projections). These “niche areas” are hotspots of
biofouling accumulation (Coutts and Taylor, 2004; Davidson
et al., 2009, 2016) that require ongoing vigilance and maintenance
(California Code of Regulations, 2017; Georgiades et al., 2018;
Ministry for Primary Industries New Zealand [MPI], 2018).
While biocide release rates from coatings can be estimated
and environmental concentrations predicted (e.g., Morrisey
et al., 2013), no quantitative assessments or estimates have
been made of the release rates or quantities of live micro- or
macrofouling organisms into coastal ecosystems as a result of
normal vessel operations.

In-water cleaning has emerged as the principal approach
to address limitations in coating performance and operational

impacts of biofouling that accumulate while in-service. In-
water cleaning typically involves use of diver or remotely
operated cleaning or cart systems that remove biofouling from
hull surfaces (McClay et al., 2015; Morrisey and Woods,
2015; Tamburri et al., 2020). While in-water cleaning is often
performed in response to fundamental operational factors, such
as increasing fuel consumption (to reset hull surfaces to a
more hydrodynamic state), it can have unintended consequences
including: (a) increased release of antifouling biocides to
ambient waters; (b) active liberation of live biofouling organisms
or their propagules into local habitats, with increased risk
of non-indigenous species introduction; and (c) diminished
coating condition that reduces antifouling performance and
longevity (Scianni and Georgiades, 2019; Tamburri et al.,
2020). There is growing consensus internationally that steps
should be taken to minimize these environmental impacts,
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TABLE 2 | Examples of non-OIE listed molluscan pathogens that have caused substantial impacts and are associated with known fouling species (per Bower, 2017).

Pathogen
and
reference

Susceptible species
associated with fouling

Fouling type Fouling reference Particle size (µm)

Oyster velar virus
Bower (2001d)

Crassostrea gigas Vessels Brock et al. (1999) 0.228 + 0.007

Gill necrosis virus
Bower (2001a)

C. angulata
C. gigas

Vessels Ojaveer et al. (2018)
Brock et al. (1999)

0.350–0.380

Haemocytic infection virus
Bower et al. (1994)

C. angulata
C. gigas

Vessels
Vessels

Ojaveer et al. (2018)
Brock et al. (1999)

0.380

Roseovarius crassostreae
Bower (2010)

C. virginica Vessels Woods Hole Oceanographic Institution
(WHOI) (1952)

4.8 × 1.2

Marteilioides chungmuensis
Itoh et al. (2004)

C. gigas
C. nippona

Vessels
Hard substrate

Brock et al. (1999)
Wang and Li (2020)

6.3 × 4
Initial sporulation stage

Virus-like particles
Bower (2001e)

Perna canaliculus
Mytilus galloprovincialis

Vessels
Vessels

Smith et al. (2016)
Apte et al. (2000)

0.025–0.047

Vibrio spp.
Bower (2009)
Lopez-Joven et al. (2018)

C. gigas
C. virginica
C. sikamea
O. edulis
O. conchaphila

Vessels
Vessels
Hard substrate
Vessels
Hard substrate

Brock et al. (1999)
Woods Hole Oceanographic Institution
(WHOI) (1952)
Hamaguchi et al. (2013)
Howard (1994)
Groth and Rumrill (2009)

<5

Cytophaga spp.
Bower (2001b)
Dungan et al. (1989)

C. gigas
C. virginica
Ostrea edulis

Vessels
Vessels
Vessels

Brock et al. (1999)
Woods Hole Oceanographic Institution
(WHOI) (1952)
Howard (1994)

>5

Nocardia crassostreae
Bower (2006)

C. gigas
O. edulis

Vessels
Vessels

Brock et al. (1999)
Howard (1994)

<10

Plectonema terebrans
Hyella caespitose
Mastigocoleus testarum
Mastigocoleus sp.
(Nostochopsidaceae
Pleurocapsa sp.)
Bower et al. (2002)

M. galloprovincialis
Choromytilus meridionalis
Aulacomya ater

Vessels
Hard substrate
Hard substrate

Apte et al. (2000)
Barkai and Branch (1989)
Barkai and Branch (1989)

<8

Kidney coccidia
Pseudoklossia semilunar
Bower (2001c)

M. edulis/galloprovincialis/
trossulus species complex

Vessels Visscher (1928)
Apte et al. (2000)
Moshchenko and Zvyagintsev (2001)

6 × 3
Sporocysts

Haplosporidium costale
Bower (2014a)

C. virginica Vessels Woods Hole Oceanographic Institution
(WHOI) (1952)

3–4
2.6 × 3.1

Haplosporidium nelsoni
Bower (2014b)

C. virginica Vessels Woods Hole Oceanographic Institution
(WHOI) (1952)

7.5 × 5.4
Spores
4–100

Multi-nucleate plasmodia

Minchinia occulta
Bower (2014c)

Saccostrea cuccullata Vessels Yan and Huang (1993) 4.5–6.7 × 3.3–4.1
Spores (micro)

4.5–5.0 × 3.5–4.1
Spores (EM)

Marteilia sydneyi
Bower and Kleeman (2011)
Green and Barnes (2010)

S. glomerata Vessels Ulman et al. (2017) <10 diameter
Mature sporonts

Bonamia roughleyi
Bower (2015)

S. glomerata Vessels Ulman et al. (2017) 1–2

Marteilia maurini
Bower (2019)

M. galloprovincialis Vessels Apte et al. (2000) 9.9
8.4

Marteilia pararefringens
Bower (2019)

M. edulis Vessels Visscher (1928)

by moving away from in-water cleaning of macrofouling that
does not attempt to capture debris (i.e., RIC), and toward
RIC that capture, contain, and treat debris (RICC), or PIC
to prevent macrofouling establishment and growth. For all

in-water cleaning systems, there are two main processes that can
release biological material including pathogens: (a) application
of the cleaning unit to the vessel surface (either through
incomplete or ineffective capture of debris by the cleaning head)
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TABLE 3 | Notable pathogens and parasitic invertebrates associated with
Eriocheir sinensis and Carcinus maenas.

Species Pathogen Particle size (µm) References

Eriocheir
sinensis

Hepatospora
eriocheir

1.8 × 0.9 Stentiford et al. (2011)

Spiroplasma
eriocheir

0.1–0.35 diameter
0.1–0.2 diameter
3–12 length

Wang et al. (2004a,b)
Wang et al. (2011)

E. sinensis ronivirus 0.060–
0.110 × 0.024–
0.042

Zhang and Bonami
(2007)

White spot
syndrome virus

0.080–0.150
diameter
0.250–0.380 length

Ding et al. (2015)
OIE (2019)
(Chapter 2.2.8)

Aphanomyces
astasci
(freshwater)

Hyphae
7–9 width
Secondary
zoospores
8 × 12

OIE (2019)
Chapter 2.2.2

Paragonimus
westermani
(secondary host)

>100
Metacercariae
diameter

Peters and Panning
(1933)
Habe et al. (1993)

Carcinus
maenas

Hematodinium
perezi
Hematodinium sp.

15–100 length
multinucleate
plasmodium
6–22 diameter
Single cell trophont

Bower (2013a,b)
Davies et al. (2019)

White spot
syndrome virus

0.080–0.150
diameter
0.250–0.380 length

Bateman et al. (2012)

Ostreid herpesvirus
1 µvar

0.07–0.35 Bookelaar et al. (2018)
OIE (2019)

and (b) release of untreated or incompletely treated effluent
(Scianni and Georgiades, 2019).

Pathway Management Approach
Few jurisdictions have enacted biofouling regulations to limit
the translocation of marine non-indigenous macro-organisms
(Georgiades et al., 2020; Scianni et al., in press). New Zealand’s
Craft Risk Management Standard for Biofouling on Vessels
Arriving to New Zealand (CRMS-BIOFOUL) defines “clean
hull” thresholds which are governed by the vessel’s itinerary
(Ministry for Primary Industries New Zealand [MPI], 2018).
These thresholds, while acknowledging issues of feasibility and
practicality, were designed to limit macro-organism species
richness and density, constraining reproduction, and limiting
establishment (Georgiades and Kluza, 2017). The holistic “level
of fouling” approach applied by New Zealand manages risk but
avoids difficulties, costs, and time associated with taxonomic
identifications (Bell et al., 2011). This approach also protects
against species not yet known to be invasive and does not require
formation and ongoing maintenance of lists of “risk species” or
the ongoing cost of surveillance and reporting against such lists.

The likelihood of pathogen translocation from vessels is most
efficiently reduced by limiting the amount of macrofouling,
which includes susceptible hosts and carrier species, on
incoming international or inter-regional vessels. Similar to
predicting invasive marine macro-organisms (Bell et al., 2011),

identifying future high-risk marine pathogens is difficult; further,
the relative dearth of information in this area (Lane et al., 2020;
Pagenkopp-Lohan et al., 2020) and the complexities related to
pathogen introduction and establishment (section “Associations
of OIE-Listed and Other Important Pathogens With Known
Biofouling Species”) create challenges and uncertainty in
determining risk. A pathway management approach to
holistically manage pathogen translocations associated with
vessel biofouling is therefore likely to be more effective than a
pathogen-specific approach.

In-water cleaning plays an important role in managing risks
associated with the vessel biofouling pathway (Georgiades et al.,
2018; Scianni et al., in press). There are, however, multiple
approaches to consider in advancing a “cleaning strategy”
to explicitly minimize the transfer of pathogens and micro-
organisms. The following sections build on existing tools while
identifying challenges, knowledge gaps, and possible solutions.

Proactive In-Water Cleaning (PIC) to Support
Ongoing Vessel Maintenance
Proactive in-water cleaning (PIC) is an emerging approach
used to prevent biofilm formation, to remove it from the hull
(including microscopic life stages of macrofouling organisms),
and ultimately to prevent or reduce the establishment and
growth of macrofouling (Scianni and Georgiades, 2019). Because
of its application early in the biofouling process, less abrasive
techniques that are more consistent with the recommendations
of antifouling system manufacturers may be used. While a
substantial amount of microscopic material is released into the
marine environment, PIC is viewed as a relatively low-risk
activity because it minimizes the translocation of macrofouling
species (Department of Agriculture [DOA] et al., 2015)
and therefore minimizes potential translocation of pathogens
replicating in macrofouling organisms (Hine, 1995; Lallias et al.,
2008; Fuhrmann and Hick, 2020).

Harmful microalgae (including diatoms and dinoflagellates)
and pathogens can occur in the biofilm of vessels (Drake
et al., 2005, 2007; Molino and Wetherbee, 2008; Shikuma
and Hadfield, 2010; Revilla-Castellanos et al., 2015). Biofilm
formation and its subsequent sloughing from submerged vessel
areas during normal operations (including interactions with
tugs, bunkering barges, pilot boats, fenders, lines, etc.), however,
cannot be prevented (Dobretsov, 2010; Morrisey et al., 2013)
without near continual maintenance (Tribou and Swain, 2017;
Amara et al., 2018). It may be conceivable to treat liberated
biofilm associated micro-organisms during PIC [e.g., exposing
the cleaning unit effluent to ultraviolet (UV) radiation], however,
the role of the biofilm in pathogen and non-indigenous
species translocations requires clarification, thus decisions
about the utility and efficacy of PIC require consideration of
this uncertainty.

The “Clean Before You Leave” Approach
To further limit the potential for pathogen translocation,
adopting the reactive in-water cleaning (RIC) approach of
“clean before you leave” could be especially useful, considering
that the geographic origin of accumulated fouling dictates the
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TABLE 4 | High-level approach for management of pathogen translocation via vessel biofouling.

Approach Advantages Disadvantages Level of maturity/
availability

Key references

Pathway management Protects against known and
unknown risks

Some areas on vessels are
difficult to access and maintain

High Bell et al. (2011)
Georgiades et al. (2018)
Georgiades et al. (2020)Consistent with international

fuel efficiency and emissions
reduction policies

Practicality/feasibility and low
cost of implementation

Not reliant on species lists and
ongoing international
surveillance and reporting
activities

Proactive cleaning Prevents or reduces
establishment of macrofouling

Can release substantial
amounts of biological material
(pathogens and other
microbes) of unknown risk into
the environment

Low to medium*
*Depending on the need for
recapture

Schultz et al. (2011)
Inglis et al. (2012)
Morrisey et al. (2013)
Tribou and Swain (2017)
Hunsucker et al. (2019)
Scianni and Georgiades (2019)Consistent with some

antifouling system (AFS)
manufacturer’s
recommendations

Some areas on vessels are
difficult to access and maintain

More convenient and cost
effective than fouling penalties
and dry-docking

Upfront costs for predicted
future benefits

Lower environmental risk both
chemically and biologically
(macrofouling) than reactive
cleaning

Some potential for increased
release of biocides and
macrofouling into the
environment

Reactive cleaning

Clean before you leave Little or no biological risk
depending on vessel
history/itinerary

Potential release of biocides
into the environment

High Inglis et al. (2012)
Department of Agriculture
[DOA] et al. (2015)
Scianni and Georgiades (2019)Potentially more convenient and

cost effective than dry-docking
Some areas on vessels are
difficult to access and maintain

Generally applies to a wide
range of vessel types (includes
most recreational boats) and a
subset of other vessels that are
high-risk (work
barges/platforms, idle/lay-ups,
etc.)

Removal of hard fouling
associated with AFS damage

Does not apply to a majority of
commercial vessels

Reactive in-water
cleaning with capture

Potentially more convenient and
cost effective than dry-docking

Some potential release of
macrofouling and pathogens
into the environment

Low Schultz et al. (2011)
Inglis et al. (2012)
Morrisey et al. (2013)
Morrisey and Woods (2015)
Scianni and Georgiades (2019)
Tamburri et al. (2020)

Costs only incurred if/when
macrofouling removal is clearly
beneficial

Some potential release of
biocides into the environment

Some areas on vessels are
difficult to access and maintain

Removal of hard fouling
associated with AFS damage

biosecurity risk (Department of Agriculture [DOA] et al., 2015).
This approach recognizes that the most effective focal point
for management is prevention, and thus looks to manage the
risk of pathogen translocation at the source to limit spread and
downstream impacts (Ricciardi et al., 2020). The applicability of
this practice depends on the vessel’s prior itinerary, pathogen
status of the recipient area and areas visited earlier, and
proximity to high-value areas. Management of environmental

contamination by antifouling biocides is a key consideration if
such an approach is to be used (Scianni and Georgiades, 2019).

Reactive In-Water Cleaning With Capture (RICC)
Reactive in-water cleaning of vessel biofouling includes methods
to capture, contain, and treat associated organisms [i.e., RICC,
also referred to as in-water cleaning with capture (IWCC)].
The efficacy of RICC systems is uncertain in many cases and
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may vary by organism size and local conditions (Davidson
et al., 2008; Scianni and Georgiades, 2019; Tamburri et al.,
2020). To date, cleaning units are designed primarily to capture
macrofouling organisms, with some attention to treatment of
chemical effluent (Scianni and Georgiades, 2019). Vessel surveys
to assess if RICC of macro-organisms is required are limited to
detection and identification of macrofouling, while pathogens
that may be associated with biofouling organisms have seldom
been considered (Georgiades et al., 2020).

Removal of macrofouling by RICC is likely to kill the hosts
and, where appropriate treatment of waste is not applied,
release pathogens if present. Infected mollusks that are dead or
moribund are known pathogen sources, for example: OsHV-1
(see Sauvage et al., 2009), P. olseni (see Raynard et al., 2007),
and P. marinus (see Bobo et al., 1997). The reactive removal
of macrofouling can release infective material, potentially in
large amounts, into receiving environments with high particle
retention. A single oyster can contain 4.4 × 108 B. ostreae
parasites (Lallias et al., 2008), and Arzul et al. (2009) observed
58% survival of B. ostreae parasites after 7 days exposure to
seawater at 15◦C. OsHV-1 has been observed at 107 DNA copies
per mg of clinically affected Pacific oyster tissue (Pepin et al.,
2008). Hick et al. (2016) found that OsHV-1 remained infectious
in seawater for 2 days at 20◦C and in non-viable oyster tissues
(wet or dry) for at least 7 days at 20◦C. Vigneron et al. (2004)
detected OsHV-1 DNA released into seawater from macerated
larvae for 22 days at 4◦C and 12 days at 20◦C, although it
was not determined if this DNA was viable. P. olseni loads in
infected host tissues can exceed 2× 106 parasites per gram (Choi
and Park, 2010), and P. olseni can survive outside a host for
at least several months (Casas et al., 2002). All life stages of
P. olseni are considered infective (Villalba et al., 2004). While
elevated concentrations of antifouling biocides in the treatment
stream (Tamburri et al., 2020) may render some pathogens non-
viable (Dupont et al., 2011), these can also impact the health of
organisms in the receiving environment (Dafforn et al., 2011;
Amara et al., 2018), and potentially increase their susceptibility
to disease (Moreau et al., 2015).

Direct releases of biofouling from the cleaning head
can be assessed by analyzing the total suspended solids
(TSS) in water sampled from the surrounding environment
during equipment operation (Alliance for Coastal Technologies
Maritime Environmental Resource Center [ACT/MERC], 2019;
Tamburri et al., 2020). Inclusion of this analysis is a useful
addition to the technical advice released by MPI on testing
in-water cleaning and treatment systems for external hull and
niche areas (Morrisey et al., 2015) and internal seawater systems
(Growcott et al., 2019). Similar to direct video observations of the
cleaning unit during operations, TSS may serve as a proxy for
propagule release into the marine environment.

Recommendations for biosecure effluent treatment standards
for surface-based waste processing systems associated with RICC
are typically based on physical separation (typically settling tanks
followed by filtration) to remove live organisms and propagules
associated with macro-organisms (Scianni and Georgiades,
2019). Targeted particle size thresholds range between 2 µm
(Morrisey et al., 2013), 5 µm (California Water Boards,

2013), 10 µm (Lewis, 2020), 12.5 µm (Morrisey et al., 2015;
Growcott et al., 2019), 50 µm (Department of Agriculture [DOA]
et al., 2015), and 60 µm (Morrisey et al., 2013). Assessments of
filtration technologies associated with ballast water management
systems (BWMS) that use similar designs and functions as those
incorporated in RICC systems have shown that they are far from
100% effective at removing live organisms above the stated target
particle size, or even the specific physical mesh or sieve size
employed (e.g., Gregg et al., 2009; Briski et al., 2014; Cangelosi
et al., 2014). Although filtration and settlement can be effective in
removing the proportion of pathogens contained within infected
material, physical separation of particles, even down to 2–5 um, is
unlikely to completely remove many known pathogens, including
smaller protists, bacteria, and viruses (Tables 1–3), or dissolved
biocides (Terraphase Engineering Inc, 2012; Tamburri et al.,
2020), from the effluent. Additional effluent treatment options
(i.e., a disinfection step) should therefore be considered where
the prevention of pathogen translocation associated with vessel
biofouling is a concern.

Additional effluent treatment options for reactive in-water
cleaning
For high risk international vessels or vessels from regions
with different biosecurity conditions, additional measures to
the physical separation of captured debris alone include, but
are not limited to, treatment using biocides, UV radiation,
or heat to render propagules non-viable (Table 5), or direct
disposal of the liquid effluent into municipal sewerage where
permitted (Morrisey and Woods, 2015). Pre-filtration to reduce
the particulate and organic material present is still required to
improve the treatment efficacy of UV, ozone, or oxidants (Chahal
et al., 2016; Hess-Erga et al., 2019). Depending on the treatment
purpose, pre-filtration recommendations vary between 7 µm
(Fraser et al., 2006), 20 µm (Sassi et al., 2005), and 50 µm
(Department of Agriculture, Fisheries and Forestry [DAFF],
2008). High flow velocities, however, such as those associated
with fouling removal by RICC systems, may decrease filtration
efficacy by reducing the contact time between pathogens and
particles, and increasing hydraulic shear which can disrupt
pathogen-to-particle binding (Chahal et al., 2016). While this
may lead to increase in the exposure to subsequent treatments
resulting improved efficacy, it also results increased load on this
stage of the treatment process.

The concept of appropriate effluent treatment from RICC
systems is challenging because:

a) The macrofouling species and pathogens present on
submerged surfaces of any given vessel will be largely
unknown, therefore any treatments employed should have
a wide range of efficacy across a number of pathogen types
(e.g., viruses, bacteria, and protists).

b) The efficacy of some treatments (e.g., biocides and UV) is
dictated by the amount of organic and particulate matter
present and the size of some pathogens (i.e., viruses) is
far smaller than any filter size that can be practically
achieved. The main purpose of physical separation will,
therefore, be to reduce the amount of particulate and
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TABLE 5 | Recommended dose/fluence for efficacy of common water treatment agents.

Disinfecting agent Application Recommended dose/fluence References

Chlorine Drinking water 1 mg/L, 30 min Henze et al. (2008)

Effluent (aquaculture) 2 mg/L, 5 min Meyers (2010)

Effluent (Processing facilities) 5 mg/L, 30 min
An initial concentration of
1,000 mg/L of sodium hypochlorite
is sufficient

Fraser et al. (2006)

Wastewater (aquaculture)
(Decontamination)

30 mg/L, 24 h
(maintain residual 5 mg/L)

Department of Agriculture,
Fisheries and Forestry [DAFF]
(2008)

Wastewater 20–40 mg/L Henze et al. (2008)

Wastewater (Cryptosporidium) 20–40 mg/L, 90 min Henze et al. (2008)

OSHV-1 50 mg/L, 15 min Hick et al. (2016)

Marteilia sydneyi 200 mg/L, 4 h Wesche et al. (1999)

Perkinsus marinus 300 mg/L, 30 min OIE (2019) Chapter 2.4.6

P. olseni 6 mg/L, 30 min OIE (2019) Chapter 2.4.7

Bonamia exitiosa 40 g/L, 10 min Buss et al. (2020)

Ultraviolet radiation Effluent (aquaculture) > 25 mJ/cm2 Department of Agriculture,
Fisheries and Forestry [DAFF]
(2008)

Effluent (aquaculture)
(including Mxyosporideans)

> 35 mJ/cm2 Department of Agriculture,
Fisheries and Forestry [DAFF]
(2008)

OsHV-1 42 mJ/cm2 Stavrakakis et al. (2017)

P. marinus > 28 mJ/cm2 OIE (2019) Chapter 2.4.6

P. olseni 60 mJ/cm2 OIE (2019) Chapter 2.4.7

Influent
(freshwater aquaculture)
Infectious pancreatic necrosis virus (IPNV)

122 mJ/cm2 Fraser et al. (2006)

Effluent
(freshwater aquaculture)
(Nodavirus)

290 mJ/cm2 Fraser et al. (2006)

Effluent (processing facilities) 120 mJ/cm2 Fraser et al. (2006)

Influent/effluent (aquaculture)
High flow/heavy particulates
(99.9% reduction fish viruses)

175 mJ/cm2 Meyers (2010)

Ozone Influent/effluent (aquaculture) 8 mg/L, 3 min
(Corresponding to redox potential
600–750 mV)

Fraser et al. (2006)

Emergency disease events
(Residual level)

0.5 mg/L,10 min
1 mg/L, 1 min

Department of Agriculture,
Fisheries and Forestry [DAFF]
(2008)

OsHV-1 1 mg/L, 30 min Stavrakakis et al. (2017)

Heat Wastewater (aquaculture)
(Decontamination)

60◦C, 10 min
70◦C, 6 min
75◦C, 5 min
80◦C, 4 min
Most pathogens
Enveloped viruses and some
bacteria may be resistant

Department of Agriculture,
Fisheries and Forestry [DAFF]
(2008)

Treatment of hard surfaces and equipment Steam cleaning at 115–130◦C for
5 min

Department of Agriculture,
Fisheries and Forestry [DAFF]
(2008)

Treatment of gear and steam cleaning
non-porous surfaces

70◦C, 2 h (IPNV) Fraser et al. (2006)

P. marinus 50◦C, 1 h
(Filtered seawater)
60◦C, 1 h
(Tissues)

OIE (2019)
Chapter 2.4.7

(Continued)
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TABLE 5 | Continued

Disinfecting agent Application Recommended dose/fluence References

Iridoviruses of mollusks (VL)
OsHV-1
Malacoherpesviruses
Oyster edema disease
Haplosporidium nelsoni
(VL?)
Marteilia spp. (?)
M. sydneyi (VL?)
Marteiloiodes spp. (?)
M. chungmuensis (VL?)
Perkinsus spp. (VL)
P. olseni (VL)
P. chesapeaki (VL)

55◦C, > 10 min

VL = very low risk
(= appropriate level of protection)
? = uncertainty due to lack of information

Diggles (2020)

OsHV-1
Malacoherpesviruses
Oyster edema disease
Bonamia spp. (VL?)
B. exitiosa (VL?)
B. ostreae (VL?)
Haplosporidium nelsoni (?)
Marteilia spp. (?)
M. refringens (VL?)
M. sydneyi (?)
M. roughleyi (VL?)
Marteiloiodes spp. (?)
M. chungmuensis (?)
Mikrocytos spp. (VL?)
M. mackini (VL?)
Minchinia spp. (VL?)
M. occulta (VL?)
Perkinsus spp. (VL?)
P. olseni (VL?)
P. chesapeaki (VL?)
P. marinus (VL?)
Akoya oyster disease (VL?)

80◦C, > 5 min

VL = very low risk
(= appropriate level of protection)
? = uncertainty due to lack of information

Diggles (2020)

organic matter present to assist the efficacy of any
subsequent treatment(s).

c) The efficacy of some subsequent treatments (e.g., biocides
and UV) will be difficult to ascertain without some form
of indicator. That is, approaches for disinfecting effluent
prior to discharge should demonstrate their efficacy in
removing viral, bacterial, and protistan pathogens (or
surrogates for pathogens).

d) Biocidal treatments may be subject to local water quality
regulations and may require neutralization prior to
effluent discharge.

Effluent treatment for the in-water removal of high-risk
biofouling can be guided by lessons learned from municipal
sewage treatment (Henze et al., 2008; Chahal et al., 2016),
the influent and effluent treatment for land-based aquaculture
(Fraser et al., 2006; Department of Agriculture, Fisheries and
Forestry [DAFF], 2008; Meyers, 2010; Baulch et al., 2013;
Whittington et al., 2020), and the development of BWMS
(Balaji et al., 2014; First and Drake, 2014; Batista et al., 2017;
Hess-Erga et al., 2019).

While the fundamental goal for management of both the
biofouling and ballast water pathways is to minimize the

risk of non-indigenous species introductions from vessels,
discharge thresholds and management approaches for ballast
water regulations (e.g., International Maritime Organization
[IMO], 2004) are not directly applicable to RICC of vessel
biofouling because:

a) Ballast water brought onboard ships has fewer suspended
solids and smaller particle sizes than wastewater produced
and treated by RICC.

b) The planktonic organisms treated by BWMS are
dissimilar in many ways to micro- and macro-organisms
observed within biofouling assemblages.

c) The IMO ballast water regulations do not consider
organisms less than 10 µm in size, apart from a few target
taxa (E. coli, Enterococci, and toxigenic V. cholerae).

d) RICC systems use large volumes of ambient water
in the cleaning process, and RICC effluent therefore
requires treatment of biofouling organisms removed
from ship surfaces and substantial biomass of local
planktonic organisms.

e) Ballast water effluent treatment methods are unlikely to
address the environmental risk of releasing antifouling
biocides associated with vessel coatings.
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In-water cleaning systems do not have the same physical
space and power limitations as shipboard BWMS, which
could facilitate broader treatment options, such as those used
in land-based water treatment, including sewage treatment
facilities and aquaculture establishments. While all RICC systems
incorporate some form(s) of physical separation (e.g., settling
tank, filter, hydrocyclone, and flocculation), decisions about the
incorporation of subsequent treatment to either remove dissolved
antifouling biocides (e.g., selective metal-binding or adsorption
media) or kill pathogens should carefully consider a number of
factors including, but not limited to: the marine values requiring
protection, risk reduction outcomes, treatment feasibility and
practicality, and cost (see Inglis et al., 2012). The following
are examples of possible subsequent treatment and disinfection
approaches, but not an exhaustive list.

Chlorine. A common disinfectant for wastewater, municipal
water, and ballast water (see Ghernaout, 2017), “chlorine”—
used here to represent the suite of reactive halogens derived
from chlorine—may be suited to disinfect effluent from in-
water cleaning operations (Table 5). Chlorine can be injected
from an external source, or it may be produced on-site, through
electrolytic chlorine generation. Regardless of the chlorine
compound, and irrespective of whether it is introduced as a
solid, liquid, or a gas, a series of cascading reactions occur based
upon the water characteristics following the injection of the
compound into the effluent. For example, an electrolytic chlorine
generator introduces chlorine as a gas, which upon dissolution
in water, reacts to form hypochlorous acid (HOCl). In seawater,
HOCl is unstable and quickly dissociates to form hypochlorite
(OCl−) and then hypobromous acid, which is also an effective
germicide and more stable than HOCl at the pH of seawater
(Wong and Davidson, 1977; Abarnou and Miossec, 1992). When
ammonia is present in seawater, the oxidants produced through
electrolysis form mono-, di-, or tri-chloramines. While these
are not considered the primary biocidal agent, some organisms
(including invertebrates such as copepods and crab larvae) are
sensitive to chloramines (Capuzzo, 1979).

Some BWMS use chlorine to treat large volumes of natural
water (Joint Group of Experts on the Scientific Aspects of Marine
Environmental Protection [GESAMP], 2019). Generally, ballast
water is treated upon uptake, i.e., entry into the ship prior to
transit. Treated water is typically held in ballast tanks for at least
1 day, and residual oxidants are neutralized prior to discharge
into the environment. In-water cleaning operations require rapid
treatment of large volumes, but—relative to ships’ ballasting
operations—reservoir volumes are small and hold times are
minimal. Adapting a BWMS-like approach for in-water cleaning
operations would require large tanks and other infrastructure,
which may not be practicable. For active substances, treatment
would have to occur following the final filtration, as to minimize
organic particulates that consume oxidants. In an in-water
cleaning operation, treated water would almost immediately be
neutralized thus limiting system efficacy, as short treatment times
limit the dispersion of chlorine and the reactivity of the primary
oxidizing species. Biocidal concentrations required for high flow,
small reservoir systems will exceed those for treating ballast water,

and the effective doses would vary based upon a variety of factors
including temperature, pH, light, salinity, presence of organic
matter (Chahal et al., 2016; Batista et al., 2017; Hess-Erga et al.,
2019), and contact time. These factors emphasize the importance
of measuring the residual dose of chlorine in the system and
assessing efficacy using validated methods.

Chlorine may be effective for effluent treatment if on-site or
nearby reservoirs are used to hold treated water, allowing time for
the reaction and dissipation of chlorine prior to neutralization.
Other strategies to improve the biocidal efficacy of chlorine
will allow for shorter residence times in the treatment system.
For example, combinations of chlorine and other reagents (e.g.,
CO2) have shown improved efficacy (Growcott et al., 2017;
Hess-Erga et al., 2019). Likewise, mixed-oxidant systems have
demonstrated improved biocidal efficacy relative to chlorine
alone (Venczel et al., 1997). Finally, an approach for the in-water
treatment of hull surfaces has been envisioned: this suggestion
would use chlorine produced directly on the hull surfaces by
electrolytic chlorination as an antifouling treatment (Iliopoulos
et al., 2014). For this approach, ships’ existing cathodic protection
systems would be reengineered so that chlorine—naturally
produced at the anodes—is dispersed to prevent fouling on
the hull and other wetted surfaces. This approach would guard
against both macrofouling organisms and their pathogens.
However, “in-water chlorination” would potentially introduce
high concentrations of chlorine (and disinfection byproducts)
into natural water systems which would likely violate the local
water quality standards of many jurisdictions.

While chlorination appears to be an obvious candidate for
secondary treatment of in-water cleaning effluent, its efficacy
remains unresolved (Cahill et al., 2019a), the effluent would need
to be neutralized prior to discharge to satisfy local water quality
standards, and it is not yet incorporated in any commercially
available RICC system.

Ultraviolet (UV) radiation. Ultraviolet radiation is used to
disinfect drinking, waste, and ballast water (see Chen et al.,
2006). By contrast to chlorine, UV radiation is readily adaptable
for an in-line system for effluent treatment: treatment occurs
during the short period that suspended organism transits
through a chamber. Reactive chemicals are not required, nor
are neutralizing agents. Effluent water could be discharged
immediately following treatment, given that the dose is sufficient.
To achieve the prescribed ballast water discharge standards,
Oemcke et al. (2004) and Kim et al. (2019) recommended doses
of 60–70 mJ/cm2 to treat most bacteria and viruses (Table 5).
Oemcke et al. (2004) further recommended that a dose of
120 mJ/cm2 would remove most micro-organisms except for
resistant cysts and viruses. Much higher doses are required to
treat the cysts of Cryptosporidium spp. (> 200 mJ/cm2) and
diatoms such as Gymnodinium catenatum (> 1,600 mJ/cm2)
(Gregg et al., 2009). For many micro-organisms, the effect of UV
irradiation may not be immediate, raising the issue of organism
viability (i.e., treatment efficacy). This issue has introduced a
variety of complications when determining the efficacy of BWMS
(First and Drake, 2014; Batista et al., 2017; Peperzak et al.,
2020). For example, damage to organisms, in certain cases,
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may be repairable (e.g., Zimmer and Slawson, 2002). Similar
to chlorine, UV radiation efficacy varies based upon the water
characteristics, particularly the concentration of particulate and
dissolved material (primarily organic matter), which reduce the
UV transmissivity (%UVT), but may also scavenge reactive
oxidation species (Ou et al., 2011). At least one commercially
available RICC system includes the option of secondary UV
treatment of captured debris (Lewis, 2013).

Ozone. Ozone is an established water treatment (see Langlais
et al., 1991) and is effective against a range of micro-organisms
(Gregg et al., 2009; Chahal et al., 2016). Similar to chlorine, ozone
is an oxidizing compound that may be generated on-site. For
ballast water treatment > 5 mg/L, total residual oxidants for 10 h
appear to be a broad-spectrum treatment for free-living bacteria,
dinoflagellates, and diatoms; however, 8–14 mg/L for 24 h was
required to effectively treat the spore-forming bacteria Bacillus
subtilis (see Gregg et al., 2009; Table 5). Ozone—when used as
a disinfectant for effluent from a land-based RICC treatment
system—has some of the same limitations and caveats as chlorine.
Treatment efficacy is a product of both dose concentration and
exposure time, and for a flow-through system, exposure time will
be limited. Likewise, residual oxidants will require neutralization.
Ozone is not yet incorporated into RICC systems.

Heat. Some in-water cleaning technologies use heat as an
approach for removing fouling, particularly the algal and biofilm
fouling on easily accessible areas of ships’ hulls (Morrisey and
Woods, 2015). In this case, heat treatment would be effective
against free-living pathogens. Heat may also be used in shore-side
treatment systems to kill organisms remaining prior to discharge.
For treatment of macrofouled vessel internal seawater systems,
Cahill et al. (2019b) and Growcott et al. (2019) recommended
exposure to 60◦C for 60 min. Such a treatment would appear
to be effective against all but the hardiest pathogens, e.g.,
birnaviruses such as infectious pancreatic necrosis virus (IPNV;
Fraser et al., 2006). Aquatic birnaviruses have been found in
oysters and mussels located near salmon farms (Mortensen, 1993;
Rivas et al., 1993). IPNV has had substantial impacts on global
salmonid aquaculture (Munro and Midtlyng, 2011) and has been
experimentally transmitted from Mytilus edulis to Salmo salar by
cohabitation (Molloy et al., 2013). When considering the range of
pathogens of biosecurity relevance to Australia, Diggles (2020)
concluded that heating (80◦C in water, > 5 min) would meet
the acceptable level of protection (i.e., an annual probability of
establishment between 1 in 20 and 1 in 100 years) for all identified
risk pathogens despite uncertainty from data deficiency (Table 5).

For BWMS, chlorine and UV radiation are common
disinfectants, but heat is also used in some cases. For one
particular BWMS, the heat source is primarily waste heat from
the ship engines and cargo pumps. Treatment occurs in a section
of heated pipe, designed so that flowing water meets minimal
hold time and temperature limits for disinfection. Note that this
system, while shown in Type Approval testing to meet limits
on regulated groups of organisms (e.g., Coast Guard Maritime
Commons, 2020), was not evaluated for its efficacy in treating
pathogenic bacteria, protists < 10 µm, and viruses. While heat
treatment is not sensitive to most water characteristics (such

as dissolved organic material, salinity, etc.), its efficiency does
depend upon the temperature of the input water, i.e., more
energy is required to meet the minimum effective temperature
in cold and temperate waters relative to tropical waters. On
ships, heat-based BWMS may be coupled with heat generating
systems, but on a shore-side operation, it is likely that a dedicated,
intentional heat source is necessary. The feasibility for using
heat to treat the effluent from in-water cleaning operations,
therefore, rests on the characteristics of a specific location,
including water temperatures, access to fuel or energy for boilers,
and opportunities for capturing waste heat. Heat is not yet
incorporated into RICC systems.

CONCLUSION

The long history of devastating impacts to marine values
caused by cross-boundary translocation of marine pathogens
has resulted in improved practices from regulatory and non-
regulatory controls that apply to established pathways, such
as fisheries and aquaculture. Available evidence indicates that
vessel biofouling is also a viable and important pathway for
translocating marine pathogens which presents a risk to marine
values. This largely unmanaged pathway, therefore, represents
a considerable gap in the biosecurity measures of jurisdictions
committed to the prevention and control of aquatic disease.
Preventive measures, such as those used in New Zealand
and Californian biofouling regulations, lower the likelihood of
pathogen translocation by reducing diversity, population size,
and total mass of susceptible hosts and carrier species on vessels.
Reactive measures, such as in-water removal of macrofouling,
may, however, exacerbate the problem and will likely need
modification to manage the risk associated with pathogens.
While lessons learned from ballast water management, sewage
treatment, and aquaculture industries should be considered when
developing cleaning and effluent treatment criteria for reactive
approaches, preventing or greatly reducing the translocation
of pathogens using proactive measures for vessel biofouling is
likely to be more effective. Both proactive and reactive solutions,
however, have their own unique challenges. The balance between
marine protection and risk reduction versus treatment feasibility
and cost requires careful consideration.
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