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The understanding of fishing effort allocation has been recognized as a key feature within
the spatial management planning of fisheries. In small-scale fisheries this assessment
is challenging because of their multi-specific context. This has resulted in management
regulations that do not fulfill their objectives. Therefore, the analysis of vessels movement
is needed for the better assessment and management of small-scale fisheries. Thus,
we used a Random Walk (RW) modeling approach to characterize the fishing trips of
small-scale multi-gear vessels targeting multiple species. We analyzed activities of three
different gears (hand net, handline, longline) and two fishing methods (diving, “gareteo”)
recorded with a GPS from 156 fishing trips along three fishing seasons (2018–2020) by
the small-scale fleet of Yucatan, Mexico. We fitted seven RW models for the movement
data and compared their relative and absolute fit through a delta Akaike test and
G-Tests respectively. A total of 143 trajectories showed conclusive evidence to establish
a CCRW-type movement; the remaining 13 trajectories fit three models (CCRW, TRW
and CRW). The Random Walk models were useful for modeling a multi-gear, small-scale
fleet operating in southeast Mexico. According to our results, the Composite Correlated
Model was the most suitable RW for this fleet. For future studies, we suggest increasing
the number of fishing trips and conducting specific studies by gear and fishing method.
Also, the application of relative and absolute fit tests to compare the performance of RW
models is highly recommended.

Keywords: small scale fisheries, small scale fleet, spatial dynamics, random walk, modeling

INTRODUCTION

The allocation of fishing effort has been recognized as a key feature within the spatial management
designs used in fisheries (Daw, 2008; McCluskey and Lewison, 2008). Therefore, understanding
the correct allocation of fishing effort could enhance spatial management (Dorn, 2001). In
mixed fisheries such as small-scale fisheries (SSF) this assessment is particularly challenging
because these fisheries target a variety of species and use multiple gears. SSF are complex
systems characterized by feedback relationships among biological, environmental, human and
economic factors. These factors largely determine the allocation of fishing effort and fleet dynamics

Frontiers in Marine Science | www.frontiersin.org 1 May 2021 | Volume 8 | Article 669112

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2021.669112
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2021.669112
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2021.669112&domain=pdf&date_stamp=2021-05-25
https://www.frontiersin.org/articles/10.3389/fmars.2021.669112/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-669112 May 18, 2021 Time: 19:12 # 2

Quijano Quiñones et al. Spatial Dynamics of Small-Scale Fleets

(Holland and Sutinen, 1999). Thus, a disregard for fleet dynamics
and fishermen behavior has resulted in management regulations
that seldom fulfill their objectives (Branch et al., 2006).

The use of multiple fishing gears in mixed fisheries is
highly dynamic throughout the year and depends on the target
species; consequently, catch rate trends can be modified as a
result of fishing fleet behavior (Ulrich and Andersen, 2004).
Therefore, understanding the relationship between fishing gears
and species caught is important for improving the assessment and
management of fisheries. The assessment of fishermen behavior
and fleet dynamics in developing countries such as Mexico
has been poorly explored. Ignoring these factors has led to
a failure to achieve management objectives. In this sense, the
analysis of vessel movements can help to determine what type
of fishing gear is used, which in turn could help to develop
better estimates of fishing effort allocation and improve the
identification of target species according to fishing gear (Metcalfe
et al., 2017). Furthermore, it could be possible to incorporate
this approach into Vessel Monitoring Systems (VMS) suited for
small-scale fleets to track fishing activities at sea concerning
fishing gears employed.

From an ecological point of view, fishermen have been
assumed to behave like predators (Bertrand et al., 2007;
Hilborn, 2007). Thus, it is particularly important to identify the
dynamics of fishing effort allocation. Exploring this behavior
could lead us to identify illegal, unreported and unregulated
fishing activities (Marzuki et al., 2015), determine patterns in
the spatial distribution of fishing resources from fishing data
(Bertrand et al., 2008) or infer fishing strategies from geo-
referenced data (Joo et al., 2014). Moreover, several researchers
have recognized the need to understand fishermen behavior in
different contexts and to consider how this relates to target
species (Fulton et al., 2011; van Putten et al., 2013; Bourdaud
et al., 2019; Wijermans et al., 2020).

Nonetheless, the acquisition of spatio-temporal data of fishing
effort in SSF has been challenging due to: (1) a lack of or
limitations in sampling programs; (2) a wide range of landing
sites; and (3) a lack of reliability in terms of catch statistics and
fleet size (Metcalfe et al., 2017; Chuenpagdee et al., 2019; Cardiec
et al., 2020). Worldwide, VMS and Automatic Identification
Systems (AIS) are mandatory for industrial fisheries and have
been developed for the surveillance and monitoring of fishing
fleets (Kroodsma et al., 2018). However, in SSF these have
not been implemented, although with the use of cost-effective
equipment such as GPS it is possible to get insights into fishermen
behavior at sea (Alvard et al., 2015; Metcalfe et al., 2017;
Cardiec et al., 2020).

In Yucatan, fishery management is based mainly on fishing
effort controls (closed seasons, total allowable catches, limits on
fleet size and restrictions on fishing gear). However, there is
no spatial management planning scheme for SSF. Despite the
efforts, main commercial species have showed a decrease in
catches and CPUE. Furthermore, since the mid-1990s, fishermen
in this region have used GPS to mark fishing grounds, resulting
in increasing fishing pressure. Thus, in the absence of spatial
monitoring systems (VMS or AIS), it would be useful to
acquire data from GPS devices for spatial management schemes

(e.g., closed areas, identification of illegal fishing). However,
determining fishing effort allocation in mixed fisheries –
including SSF – is difficult due to the diverse use of fishing
gears (Bourdaud et al., 2019). Therefore, the movement of fishing
vessels should be a key factor in understanding the spatial
dynamics of fishing fleets. According to Bertrand et al. (2007),
movement analysis makes it possible to examine how fishermen
adapt their spatial behavior in relation to a species’ distribution,
much like a predator-prey relationship. This information is
essential for assessing the spatial fishing behavior in the context
of a SSF operating with several fishing gears (Wilen, 2004).

In this context the Random Walk (RW) approach has been
used for spatial analysis in monospecific fishing fleets (Bertrand
et al., 2015). In this study we explored the application of Random
Walk (RW) models to the characterization of fishing trips from
SSF operating in Yucatan, Mexico. We argue that this approach
will be useful for modeling the spatial behavior of small-scale
vessels and therefore could lead to a better assessment of fishing
effort allocation for SSF in the area.

MATERIALS AND METHODS

Study Site
The information used in this study was obtained from observers
aboard vessels of the SSF in Yucatan, Mexico. This multi-specific
fleet employs more than 10,000 fishermen and operates in three
of the most important fisheries in southeast Mexico: groundfish,
octopus and sea cucumber (DOF, 2017). The fleet sample under
investigation operates out of Sisal, Yucatan (Figure 1) at a
maximum depth of 40 m and less than 40 km from the coastline
(DOF, 2014; FAO-SEDER, 2016). These vessels are made of
fiberglass with 7–9 m length, and they have a one metric ton of
load capacity. Fishing trips last between 6 and 12 h. They have
an outboard motor (45–80 hp) and carry up to three fishermen.
On some trips the boats can also carry up to two “dinghies,”
which are small wooden boats (3 m) without a motor that operate
close to the boat.

Data
The data analyzed come from 156 fishing trips (Supplementary
Material) and were collected during three fishing seasons (2018,
2019, and 2020). On each fishing trip, an observer recorded
the route with a GPS (Garmin eTrex 20) at a log frequency
of one minute from port until returning. No land record
was included. The activities of three different gears (hand net,
handline, longline) and two fishing methods (diving, “gareteo”)
were recorded. All these fishing gears and methods, except
for “gareteo,” are used to catch different groundfish species,
particularly Serranidae and Lutjanidae. “Gareteo” is a method
targeting octopus using dinghies that is characteristic in the study
region. It involves the use of bamboo poles (named “jimbas”) up
to 3 m long, from which bait lines are suspended (mainly crab).
The dinghy is allowed to drift, and the fisherman waits for the
octopuses to catch the bait before retrieving the line. However,
due to the variable nature of the fishing activities, it was not
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FIGURE 1 | Geographic location of Sisal port, Yucatán, México.

possible to record an equal number of fishing trips for each gear
and method (Supplementary Table 1).

Random Walk
A Random Walk (RW) is a discrete random event, in which
the spatial position of an object varies with time and according
to a set of probabilistic rules (Bartumeus et al., 2005; Bertrand
et al., 2007). The RW represents the movement of organisms as a
series of discrete displacements (steps), separated by successive
reorientation events (turning angles) (Bartumeus et al., 2005;
Bartumeus and Catalan, 2009). Thereby, a spatial variable
(distance, angle) and a temporal variable (duration) are obtained,
each with its own probability density function (PDF).

In general terms, RW can be divided into two groups. The first
group is the RW in which each step is chosen independently of
previous steps and can be selected from all possible orientations
(360◦) with the same probability of being chosen. Therefore, there
is no correlation between the orientations and the distribution is
uniform (Dray et al., 2010). Within this group, the first described
RW was the Brownian movement (Mark, 1947). The Brownian
movement (BW) implies that animals move randomly inside an
area, limited by the presence of a barrier (physical or ecological)
(Turchin, 1998; Bertrand et al., 2007). The length of each step has
a normal distribution (finite variance and mean) and the presence
of long-extension steps is low (Gautestad and Mysterud, 2013).
This type of movement can occur in a limited space where there
is a great abundance of targets or food items (Yoda et al., 2012).
This movement was modeled by Turchin (1998) as E

(
R2

n
)
≈ nγ

which establishes a linear function between step number (n) and
the square length of each step (R2). If γ > 1 the displacement

is classified as super-diffusive. There is also a truncated version of
BW (TBW), the difference being that TBW has an upper bound in
the PDF of the length step and there are no extremely long steps.

Within the same group of RW, the Lévy walk (LW) model
has dominated the literature over the last 20 years. In the 1980s,
several authors suggested that organisms that adopt movements
with Lévy distributions increase their probability of finding
food compared to BW. The LW entered the biological scene
with foraging studies of ants (Shlesinger and Klafter, 1986).
Subsequently, it was adapted by Klafter et al. (1990) and modified
by Viswanathan et al. (1999). Within the LW, each step is
defined independently by a Pareto-Lévy probability distribution
(Pyke, 2015). This distribution models infrequent long steps
connected with higher frequency short steps (Ben-Avraham and
Havlin, 2000). The most widely used model is described with a
potential function P

(
lj
)
∼ l−µ

j , where P
(
lj
)

is the probability
of occurrence of a step with length (l) in the interval j, and µ is
an exponent that defines the characteristics of the displacement
and takes values between 1 and 3. One of the reasons for its wide
application is the flexibility of the model to represent different
types of trajectory. When µ = 1, the movement is completely
directed (ballistic) and when µ ≥ 3 it is in the domain of the
Brownian movement; the LW movement lies between 1 < µ < 3
(Bertrand et al., 2007). For the truncated model (TLW), the PDF
of the LW is bounded a < P

(
lj
)

< b so that the probability of
extremely long steps is negligible.

The second type of RW is known as Correlated Random Walk
(CRW). With this type of model each step is dependent on the
previous step; this is called directional persistence (Patlak, 1953;
Renshaw and Henderson, 1981; James et al., 2011). Directional

Frontiers in Marine Science | www.frontiersin.org 3 May 2021 | Volume 8 | Article 669112

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-669112 May 18, 2021 Time: 19:12 # 4

Quijano Quiñones et al. Spatial Dynamics of Small-Scale Fleets

persistence is modeled by assuming that the turning angles of
each step are correlated. However, the influence of the orientation
of the initial steps progressively decreases with time (Benhamou,
2006). In the biological field Kareiva and Shigesada (1983) used
the model E(R2

n) = nE
(
d2)
+ 2

(
d
)2
∗

(
c

1−c

) (
n− 1−cn

1−c

)
, where

E(R2
n) is the expected value of the distance traveled in the nth step,

d is the distance of each nth step and c is the cosine of the angle
between steps (cos θ). The assumption of a correlation between
the angles simulates the behavior observed in nature such as
searching for food, water or breeding areas, or avoiding predators.
In the truncated version of CRW (TCRW), the PDF of d is limited
with a restriction (a < P

(
d
)

< b) such that there are no steps
with extremely long distances (Auger-Methe et al., 2015).

An extension of the CRW model is the Correlated Composite
Random Walk (CCRW). This model is a combination of
two different RWs and represents two behaviors. The first
corresponds to intensive foraging and is usually modeled as a BW.
The second corresponds to extensive foraging and is modeled
with a CRW (Codling et al., 2008; Auger-Methe et al., 2015).
The CCRW establishes that an organism can be in two phases
(a, b) which alternate according to a Bernoulli process. In the n
step, the organism is in phase a with probability pj; in the next
step, n+1, the probability of continuing in the same phase is
1- pj, while phase b obtains a probability pj. Both phases (a, b)
have a probability of 0.5 at the beginning of the movement, and
the organism moves at a different speed (υ) in each phase. The
angle in each step is defined as ϕn = θn − θn−1; each phase has
a mean angle with the value 0 ≤ ci < 1, and two assumptions
are made: angle ca ≤ cb and speed υa ≤ υb. Therefore, phase
a will be intensive with low or no angular correlation (θj ≈ 0),
low speed, with multiple turns and short steps. Conversely, b will
be extensive with high angle correlation (θj ≈ 1), high speed and
with (almost straight) long steps (Plank and Codling, 2009).

All RWs described have been used for modeling different
types of movement, and in the last 15 years LW has proven
to be suitable for modeling industrial fishing fleet trajectories
(Bartumeus et al., 2005; Bertrand et al., 2005, 2007; Joo et al.,
2014; Wang and Zhu, 2019). However, in recent years it has
been argued that the LW is not necessarily the best model
for describing the optimal movement of organisms and, by
extension, vessels. The main controversy is the assumption of
independence between the steps and the lack of fit tests between
different RWs (Pyke, 2015). Based on the foregoing discussion,
this research used the methodology described by Codling et al.
(2008) to assess the fit of seven RWs to a set of small-scale
fleet movement data.

Statistical Analysis
Every fishing trip had at least 900 georeferenced positions to
ensure a consistent analysis (Codling et al., 2008; Plank and
Codling, 2009). First, we defined relevant steps that represent
the intentional movements of the fishermen in their trajectories,
for which the local turn method was used. With this method a
relevant step is identified if the angle between two consecutive
steps exceeds a predetermined threshold (Codling and Plank,
2011). However, there is no precise methodology for defining

the appropriate threshold and misspecifications can occur when
the threshold is high or low (Auger-Methe et al., 2011; Codling
and Plank, 2011). On this matter Auger-Methe et al. (2015) used
a threshold of 10 ◦ with good results. Based on this precedent,
analysis for the present study was conducted according to three
different thresholds: 0◦, 5◦ and 10◦.

The fit of seven RWs was evaluated for the SSF data:
Brownian (BW), Truncated Brownian (TBW), Levy Walk (LW),
Truncated Levy Walk (LTW), Correlated (CRW), Truncated
Correlated (TCRW) and Composite Correlated (CCRW). It must
be specified that TBW and TCRW were included as null models.
The likelihood functions used to calculate the parameters of each
model incorporated two sources of information: (a) the distance
of each step and (b) the orientation angle. A step was defined
as the length from the start point and the end point for the ith-
step. The orientation angle was defined as the angle formed by
two consecutive steps (Bartumeus et al., 2005; Auger-Methe et al.,
2015). Table 1 shows the likelihood functions used.

The parameters to be estimated (Table 2) were: a = first step
minimum distance; b = maximum distance; δI = probability
of starting an intensive search; γI = probability of starting an
extensive search; γEE = probability of maintaining an extensive
search; k = directional correlation; λ(m−1) = exponential
distribution rate; λT (m−1) = truncated Pareto exponential
distribution rate; λI(m−1) = intensive search rate;
λE(m−1) = extensive search rate; µT = truncated Pareto
parameter; µ = non-truncated Pareto parameter. Additionally,
φ( ), ψ( ), v0( ) and v( ) described the PDF of each model,
where φT( ) is the truncated version of φ( ),li(step length) is the
distance between the starting and ending locations at nth step,
and θi is the angle of a step relative to the previous step direction.

The Delta Akaike (1A) test was used to compare the relative
fit. The model closest to 0 value was considered the best
model (Burnham and Anderson, 2002). To corroborate the
result of 1A, an absolute fit test was carried out. The G-test
was selected because it assumes that the steps are independent,

TABLE 1 | Likelihood functions for each of the RW models.

Model Likelihood function

BW
n∏

i=1
φ(li | λ, a) v0(θi )

LW
n∏

i=1
ψ(li | µ,a) v0(θi )

TBW
n∏

i=1
φT (λT ,a,b) v0(θi )

TLW
n∏

i=1
φT (li |µT , a, b) v0(θi )

CRW
n∏

i=1
φ(li |λ, a) v(θi | :)

TCRW
n∏

i=1
φT (λT ,a,b) υ(θi |k)

CCRW (δ1,1- δ1)(
∅ (l1|λI, a) vo(θ1)

0

0

∅ (l1|λE , a) v(θ1|KE )

)
n∏

i=2

(
γII

1− γEE

1− γII

γEE

)(
∅ (l1|λI, a) vo(θ1)

0

0

∅ (l1|λE , a) v(θ1|KE )

)

Adapted from Auger-Methe et al. (2015).

Frontiers in Marine Science | www.frontiersin.org 4 May 2021 | Volume 8 | Article 669112

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-669112 May 18, 2021 Time: 19:12 # 5

Quijano Quiñones et al. Spatial Dynamics of Small-Scale Fleets

TABLE 2 | Mean estimate values for five parameters of the CCRW model.

Diving Mean LI (5%) UI (95%) Hand net Mean LI (5%) UI (95%)

γI 0.96 0.95 0.97 γI 0.92 0.89 0.95

γEE 0.94 0.92 0.96 γEE 0.97 0.95 0.99

λE 19930.06 18453.80 21406.33 λE 33352.08 30245.29 36458.86

λI 2179.82 1995.40 2364.23 λI 3929.52 2981.48 4877.57

kEE 76.33 65.03 87.62 kEE 34.49 30.37 38.62

Gareteo Handline

γI 0.90 0.87 0.93 γI 0.96 0.87 0.95

γEE 0.96 0.95 0.98 γEE 0.93 0.91 0.95

λE 28027.90 25751.64 30304.16 λE 52662.60 46919.75 58405.44

λI 4743.11 4381.80 5104.41 λI 4560.17 3900.23 5220.10

kEE 37.90 32.79 43.01 kEE 31.28 27.11 35.44

Longline

γI 0.85 0.81 0.89

γEE 0.91 0.88 0.95

λE 13168.72 11724.41 14613.03

λI 1272.06 1181.66 1362.46

kEE 37.18 30.74 43.63

Parameters δ and a took fixed values of 0.5 and 1 respectively.
Ll, lower limit; Ul, upper limit.

which is an important assumption in the RW approach (Auger-
Methe et al., 2011; Edwards, 2011). The CCRW was a special
case because it incorporates the correlation between the steps.
Therefore, a modified G-test was selected (Zucchini et al., 2017),
which uses pseudo-residuals that incorporate interdependence
between observations. In both tests the significance was set
at 0.05. The R 3.6.1 platform (R Core Team, 2019) and the
“CCRWvsLW” library (Auger-Methe, 2015) were used to carry
out all the analyses.

RESULTS

A total of 156 trajectories were analyzed and different results were
obtained for the three scenarios. In scenario 1 (0◦ threshold),
92% of the trajectories showed conclusive evidence from the 1A
and G-test to establish a CCRW movement. In scenario 2 (5◦
threshold), only 70% of the trajectories resulted in a solution
and 56% were identified as CCRW. The remaining 14% of the
trajectories fit two models (TCRW, CRW), but the G-test was not
significant. In scenario 3 (10◦ threshold), 71% of the trajectories
did not result in a solution and in the remaining 29% the G-test
was not significant. General results presented by model can be
seen in Supplementary Table 2.

Based on the aforementioned, only the scenario 1 results
will be presented. A total of 143 trajectories fit the CCRW
model; 12 trajectories presented a fit for multiple models
(CRW, TCRW, LW), but the G-test was not significant.
Only one trajectory (handnet) presented BW as the best
fit model. Table 2 shows the estimates of the CCRW
parameters and Figure 2 presents fit models by fishing gear
and fishing method.

Additionally, the values of two parameters of the CCRW
were useful for establishing whether the trajectories could be
considered as an efficient search strategy or not. To reach
this conclusion it was necessary that γI > 0.5, γEE > 0.5 and
kEE > 0 (Codling et al., 2008). In our analysis, 99% of the
trajectories identified as CCRW fulfilled these three conditions.
Supplementary Figure 1 shows examples of the trajectories
recorded by gear and fishing method.

DISCUSSION

The methodology used was appropriate to fulfill the objectives
of this work. To our knowledge, this is the first study that
simultaneously evaluates different RWs for the analysis of spatial
dynamics in SSF. The main results obtained were not expected,
given the multi-species nature of the SSF. It was assumed that
the trajectories could be adequately modeled by different types
of RW, but this was not the case, as over 90% of the trajectories
were appropriately modeled as CCRW. This contrasts with the
findings of Bertrand et al. (2005, 2007) and Joo et al. (2014), who
concluded that the LW is adequate for describing the movement
of fishing vessels. The differences found between the results
produced by those authors and those of the present study are
discussed in a comparative framework.

Type of Predator
Previously, Bertrand et al. (2007) discussed fishermen from an
ecological perspective as predators in the ecosystem who use
strategies to obtain food. In fact, this point of view is important
to current ecosystem management approaches (Pikitch et al.,
2004). Fishermen are top predators (Bertrand et al., 2008) and
must develop tactics that ensure success in fishing operations.
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FIGURE 2 | Model fitting to data from trajectories. (A) diving; (B) hand net; (C)
gareteo; (D) handlines; (E) longline. Left figure represents step length, right
figure represents relative turning angles.

These tactics may vary depending on the type of “predator.”
Previous studies analyzed the behavior of industrial fleets which
are composed of large vessels and characterized by a high degree
of autonomy in their operations (days), and usually deploy fishing
effort over a single resource (Bertrand et al., 2008; Joo et al.,
2014; Wang and Zhu, 2019). By contrast, the fleet examined for
this study is smaller in terms of boat length and autonomy (6–
12 h) and uses different fishing gears throughout the year. These
contrasting characteristics could be a factor in the differences
observed in the type of movement of each “predator” or fleet.
Technology may also be a factor: while SSF mainly have a GPS
device, large vessels have sonar, sea-bottom recognition systems,

or both. This technological difference could result in different
fishing strategies and different RWs.

The Model’s Assumptions
As mentioned before, a LW assumes that the angles between
successive steps are not correlated. This means that the organism
chooses the direction of the following steps without preference
(Dray et al., 2010; Edwards, 2011; Pyke, 2015). The issue with
this assumption in SSF lies in the ecological meaning. For its
fulfillment, the fishermen should not have any kind of preference
on which area they deploy their fishing effort. This opposes to
the decision-making process that fishermen go through when
fishing; in fact, multiple factors influence their decisions such
as economic, social, management regulations, markets and even
personal preference (Salas et al., 2004; Daw, 2008; Cinner et al.,
2009). SSF fishermen usually record fishing grounds in their own
logbooks and they re-visit several recorded fishing grounds when
looking for fishing resources.

Nevertheless, there are scenarios where an assumption of
no correlation can be fulfilled in SSF. For example, when
fishermen search for new fishing areas (Salas et al., 2004), thereby
developing a random movement associated with the search.
Another scenario can be observed when fishermen enter a new
fishery: without prior knowledge of the resource distribution,
they must carry out a random search. In this sense, it would
be interesting to analyze data from fisheries during these two
scenarios and compare them with the trajectory of the same
fishery with experienced fishermen.

Lastly, the CCRW is characterized by the correlation between
consecutive steps of a trajectory (Renshaw and Henderson, 1981).
The advantage of this approach for the small-scale fleet is that
it allows straight movements between fishing sites (extensive
search) to be modeled together with fishing (intensive search),
incorporating fishermen’s knowledge of fishing sites. In addition,
our results indicate that spatial effort allocation is carried out
efficiently as the fishermen give priority to fishing, while straight
movements between sites can be done even with a single step.

Future Implications for the Study of
Spatial Dynamics in SSF
In this study, the use of the “local turning” method to define
relevant steps in the trajectories induced misspecifications despite
the recommendations (Auger-Methe et al., 2015). Consistent
results were obtained when the original trajectories data were
analyzed. This aspect agrees with Codling et al. (2008) who
indicated that misspecification problems may be due to failures
in defining relevant steps and not to the properties of the
observed movements. Accordingly, we recommend that in future
studies the trajectories should be analyzed with and without
different threshold angles; in this way more effective analysis
would be possible.

The CCRW was useful for understanding and characterizing
the behavior of small-scale vessels. The first behavior between
fishing sites was characterized by high speed and a small change
of angle during successive steps. This behavior may be due to
two activities: a) when the fishermen go to their preferred fishing
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grounds or b) when changing their fishing ground. In both,
the fishermen’s experience and the CPUE of past trips could
be relevant when choosing where to move (Salas et al., 2004).
The second behavior corresponded to the action of the intensive
search or fishing, which is characterized by low speed and wide
turning angles, with the intention of remaining in a particular
area. The extension of these catching areas can vary by fishing
gear or fishing method.

Empirically, this fishing operation with two types of behavior
is well suited to fishing gears and fishing methods such as
diving and hand-net, where the fisherman directly catches the
resource. However, CCRW was also adequate for describing
fishing operations such as longline, gillnet and “gareteo.” With
fishing gears like longline or gillnet, the fishermen leave the
gears in the water column and after several hours they return
to collect them. In the case of “gareteo” (targeting octopus), the
fishermen let the boat drift with the current. It might be argued
that a LW would be suitable; however, the CCRW model was the
most appropriate.

There are two possible reasons for this. The first could be
attributed to limited information about the trajectory. The second
reason may be the fishermen’s own adaptations to the uncertainty
of fishing. Some fishermen in Yucatán carry more than one
fishing gear during a fishing trip to increase the number of
resources they can catch (Quijano et al., 2018). When it comes
to nets and longlines, these are likely to be left in the water
column as fishermen move to other fishing areas, where they
can use handline for example. In the case of “gareteo,” having
an additional fishing gear such as handline is an advantage if
octopus catches are low, as it allows the fishermen to switch
between species.

CONCLUSION

The Random Walk models were useful for modeling a
multi-species, small-scale fleet operating in southeast Mexico.
According to our results, the CCRW model was the most
suitable for this fleet. Our results highlight the usefulness of
low-cost tracking devices such as GPS to acquire data on
the spatial distribution of small-scale vessels. However, having
observers on board vessels is highly expensive, and it is difficult
to cover the entire fleet. Instead, management authorities –
together with fishermen – could develop a program to share
the tracking of fishing trajectories and analyze the relevant
data to better understand fishing effort allocation. In fact, in
Yucatan there is no marine spatial planning scheme for small-
scale fisheries, yet this type of data is key to spatial management.
For instance, in recent years, the implementation of closed
areas has been promoted to protect commercial species such
as sea cucumber. Therefore, a potential collaboration among
authorities, fishermen and researchers would result in an effective
spatial monitoring scheme to assess the accomplishment of this
management tool.

Further studies in this field would include conducting
specific analyses by gear and fishing method in order to
characterize the footprint of each. However, more data is

required in relation to each fishing gear and/or method.
This type of study will result in a better estimate of the
fishing effort by fishing gear and targeted species. Therefore,
for the purpose of future studies, we suggest increasing the
base of fishing trips and conducting specific studies by gear
and fishing method. The application of relative and absolute
fit tests to compare the performance of RW models is also
highly recommended.
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