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1. INTRODUCTION

The density of polar waters is controlled by salinity, making them so-called “beta oceans” (Carmack,
2007). Changes in salinity, therefore, can alter stratification, which impacts of a host of physical and
biogeochemical processes in beta oceans (Carmack, 2007; Brown et al., 2020). Mass loss from the
Greenland Ice Sheet has increased by a factor of six since the 1980s (Mouginot et al., 2019) and
freshwater runoff into adjacent fjord and shelf waters has subsequently increased (Sejr et al., 2017;
Boone et al., 2018; Moon et al., 2018; Mankoff et al., 2020). The increase in freshwater discharge
impacts marine ecosystems (Meire et al., 2017; Cape et al., 2019; Seifert et al., 2019; Hopwood et al.,
2020; Oliver et al., 2020), and density stratification and circulation in fjords and Baffin Bay (Castro
de la Guardia et al., 2015; Sejr et al., 2017; Boone et al., 2018; Moon et al., 2018; Monteban et al.,
2020; Rysgaard et al., 2020). The contribution of freshwater runoff from the Greenland Ice Sheet to
the freshening observed in the North Atlantic remains an area of active research that relies heavily
on numerical ocean models (Liu et al., 2018; Dukhovskoy et al., 2019; Zhang et al., 2021). Synoptic
hydrographic observations can aid in quantifying the magnitude and spatial distribution of glacial
meltwater in fjord and ocean waters around Greenland to provide much-needed benchmarks for
ocean models that attempt to simulate the effects of this added freshwater on ocean circulation,
heat transport, and climate (Gillard et al., 2016; Little et al., 2016; Dukhovskoy et al., 2019).

Observations in remote and harsh Arctic environments can be difficult and costly. Additionally,
the number of research vessels that operate in Greenlandic waters are limited and are highly
sought after. Sailboats have been used as measurement platforms in the region (Miller et al., 1995;
Karnovsky et al., 2010; Johannessen et al., 2011; Fenty et al., 2016; Nicoli et al., 2018; Aliani et al.,
2020; Bouchard et al., 2020) andmarinemonitoring programs should leverage the increase in Arctic
tourism aboard cruise ships and private yachts (Dawson, 2019; Leoni, 2019; Palma et al., 2019) to
increase the spatiotemporal coverage of ocean observations in Greenlandic waters. While sailboats
lack the resources of dedicated research vessels, they are small, maneuverable, and flexible, and
therefore, are well-suited for citizen science (Simoniello et al., 2019).

Here, we present a pilot project that demonstrated the ability of citizen scientists aboard a
sailboat to independently acquire hydrographic data in remote marine environments that are
impacted by glacial runoff. TheMission Arctic citizen science sailing expedition collected profiles of
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temperature and salinity from July to September 2017 in the
upper ∼60 m of the water column in western Greenland,
Nares Strait, and Baffin Bay (Figure 1). This report describes
the expedition, hydrographic data collection and quality control
procedures, the final data set, and presents preliminary results.

2. METHODS

2.1. Expedition Summary
The Mission Arctic Science Sailing Expedition to western
Greenland and Baffin Bay took place aboard the sailboat Exiles in
summer 2017. Exiles departed St. John’s Newfoundland, bound
for southern Greenland, in late June 2017. Exiles’ route can
be traced in Figure 1 following a counter-clockwise path from
Paamiut in southwest Greenland, north along the west coast of
Greenland, and back south along the Canadian Arctic. Scientific
activities were coordinated by Dr. Daniel Carlson from the
Arctic Research Centre at Aarhus University in Denmark. Dr.
Carlson met Exiles in Paamiut and disembarked in Upernavik,
in northwest Greenland. During July 2017, the Mission Arctic
crew conducted conductivity/temperature/depth (CTD) surveys
(see section 2.2) of fjords in contact with the Greenland Ice
Sheet, acquired low-altitude aerial imagery of coastal macroalgal
beds, and recovered moored instruments. Here, we focus on the
CTD observations.

After Dr. Carlson disembarked in Upernavik in late July
Exiles continued north, through Melville Bay and into Nares
Strait. Exiles proceeded as far north as possible, reaching 80◦N,
until sea ice forced the vessel to turn around. Exiles then turned
southwest, following the coast of Ellesmere Island to Craig
Harbor and Grise Fjord. Exiles sailed southward along the
western boundary of Baffin Bay, with stops in Pond Inlet and
Clyde Harbor on Baffin Island. Exiles returned to Newfoundland
in late September, completing a circuit of Baffin Bay, collecting
98 CTD profiles on this leg. In total, 147 CTD profiles were
collected during the 2017 Mission Arctic Citizen Science
Sailing Expedition. The CTD profiles are described here and
they are available for download from the Greenland Marine
Ecosystem community data repository on Zenodo (https://
zenodo.org/record/4597385#.YF2cPF1Ki8U). The Greenland
Marine Ecosystem community data repository (https://zenodo.
org/communities/greenmardata/) is a curated repository for
relevant datasets collected by professional and citizen scientists.
The repository also contains other datasets that were collected
during the expedition as well as datasets from other research
cruises. A daily summary of activities aboard Exiles during July
2017, as well as plots of each fjord transect, are provided with
the dataset.

2.2. CTD Profiles
A RBR Concerto CTD (https://rbr-global.com/) that measured
conductivity, temperature, and pressure was used in fjords from
Paamiut to Upernavik in July 2017. A Sontek CastAway CTD
(https://www.sontek.com/castaway-ctd) was used for all stations
north of Upernavik in western Greenland and on the return leg
along the western shore of Baffin Bay to St. John’s, Newfoundland
(Figure 1). The CastAway features a built-in GPS and liquid

crystal display (LCD) screen, and Bluetooth data transfer, which
make it relatively easy to use in citizen science field campaigns.
The built-in GPS minimizes record-keeping requirements and
the LCD screen allows the operator to verify that the instrument
is functioning properly, both before and after each profile and
the wireless Bluetooth data transfer reduces the risk of flooding
the pressure housing when connecting data transfer cables. The
CastAway CTD has a maximum operating depth of 100 m,
records data at 4 Hz, and has accuracies of ±0.05◦C, ±0.1 psu,
and 0.25%, for temperature, salinity, and depth, respectively.

2.3. CTD Data Processing
All CTD profiles were quality controlled, binned, and stored
in a single network common data form (netCDF; https://
www.unidata.ucar.edu/software/netcdf/) file using a template
provided by the National Oceanographic and Atmospheric
Administration’s National Centers for Environmental
Information (https://www.nodc.noaa.gov/data/formats/netcdf/
v2.0/). NetCDF provides self-describing data in a format that is
compatible with popular analysis tools like Ocean Data View,
Python, Matlab, and R-Studio.

The raw CTD measurements were processed to remove
the surface soak (e.g., a period of several minutes that
allows the sensors to acclimate to the ambient water
temperature) and the upward segment of the profile.
The downcast conductivity data were de-spiked and the
conductivity, temperature, and pressure data were used
to compute salinity, depth, density, potential temperature,
conservative temperature, and potential density. Salinity,
density, potential density, potential temperature, and
conservative temperature were computed using the Gibbs
Seawater Oceanographic Toolbox for Matlab (McDougall et al.,
2012).

3. PRELIMINARY ANALYSIS

The CastAway CTD profiles that were acquired by the crew of
Exiles in August and September 2017 were used to compute
the freshwater content (FWC) of the upper 40 m. This depth
limit was selected as the glacial meltwater signal is thought to be
confined to the upper 30 m (Castro de la Guardia et al., 2015).
The FWC was computed following de Steur et al. (2009),

FWC =

z=0∑

z=−40

Sref − S(z)

Sref
1z (1)

where Sref and S(z) are a reference salinity and a given depth
profile of observed salinity, respectively. The reference salinity
was computed using a Bootstrap resampling of the mean salinity
(Efron and Tibshirani, 1986) at 40 m depth in Melville Bay
(Sref = 33.25), Nares Strait (Sref = 31.54), and off Ellesmere
(Sref = 31.91) and Baffin Islands (Sref = 31.51). The estimates of
FWC in the region during August and September 2017 are shown
in Figure 2. Figure 2 reveals FWC of ∼2–3 m near the outlets
of fjord systems in western Greenland and Ellesmere and Baffin
Islands. The FWC in Nares Strait ranged from 1–2m. Thus, these
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FIGURE 1 | A map of Baffin Bay and the Labrador Sea, bordered by Greenland on the east and Canada to the west. Circles are used to indicate CTD profile locations

colored to represent the instrument that was used. Yellow circles correspond to the RBR Concerto and pink circles correspond to the Sontek CastAway. Colored

contours indicate ocean bathymetry (meters below sea level) derived from ETOPO1 (NOAA National Geophysical Data Center, 2008).
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FIGURE 2 | The freshwater content (FWC; units of meters) of the upper 40 m in northern Baffin Bay is indicated by color-coded circles. The FWC ranged from 0.12 to

3.33 m during the 2017 survey.
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observations quantify shallow FWC in a data-scarce region of
the Arctic.

4. CONCLUSIONS

These preliminary results, therefore, demonstrate the potential
for citizen science initiatives to contribute observational data
to the ongoing effort to observe and understand the rapidly
changing marine Arctic environment. These preliminary results
also demonstrate that visiting sailboats can be effective data
collection platforms in remote and harsh polar environments.
Furthermore, Greenland is the world’s largest island and the
culture and economy of its citizens are inexorably linked to the
sea. In addition to visiting yachts and cruise ships, which only
visit Greenlandic waters in the warmer months (Leoni, 2019),
citizen science CTD observations should be expanded to acquire
data year-round.
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