
fmars-08-669966 August 9, 2021 Time: 12:57 # 1

ORIGINAL RESEARCH
published: 13 August 2021

doi: 10.3389/fmars.2021.669966

Edited by:
Carlos Prada,

University of Rhode Island,
United States

Reviewed by:
Claudia Patricia Ruiz-Diaz,

Sociedad Ambiente Marino,
Puerto Rico

Susana Enríquez,
National Autonomous University

of Mexico, Mexico
Joshua Patterson,

University of Florida, United States

*Correspondence:
Cassie M. VanWynen

cassie.vanwynen@gmail.com

Specialty section:
This article was submitted to

Coral Reef Research,
a section of the journal

Frontiers in Marine Science

Received: 19 February 2021
Accepted: 15 July 2021

Published: 13 August 2021

Citation:
VanWynen CM, Hightshoe MV,
Fogarty ND, Dahlgren CP and

Gilliam DS (2021) Should Hybrids Be
Used in Coral Nurseries? A Case

Study Comparing Caribbean
Acropora spp. and Their Hybrid

in the Bahamas.
Front. Mar. Sci. 8:669966.

doi: 10.3389/fmars.2021.669966

Should Hybrids Be Used in Coral
Nurseries? A Case Study Comparing
Caribbean Acropora spp. and Their
Hybrid in the Bahamas
Cassie M. VanWynen1* , Morgan V. Hightshoe1, Nicole D. Fogarty2, Craig P. Dahlgren3

and David S. Gilliam1

1 Coral Reef Restoration, Assessment and Monitoring Lab, Halmos College of Arts and Sciences, Nova Southeastern
University, Dania Beach, FL, United States, 2 Coral REEF Lab, Center for Marine Science, University of North Carolina
Wilmington, Wilmington, NC, United States, 3 The Perry Institute for Marine Science, Waitsfield, VT, United States

For decades, coral reef ecosystems have been in decline due to environmental
stressors such as rising sea temperatures, increased disease prevalence, and other
local anthropogenic sources. Considering this decline, coral restoration efforts in the
Caribbean have been implemented to promote reef recovery with a focus on the coral
genus Acropora. Current methods target the threatened species Acropora cervicornis
and A. palmata, but little is known about the restoration potential of their hybrid taxon,
A. prolifera. Using interspecific hybrids with higher fitness than one or both parental
species has gained traction as a novel restoration technique. For this study, three
in situ coral tree nurseries were established around Great Stirrup Cay, The Bahamas,
to compare the growth and survival among acroporid taxa. Three 150 mm fragments
from six putative genotypes of each acroporid taxa were collected from reefs around
New Providence, The Bahamas, and transported to Great Stirrup Cay in June 2018.
One fragment from each genotype was transported to each nursery site, cut into three
sections (apical, middle, and basal), and suspended from PVC coral trees. Fragment
survival was collected monthly for 13 months, and Total Linear Extension (TLE) values
were calculated for each fragment monthly for 12 months. Nursery site significantly
affected fragment survival, while taxon and fragment section did not. Total fragment
mortality was 29.3% in the first month but ranged from 0 to 5% for the rest of the study
period until July 2019 (32.7% of remaining fragments died primarily at N1). Overall,
A. prolifera growth was significantly greater than the parental species. Taxon, nursery
site, and fragment section were identified as important factors affecting TLE. Apical
A. prolifera fragment sections at site N3 had the greatest average linear growth at
12 months and had the greatest average growth rate per month. This study highlights
the rapid growth rate of hybrid corals and suggests that fragment sections have
equivalent survival and growth. Consequently, these results suggest that restoration
managers may capitalize on fast growing hybrids for outplanting to degraded reefs and
to increase the scale of nursery projects.
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INTRODUCTION

In the face of climate change and other environmental threats,
conservation and restoration of the world’s natural resources
are now at the forefront of scientific research (Harris et al.,
2006; Heller and Zavaleta, 2009; Jackson and Hobbs, 2009).
Global issues such as deforestation, rising global temperatures,
pollution, and the overuse of natural resources are serious threats
to marine ecosystems and terrestrial environments (Vitousek,
1994; Derraik, 2002; Shahidul Islam and Tanaka, 2004; Harley
et al., 2006; Malhi et al., 2008; Cinner et al., 2015; Hughes et al.,
2017b). As such, finding ways of protecting these environments
are critical to the continuity of the global biome.

Coral reefs are one of the world’s most important and
threatened marine ecosystems (Sebens, 1994; Maragos et al.,
1996; Reaka-Kudla, 1997; Hughes et al., 2017a). They host a
diversity of ecologically and commercially important marine
species (Moberg and Folke, 1999), are essential nursery grounds
for numerous fish and invertebrate species (Heck et al., 2008;
Holbrook et al., 2015), protect coastlines from storm damage
(Cesar et al., 2003; Ferrario et al., 2014; Storlazzi et al., 2019), and
support an extensive tourism industry for many island nations
and coastal regions (Cesar et al., 2003). Unfortunately, nearly 27%
of the world’s coral reefs have been lost due to destructive events
and stressors (Cesar et al., 2003). Local anthropogenic threats
(e.g., physical damage, overfishing, pollution, sedimentation),
and larger global stressors (e.g., temperature increases, increased
disease prevalence and storm damage, ocean acidification), are
drivers of coral decline (Lirman and Fong, 1997; Hughes and
Connell, 1999; Babcock and Smith, 2000; Woodley et al., 2000;
Bellwood et al., 2004; Shahidul Islam and Tanaka, 2004; Fox
and Caldwell, 2006; Voss and Richardson, 2006; Pandolfi et al.,
2011; Smith et al., 2015; Cheal et al., 2017; Hughes et al., 2017b;
Hughes et al., 2018). Increased sea temperatures can cause coral
bleaching, a stress response during which colony pigmentation
may be lost and often the microalgae symbionts found in coral
tissue are expelled (Brown, 1997; Baker et al., 2008; Heron et al.,
2016), which can lead to colony death if the stress is prolonged
(Douglas, 2003; Eakin et al., 2010). Increasing ocean temperatures
have also been linked to increases in disease outbreaks, resulting
in large-scale coral mortality (Weil, 2004; Harvell et al., 2007;
Muller et al., 2007; Eakin et al., 2010). Disturbance to a reef is
natural but continued impacts of chronic stressors has changed
coral reef community composition from one benthic group
to another (Hughes et al., 1985; Hughes, 1994; Lirman, 2001;
Bellwood et al., 2004; Knowlton and Jackson, 2008; Jackson et al.,
2014; Jones et al., 2020).

In the Caribbean, the increase of such stressors and their
compounding effects has led to significant losses in scleractinian
coral cover since the late 1970s (Gardner et al., 2003; Eakin
et al., 2010; Jackson et al., 2014). Much of this loss is attributed
to the severe decline (up to 95%) of the Caribbean acroporid
corals, Acropora cervicornis and A. palmata (Aronson and
Precht, 2001; Bruckner, 2002). Prior to the 1970s, A. cervicornis
and A. palmata were the major contributors to many reef
habitats across the Caribbean (Aronson and Precht, 1997;
McNeill et al., 1997; Bruckner, 2002; Gardner et al., 2003;

Miller and van Oppen, 2003; Bellwood et al., 2004), contributing
up to 50% of total stony coral cover above ∼20 m depth
(Bellwood et al., 2004). These species provide many ecosystem
services, including vital habitats for fish and invertebrates,
reef structure through carbonate deposition, and coastal wave
protection from storms (Bruckner, 2002). Acroporids primarily
rely on asexual reproduction through fragmentation (Rinkevich,
1995; Lirman and Fong, 1997; Smith and Hughes, 1999),
but also reproduce sexually through hermaphroditic broadcast
spawning (Szmant, 1986; Vargas-Angel and Thomas, 2002;
Fogarty et al., 2012). The two parental species are also capable of
reproducing with each other to produce an F1 hybrid, Acropora
prolifera (van Oppen et al., 2000; Vollmer and Palumbi, 2002;
Kitchen et al., 2019). Like the parental species, A. prolifera can
reproduce asexually through fragmentation, and the molecular
signatures suggest they reproduce sexually with the parental
species (Vollmer and Palumbi, 2002; Kitchen et al., 2019; Kitchen
et al., 2021). In recent decades, A. cervicornis and A. palmata
have declined in abundance primarily from disease, but also
bleaching, storm damage, and predation (Aronson and Precht,
2001; Bruckner, 2002; Jackson et al., 2014). In response to
their decline, A. cervicornis and A. palmata were listed as
threatened under the United States Endangered Species Act as of
2006 (National Marine Fisheries Service, 2006) and as critically
endangered by the International Union for the Conservation of
Nature (IUCN)’s Red List as of 2008 (Aronson et al., 2008a,b). In
recent years, hybrid abundance has increased at some sites in the
Caribbean, despite losses in the parental species (Fogarty, 2010,
2012; Japaud et al., 2014; Nylander-Asplin et al., 2021).

To facilitate recovery of A. cervicornis and A. palmata, many
organizations through the Caribbean are working to increase
Acropora abundance and genetic diversity (Johnson et al., 2011;
Young et al., 2012; Baums et al., 2019; Boström-Einarsson et al.,
2020). In many cases, these efforts are achieved by the creation
and maintenance of coral nurseries, which provides a sheltered
area for corals to grow away from the reef and predators.
This ‘gardening technique’ proposed by Rinkevich (1995) has
been adopted as a general practice for many reef restoration
organizations. Based on silviculture practices, coral fragments are
collected from different genotypes of the target species, grown in
in situ nurseries, and outplanted to local reefs (Rinkevich, 1995;
Lirman et al., 2010; Lirman, 2000; Zimmer, 2006). This method
of coral gardening has been widely adapted across the globe for
large-scale restoration efforts.

Caribbean Acropora restoration research has led to
improvements in propagation techniques, as well as the
recovery of localized populations of the parental species (Ware
et al., 2020), but there is limited information and use of the
hybrid in restoration. While the parental species have been in
decline, the hybrid has persisted on many reefs in the Caribbean
with equal or increased abundance, better survival, and equal or
less susceptibility to disease and other environmental pressures
(Fogarty, 2012; Irwin et al., 2017; Howe, 2018; Nylander-Asplin
et al., 2021; Weil et al., 2020). Furthermore, research on the
early life stages of Acropora species in the Pacific suggests hybrid
larvae had equal or greater fitness compared to the parental
species (Chan et al., 2018, 2019b). Although hybrids are often
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thought to be sterile (Ortiz-Barrientos et al., 2007), A. prolifera
can successfully reproduce with both A. cervicornis (Kitchen
et al., 2019) and A. palmata via backcrossing (van Oppen
et al., 2000; Vollmer and Palumbi, 2002; Kitchen et al., 2019).
Backcrossing is noted among many marine organisms (Arnold
and Fogarty, 2009) and provides an avenue for the genetic
material from one parent to be exchanged between congenerics,
that may have led to reticulate evolution (Veron, 1995; Willis
et al., 2006). Backcrossing may enhance the adaptive potential
of the threatened parental species in a changing environment by
providing increased genetic diversity (Willis et al., 2006), or at the
very least, acroporid hybrids may provide needed infrastructure
to shallow reefs while the parental species continue to decline.

To identify the potential of using hybrids in restoration, this
study investigates factors (nursery site, taxa, fragment section,
and genotype) that may influence growth and survival of the
threatened Caribbean acroporid coral species and their naturally
occurring hybrid at three in situ nurseries in The Bahamas.

MATERIALS AND METHODS

Study Location
This study was conducted at Great Stirrup Cay (GSC) (25.824 N,
−77.91 W), The Bahamas, from June 2018 to July 2019. Great
Stirrup Cay is located at the northern end of the Berry Islands
in the central Bahamas (Figure 1). Great Stirrup Cay is a
private island owned by Norwegian Cruise Line R© (NCL), which
receives thousands of cruise ship visitors every week. Coral reefs
fringe the northern side of the island, and seagrass beds and
sand flats are common to the south. The deeper fringing reefs
(∼15 m) on the northern side of the island are composed of
large mounding corals including Orbicella spp. and Montastraea
cavernosa, gorgonians, and sponges. On the eastern side of the
island, reefs flats contain scattered acroporid colonies and smaller
mounding corals, along with various species of gorgonians.

Study Species
Acropora cervicornis is typically found on shallow reefs down to
20 m depths; A. palmata is usually found on shallow reef crests
to 10 m depths in areas with high wave energy (McNeill et al.,
1997; Johnson et al., 2011). Acropora palmata can grow up to
∼10 cm per year (McNeill et al., 1997; Bak et al., 2009), while
A. cervicornis has been recorded growing much faster, depending
on location and genotype (Gladfelter et al., 1978; Lirman et al.,
2014; Schopmeyer et al., 2017). Acropora cervicornis has long,
thin branches extending from a central basal attachment, while
A. palmata has wide, flattened branches that also extend from
a central basal attachment point (Neigel and Avise, 1983).
Acropora prolifera is described as having a “bushy” or “palmate”
morphology that is intermediate between the parental species
and originally attributed, at least in part, to the maternal species
(Vollmer and Palumbi, 2002). Recent molecular evidence from
hybrid samples across a broader geographic range suggests egg
donor is not predictive of hybrid morphology (Kitchen et al.,
2021). Hybrids are often found at shallow depths (<2 m) with
moderate to high wave energy, but occasionally can be found in

deeper, calmer environments (Fogarty, 2012). All three taxa can
naturally reproduce asexually via fragmentation, making them
ideal candidates for coral restoration (Rinkevich, 1995; Herlan
and Lirman, 2008; Griffin et al., 2012; Schopmeyer et al., 2017).

Nursery Sites
Three replicate nursery sites were established at GSC. Nursery
locations included two southern sand flat sites (N1 and N2) and
one northern reef slope site (N3) with depths ranging from 2.5 to
3.5 m (Figure 1). Site N1 was located near adjacent seagrass beds,
while site N2 was established in sand near a boat channel on the
western side of the island. Site N3 was the most exposed nursery
site in terms of wave action and seasonal wind patterns. Sites
were chosen based on depth, accessibility, storm protection, and
isolation from human impact. Nursery sites were not placed on
the east end of the island near wild A. cervicornis and A. palmata
colonies due to limited accessibility from high wave energy and
shallow depths. Turbidity was dependent of time of year, with site
N1 observationally having greater turbidity than sites N2 and N3
but better protection from wave action due to seasonal weather
patterns and storms. Three coral nursery trees© (Nedimyer et al.,
2011) were placed 5 m apart in a line at each nursery site. Nursery
trees were made from PVC and fiberglass rods with pre-drilled
holes along each rod. The trees were tagged and secured to the
seabed using sand (helix) anchors or epoxied eyebolts, depending
on the substrate type (sand or hard bottom, respectively). Trees
were tied to the anchors using polypropylene rope with plastic
tubing through a metal shackle, such that the middle branch
was at a depth of approximately three meters below the surface.
Every tree contained five branches with corals attached to the
middle three branches. Each branch was spaced 15 cm apart
and installed perpendicular to the one above to avoid abrasion
and shading effects between coral fragments. Six corals were
attached per branch approximately 10 cm apart using 80 lb. test
(0.89 mm) monofilament.

Coral Collection
Acropora cervicornis, A. palmata, and A. prolifera fragments were
collected from the reefs around New Providence, The Bahamas,
in June 2018 using a hammer and chisel or diagonal cutters.
Fragments were collected from colonies between 1 and 3 m
depth and ≥10 m apart to increase the confidence of genotypic
variation. Collection targeted six putative genotypes for each
taxon; a small tissue sample was collected to confirm clonal
identity. Three 150 mm branches (fragments) were collected from
each donor colony (n = 19 A. cervicornis, n = 18 A. palmata,
n = 18 A. prolifera). An extra branch from a separate colony
was collected for A. cervicornis due to greater availability and
the potential loss of other fragments due to stress of transport.
Acropora palmata and A. prolifera were not as widely available,
and so only the minimum number of branches were collected.
The three branches from each colony were placed in heavy duty
plastic zipper bags filled with seawater and transported inside
of Bubble Wrap R© lined coolers. Ice packs were placed in the
coolers for temperature regulation and were flown to GSC. Upon
arrival the water was changed and the fragments were transported
to nursery site N2. The following day, one 150 mm fragment
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FIGURE 1 | Great Stirrup Cay (GSC). Yellow dotes indicate nursery sites. Inset: The Berry Islands, The Bahamas, in relation to Florida and the greater Bahamas.

from each genotype was transported to each nursery site and
cut into three smaller 50 mm sections (n = 57 A. cervicornis,
n = 51 A. palmata, and n = 49 A. prolifera). The sections were
labeled as apical, middle, and basal, as per origin on the donor
branch (Figure 2) and were distributed across the three trees
at each site (Figure 3). Five A. prolifera and three A. palmata
fragments were not included in the nursery due to poor visual
condition after transport, and three extra A. cervicornis sections
were included from initial collection. Note, this created a slightly
uneven sampling design. All taxa, putative genotypes, and
fragment sections were replicated at each site in a crossed design
(see Supplementary Figure 2). However, later genetic analysis
revealed some of the putative genotypes were clone mates and
therefore contained more fragments. Tree location, coral section
size (length, width, and size/number of branches), and condition
data were recorded immediately. Each section was marked by a
metal tag attached to the branch of the trees above each coral. An
Onset HOBO pendant temperature/light logger was attached to
one tree at each site and recorded temperature data every 2 h to
capture daily fluctuations and maximize the length of deployment
based on available memory.

Data Collection
Nursery sites were visited monthly between June 2018 and
July 2019, during which the trees were cleaned and data were
collected. Data included total length, total width, number of
branches >10 mm, branch length(s), % mortality, and condition
data (presence/absence of disease, predation, bleaching). Size
measurements were taken with calipers to the mm. Images were
also taken of each fragment with a scale bar. Linear extension
was measured in ImageJ if branch measurements could not be
completed in the field (ImageJ Version 1.52n, 2018).

Genetic Analysis
Genetic samples were collected from all donor colonies. A small
∼10 mm sample was cut and placed in a ∼1 mL centrifuge
tube and filled with 96% molecular grade ethanol. DNA was
extracted using magnetic bead protocol, as described in Fogarty
et al., 2012. This was followed by PCR amplification using five
microsatellite markers (Fogarty et al., 2012 modified from Baums
et al., 2005). After fragment analysis (conducted at Florida State
University), peaks for each fragment loci were analyzed using
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FIGURE 2 | Left: Acropora cervicornis colony showing collection fragment (∼150 mm). Right: Sections of larger 150 mm fragment. Fragment section was
designated from the portion of the donor fragment: the first 50 mm (proximal end) were considered the apical fragment section, the next 50 mm were the middle
fragment sections, and the interior most 50 mm of the donor fragment were the basal fragment sections.

FIGURE 3 | Nursery tree experimental setup. Coral fragments were placed on
the middle three tree branches shown here with a letter and number value.
Fragment sections were individually tagged. C, P, and H denote taxa
[A. cervicornis, A. palmata, and A. prolifera (hybrid), respectively], and
numbers denote genotype. The fragment section changed branches between
trees at each site. See Supplementary Figure 2 for full experimental design.

GeneMapper 5TM software. Unique and clonal genotypes were
identified using the Excel microsatellite toolkit (Park, 2001). To
identify descriptive information (stutter peaks, null alleles, large
allele dropout), fragment loci were run through Micro-checker
Version 2.2.3 (van Oosterhout et al., 2003).

Statistical Analysis
Fragment survival and TLE data were analyzed using R statistical
software (R Core Team, 2017). Various survival and growth
plots were created through the package ‘ggplot2’ to examine
raw data (Wickham, 2016). A Survival Analysis (Cox model)
was run to test if the independent variables of taxa, genotype,
fragment section, and nursery site affected total colony mortality
in the nursery (Therneau and Grambsch, 2000; Therneau, 2015;
Kassambara and Kosinski, 2018). In addition to a survival

analysis including all months, a survival analysis was run
without the first month to test if there were differences in
the factors affecting mortality due to collection, transport, and
acclimation to the nursery.

For all growth analyses, data was analyzed up to 12 months,
due to the loss of most fragments at site N1 at 13 months.
For all fragments, linear extension (mm) was calculated as the
total length measurement along the main axis plus the length
of all branches >10 mm. This was then multiplied by partial
survivorship (%) estimates to get Total Linear Extension (TLE)
(mm) of live coral tissue. A Kendall’s tau correlation was done
to examine if the number of branches correlated to an increase
in TLE. To test differences between changes in linear growth for
surviving fragments (Growth = final-initial TLE) at 12 months,
a Kruskal Wallis rank sum test was conducted, followed by a
post hoc pairwise comparison using the Wilcoxon Rank sum
test. An ANOVA was also conducted followed by a Tukey’s HSD
post hoc test to confirm factor differences.

To model the response of growth over time as a function of
the independent categorical variables of taxa, fragment section,
and nursery site, a Generalized Additive Mixed Model (GAMM)
was run on the TLE data (Wood, 2011). Genotype, temperature,
and light intensity were excluded from the models due to low
sample size or the addition of a confounding factor to the model.
Once fragments had died, they were excluded from dataset
at the time in which they had died. Important terms were
identified by backward selection (i.e., each term was sequentially
dropped from the full model in turn) using Akaike’s Information
Criteria (AIC) scores. The final GAMM was then termed the
Minimally Adequate Model (MAM) and was used for resulting
analysis and post hoc tests. The MAM was validated by visual
examination of the model residuals versus fitted values using
plot(gam model) and gam.check(gam model) functions. Model
validation did not indicate any problems based on residual plots.
Pairwise comparisons on factor levels were then conducted using
the “emmeans” package (Lenth, 2019).

As A. palmata has a more planar structure compared to
A. cervicornis and A. prolifera, an analysis was conducted to
compare average growth rate per month. For each surviving
A. palmata fragment at 12 months, the total length∗width
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measurements were multiplied by two and then by partial
survivorship (%) estimates to determine live fragment tissue
sizes used in the growth rate equation. Width measurements
were taken at the widest central point of the fragment, not
including branch extensions. Photographic analysis of initial
versus final width was completed for a subset of surviving
A. palmata fragments (n = 12, minimum of 3 fragments from
each site) to determine if width changed significantly during the
full 13-month experimental period. Further description of the
growth rate analysis and width comparison can be found in the
Supplementary Materials.

When comparing values of new linear growth (mm/12 mo)
for each fragment between genotypes, a Kruskal Wallis chi-
squared test was used. To test differences between genotypes
within a taxon, a One-Way ANOVA (parametric) or Kruskal
Wallis chi-squared test (non-parametric) was used. If data met
parametric assumptions, a Tukey’s test (Tukey HSD) was used
in post hoc analysis and visualized using the “multcompView”
package (Graves et al., 2015).

To test differences in prevalence of conditions, a Kruskal-
Wallis chi-squared test and Pearson’s chi-squared test were
used and data was visualized using the “pgirmess” (Giraudoux,
2018) and “vcd” (Zeileis et al., 2007) packages in R Studio.
Conditions examined were bleaching (Blch), paling (Pale), and
algal overgrowth interactions (OGA). No other conditions
(disease/predation) were reported with enough replicates to be
used in analysis.

Average daily temperature and average daily light intensity
was calculated in Excel using the HOBO R© temperature logger
data. Loggers were deployed in March 2018, November 2018, and
March 2019. While the study period did not include March 2018,
this data was included in the light intensity analysis to increase
the sample size and document site variability. Daily temperature
data was calculated across the whole study period (June 2018–
July 2019). Light intensity was measured in lux (lumen/ft2).
Photosynthetically active radiation (PAR) is typically used for
light measurements, but to convert from lux to PAR a calibration
curve and equation must be generated for each individual logger
using a PAR meter (Long et al., 2012), which was not available for
comparison. Light intensity was recorded throughout the study
period, but due to biofouling of the sensor only the first week of
light data after logger deployment was used in statistical analysis.
Data was organized in Excel, imported into R, and analyzed
with a Kruskal Wallis t-test and resulting post hoc analyses to
determine whether the nursery sites had significantly different
temperatures over the study period.

RESULTS

Survival and Mortality
Of the initial 157 fragments, 66 (42%) survived to the end of
the study period (13 months). Of those fragments surviving at
13 months, 28.8% were A. cervicornis fragments, 31.5% were
A. palmata fragments, and 39.7% were A. prolifera fragments.
During the first month in the nursery (June 2018), overall total
mortality was 29.3% (mortality being defined by fragments with

no living tissue, not partial tissue loss). After the first month,
monthly mortality ranged from 0 to 5% to July 2019. In July 2019,
32 fragments died, equating to 32.7% of the overall remaining
fragments. Mortality was greatest at site N1, where only one
fragment (A. palmata, basal fragment) was alive by the end of the
study period. Site significantly affected coral fragment survival
(Survival Analysis Cox model, z = −5.47, p = 4.5e–08), with site
N3 fragments showing the greatest survival throughout the study
period (Figure 4). No other factors had a significant effect on
survival. Site was also the only significant factor in the survival
analysis when the first month was excluded (to account for any
mortality due to transport stress) (Survival Analysis Cox model,
z = −5.161, p = 2.46e–07).

Growth
Descriptive Statistics and Linear Growth Analysis
Over 12 months, total TLE (mm) increased by 15.8%. There were
no significant differences in the sizes of the ∼50 mm sections at
initial nursery setup (Kruskal-Wallis test, p > 0.05). For surviving
corals, linear growth (final – initial fragment TLE) and the
final number of branches were significantly positively correlated
[Kendall’s tau correlation, z(97) = 7.4452, p = 9.678e−14].
The equation that best describes the relationship is: Growth
(TLE) = 29.83 + (13.16∗number of branches), where the number
of branches changes depending on the individual fragment.

Factors included in the growth analysis based on TLE were
taxa, site, and fragment section. When comparing growth (final
- initial TLE) for surviving fragments, mean linear growth values
did not significantly differ among factor groups (Kruskal Wallis
rank sum test, p > 0.05). However, a post hoc comparison
indicated A. prolifera had significantly greater average growth
(102.5 mm/12 mo ± 14.4 SE), than A. cervicornis (35.6 mm/12
mo ± 7.9 SE) and A. palmata (47.4 mm/12 mo ± 7.2 SE)
(Paired Samples Wilcoxon rank sum test, p < 0.05) (Figure 5).
Apical fragments had the greatest average growth (78 mm/12
mo ± 4.2 SE), although not significantly different (Paired
Samples Wilcoxon rank sum test, p > 0.05) compared to middle
fragments (53.3 mm/12 mo ± 4.0 SE) and basal fragments
(57.6 mm/12 mo ± 3.6 SE). Site N3 showed greater average
growth of fragments (74.1 mm/12 mo ± 4.2 SE) compared to N1
(60.9 mm/12 mo ± 3.0 SE) and N2 (55.2 mm/12 mo ± 4.8 SE),
although sites were not significantly different from each other
(Paired Samples Wilcoxon rank sum test p < 0.05) (Figure 5).
An ANOVA between factor groups suggested a significant effect
of taxa on linear growth (Analysis of Variance: Taxa – df = 2,
F = 10.344, p = 0.000114). Apical A. prolifera fragments at
site N3 had the greatest mean growth based on TLE after
12 months (Figure 5).

For the growth rate analysis, apical A. prolifera fragments
at site N3 had the greatest average growth rate per month
(10.47%) compared to all other factor combinations, and
A. prolifera average growth rate per month was significantly
greater than the parental species (Paired Samples Wilcoxon rank
sum test, p < 0.05). Acropora palmata width measurements
found no significant difference between initial and final mean
widths (Parametric two-sample t-test, t = 0.154, df = 21.9,
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FIGURE 4 | Survival analysis plot by site for 13 months (June 2018–July 2019). Lower survival probability values indicate lower survival, and higher survival
probability values indicate greater survival.

FIGURE 5 | Growth (TLE) by taxa, fragment section, and site at 12 months. Taxa are listed along the top bar of each plot. Site is listed along the x-axis within each
taxa group. Fragment sections are differentiated by color in the legend on the right. Open circles indicate outliers; filled diamonds indicate mean values for the site.
A * indicates significance.

p = 0.879). Mean change in width was 3.02 mm and ranged
from 0.4 to 9.17 mm, with 90% between 0.4 and 4.58 mm. The
Supplementary Materials contain further results of the growth
rate and width analyses.

GAMM Analysis
Taxa, site, and fragment section were identified as important
factors influencing growth over time (change in TLE, or
mm/mo−1) in the MAM (GAMM ANOVA, p < 0.05). The
MAM included potential additive and interactive effects of

factors that other statistical tests may not account for. To allow
for dependency between individual fragments over time, initial
size of each fragment was included in the TLE values across
all time points.

Acropora prolifera fragments had significantly greater mean
TLE values at 12 months compared to A. cervicornis and
A. palmata fragments based on the MAM post hoc pairwise
comparison (p < 0.05). Acropora prolifera fragments also had
the greatest average monthly linear growth across all fragment
sections and sites (Figure 6A). Based on the MAM, apical
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and basal fragment TLE values at 12 months were significantly
greater than middle fragments (p < 0.05) (Figure 6B). The
MAM indicated apical A. prolifera fragments at site N1 had
the greatest TLE (mm) at 12 months (June 2019), before most
fragments at N1 died the next month (July 2019). However, 12-
month TLE values between sites were not significantly different
(p > 0.05) (Figure 6C).

Genotype
Genetic analysis confirmed there were five unique A. cervicornis
and A. palmata genotypes, and 4 unique A. prolifera genotypes.
Micro-checker found no evidence of scoring errors due to
stutter peaks, large allele dropout, or null alleles across the
five loci for each of the three taxa. Genotype did not have
a significant effect on survival (Survival Analysis Cox model,
p > 0.05). When analyzing the different genotypes of each
taxon individually, genotype had a significant effect on linear
growth values between taxa (Kruskal Wallis rank sum test, chi-
sq = 33.3, df = 11, p = 0.00048). Genotypes within A. cervicornis
were not significantly different from each other (Tukey HSD,
p > 0.05). Within A. palmata, the mean linear growth after
12 months in genotype P10 was significantly greater than P1 and
P11 (p = 0.021 and p = 0.049, respectively). All other genotypes
within A. palmata were not significantly different from each other
(Tukey HSD, p > 0.05). Genotype did not have a significant
effect on linear growth values within A. prolifera genotypes (chi-
sq = 0.72, df = 2, p > 0.05).

Conditions
Disease was not observed during the study period. Condition
prevalence did not significantly differ over time (chi-sq = 3.1137,
df = 11, p > 0.05). Condition type significantly affected
prevalence (chi-sq = 22.28, df = 2, p = 1.453e−5). Prevalence
of bleaching was significantly lower than algal overgrowth
interactions (OGA) and paling (Multiple comparison test,
p < 0.05). There was a significant association between condition
and taxa (chi-sq = 16.818, df = 4, p = 0.002097). Prevalence
of OGA was less than expected in A. palmata, and prevalence
of paling was more than expected in A. palmata; all other
combinations of taxa and conditions occurred as expected. There
was not a significant association between site and condition (chi-
sq = 5.4002, df = 4, p = 0.2486), i.e., all combinations of condition
and site occurred as expected.

Temperature and Light Results
During the study period, water temperatures ranged from 21.2◦C
to 33.5◦C across all sites. Water temperatures at N1 ranged from
21.2◦C to 33.5◦C, at site N2 from 22.5◦C to 32.3◦C, and at N3
from 21.8◦C to 32.9◦C. Water temperature did not significantly
differ between sites (Kruskal-Wallis test, p > 0.05), although site
N1 had the greatest number of days (134) above a published
bleaching threshold (29.8◦C, Manzello et al., 2007) compared
to sites N2 and N3 (123 and 126 days, respectively). Summer
months (June–September 2018, June–July 2019) were compared
specifically to determine if there were significant temperature
differences in times of potentially greater heat stress. In the
summer months, water temperatures ranged from 29.01◦C to

31.72◦C in 2018 and from 27.98◦C to 33.45◦C in 2019. When
comparing just the summer months, there were no significant
differences in mean temperatures between sites in 2018 and 2019
(One-way ANOVA/Kruskal-Wallis test, p > 0.05). There were six
periods in the summer months where seven or more consecutive
days were >29.8◦C. Temperature stress based on Degree Heating
Weeks (DHW) was calculated, which considers the number of
days the sea surface temperature is ≥1◦C above the approximate
mean summer maximum temperature over a 12-week period
(Wellington et al., 2001; Liu et al., 2006; Kayanne, 2017). For this
study one DHW is equal to seven days ≥30.8◦C. At all sites in
July 2018 there were 8 to 9 consecutive days above this threshold,
corresponding to 1 DHW. At sites N2 and N3 in June 2019, 7
consecutive days were above the threshold, also corresponding to
1 DHW. In July 2019, all but one coral fragment had died at site
N1, likely attributed to bleaching.

Daily light intensity was variable between sites, although the
variability was not consistent across logger deployments. At one
week after initial logger deployment (March 2018), daily average
light intensity ranged from 438.65 to 1434.47 lumen/ft2 across all
sites but was not significantly different between sites (Kruskal-
Wallis, p > 0.05). In November 2018, daily average light intensity
ranged from 145.83 to 459.75 lumen/ft2 across all sites one week
post-deployment and was significantly greater at site N2 than N1
and N3 (Kruskal-Wallis rank sum test, chi-sq = 9.719, df = 2,
p = 0.00775; Paired Samples Wilcoxon rank sum test, p < 0.05).
Sites N1 and N3 did not significantly differ from each other after
the second logger deployment (Paired Samples Wilcoxon rank
sum test, p > 0.05). At one week after the third logger deployment
(March 2019), daily average light intensity ranged from 387.5 to
8987.47 lumen/ft2 across all sites. Daily average light intensity
one week after the third deployment was significantly different
between sites (Kruskal-Wallis rank sum test, chi-sq = 12.445,
df = 2, p = 0.00198), where light intensity was significantly greater
at site N3 than sites N1 and N2, and light intensity at site N1 was
significantly lower than N2 (Paired Samples Wilcoxon rank sum
test, p < 0.05). Site N1 had lower light intensity than N2 and N3
in March 2018 and 2019 and had lower intensity than site N2 in
November of 2018.

DISCUSSION

This study is the first to examine differences in survivorship
and growth between the parental and hybrid taxa of Caribbean
acroporid corals in a nursery setting, along with differences
among fragment sections and nursery locations. While there
are reservations about using hybrids in coral restoration
due to genetic swamping concerns, the benefits of including
fast-growing hybrid coral to quickly increase reef structure
likely outweighs the potential long-term drawbacks. This study
identified three main findings that will be beneficial to restoration
management: (1) the hybrid taxon, A. prolifera, demonstrated
greater growth in a shallow water nursery setting than the
parental species, (2) using non-apical fragments did not
compromise survival or growth, and (3) nursery site selection
plays an important role in coral fragment survival.
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FIGURE 6 | Growth (TLE) over time based on Minimally Adequate Model (MAM) by: (A) taxa, (B) fragment section, and (C) site. Factor variables are given in each
figure legend, differentiated by line type and color. Gray shaded areas denote standard error. Site N1 underlies N3 in Figure (C).

There is growing evidence to suggest the A. prolifera hybrid
has similar, if not higher, fitness than the parental species
and may be a faster growing taxon overall (Gladfelter et al.,
1978; Fogarty, 2012; Howe, 2018; Weil et al., 2020; Nylander-
Asplin et al., 2021). This study provides further evidence that
A. prolifera grows faster than the parental species. Our results
found that the number of branches correlates with increased
TLE over time, which is consistent with Lirman et al. (2014)
and may explain why the prolifically branching hybrid had
greater growth. As seen in other studies (Gladfelter et al.,
1978; Crossland, 1981; Scheufen et al., 2017), growth of all taxa

fluctuated seasonally and was greater in warmer months than in
the cooler winter/spring months. Prior research has investigated
the growth of wild acroporid coral colonies, where growth
rates were higher in certain A. prolifera genotypes compared to
A. cervicornis (Bowden-Kerby, 2008). In contrast, linear growth
rates in A. cervicornis were higher than in A. prolifera in Puerto
Rico (Weil et al., 2020), suggesting colony growth may be
highly dependent on site location, environmental conditions,
and genotype. With its rapid growth and prolific branching
morphology, the hybrid is likely to reach outplanting goals by
quickly increasing coral biomass and reef structure, albeit the
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fused branches of the hybrid taxon may provide a different
ecological service than the parental species. For example, the
structure of A. palmata serves as a place for larger fish and
invertebrates to live and hide. In contrast, the hybrid’s fused
branches are more compact, and may be more beneficial to the
smaller fish and invertebrates.

Wild hybrid colonies have been found in greater abundance
and in better health than their parental counterparts at
some Caribbean sites (Fogarty, 2012; Hernández-Fernández
et al., 2019; Nylander-Asplin et al., 2021). In surveys across
the Caribbean, hybrid disease prevalence was equivalent to
A. palmata and less than A. cervicornis (Fogarty, 2012). Despite
hybrids often inhabiting shallower habitats (∼1 m) than the
parental species, hybrids had comparable prevalence of paling or
bleaching, which was low overall at surveyed sites (Fogarty, 2012).
These characteristics, combined with the equal survivorship and
rapid growth seen in our study, make the hybrid an ideal
candidate to scale-up restoration. Addition of the hybrid could
increase reef structure while also increasing the probability
of genetic diversity within taxa (Willis et al., 2006; Richards
and Hobbs, 2015; Nylander-Asplin et al., 2021). Hybrids could
provide shallow water habitat with limited bleaching and
paling, fast growth, and potentially less susceptibility to disease
compared to one or both parental species, as our work and
previous research indicates.

There is concern that the hybrid may outcompete the parental
species or reduce genetic diversity if included in restoration
practices, as seen in other research in forestry practices (Merkle
et al., 2006; Richards and Hobbs, 2015; Kovach et al., 2016).
However, concerns about genetic swamping of the parental
species on evolutionary scales must not outweigh the immediate
ecological need for shallow coral reefs, particularly when the state
of coral reefs is dire. Genetics also play an important role in a
coral’s resistance to climate change and disease (Baums, 2008;
Vollmer and Kline, 2008; Drury et al., 2016, 2017; O’Donnell
et al., 2017; Baums et al., 2019; Chan et al., 2018, 2019a,b). With
the inclusion of the hybrid, there is potential for greater sharing of
genetic material across the three acroporid taxa via backcrossing,
which may improve the adaptive potential of coral populations
(Baums et al., 2019). Chan et al. (2019a) details a decision tree to
address if/when a hybrid should be used in conservation efforts
overall. To specifically address A. prolifera concerns, pilot studies
could investigate differences in growth and survival of nursery
grown coral by outplanting fragments in the same area in separate
clusters, with enough separation between colonies to reduce
competition between coral taxa. While there is overlap in habitat
range among Caribbean acroporid taxa (Fogarty, 2012), further
separation by habitat type/depth could help address competition
concerns. This could include outplanting A. prolifera to shallow
back reef areas, A. palmata along reef crests, and A. cervicornis to
deeper reef slopes.

Apical fragments displayed the greatest TLE increase
compared to middle and basal fragments, with the apical hybrid
fragments having the greatest growth overall. Because these
fragments were at the tips of the donor colony and contained
the apical polyp, they were the primary location of growth
on the original colony (Gladfelter et al., 1989; Rinkevich, 2000;

Bowden-Kerby, 2001). This supports the idea that collecting from
the tips of donor colonies may lead to a faster rate of growth,
while also reducing impact to the donor colonies (Rinkevich,
2000; Bowden-Kerby, 2001; Herlan and Lirman, 2008). Previous
studies have demonstrated gradients along A. cervicornis
branches, where carbon compound transport was allocated
toward the tips of colonies (Taylor, 1977) and respiration was
higher in the terminal tips of A. palmata colonies (Gladfelter
et al., 1989). The results of these studies indicate that the tips
of acroporid colonies are areas of increased growth, where
metabolic rates may be greater compared to the rest of the colony
(Taylor, 1977; Gladfelter et al., 1989). In this study, there were
no significant differences in linear growth by fragment section,
which could be accounted for by branching on both cut margins
of the middle and basal sections. Some studies have found that
pruning of larger colonies of branching corals in a nursery leads
to increased productivity after one year (Lirman et al., 2014), and
similar exposure in massive corals by microfragmentation has
led to a greater increase in tissue compared to singular colony
(Page et al., 2018). In contrast, excessive pruning may lead to
an increased risk of disease/overgrowth or reduce reproductive
capability in the long-term (Epstein et al., 2001; Muller and
van Woesik, 2012). Here, middle and basal fragments had two
areas of recent exposed tissue from initial fragmentation, which
can lead to increased risk of disease and other deleterious stress
responses (Muller and van Woesik, 2012). Lesion colonization
by opportunistic settlers, like algae, may affect the long-term
growth of nursery fragments. In this study, initial algal settlement
on the exposed coral skeleton was observed across all sites
in the first month of nursery placement before the coral had
an opportunity to heal. While no disease was observed on
nursery fragments in this study, open or overgrown lesions
may have contributed to partial mortality, leading to differences
in growth between fragment sections. Further investigation of
metabolic and chemical differences within a colony are needed
to understand the role fragment section may play in nursery
expansion and outplanting.

Site selection has proven to be an important factor in the
success of coral nurseries, with temperature, water quality,
and depth affecting survival (Shafir et al., 2006; Johnson
et al., 2011; Young et al., 2012). The high mortality observed
during the first month was likely due to transportation and
acclimation stress. Transportation stress is difficult to avoid but
can be reduced by multiple water changes and temperature
control, if available. Storm and severe weather conditions may
increase the risk of impact on nursery sites (Bowden-Kerby,
2001; Young et al., 2012), though previous research indicates
that establishing nursery sites in areas with increased water
flow may allow for higher survival (Edwards, 2010). Here,
the site with the greatest survival and average growth, N3,
was located on the unprotected northern side of the island.
While site N1 fragment growth did not significantly differ
from the other sites, it did have the lowest overall survival.
Although we were unable to measure hydrodynamics at the
study sites, we did observe stagnant conditions at site N1, likely
contributing to the bleaching and subsequent mortality at this
site in July 2019. Survival at site N2 was lower than N3 but
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greater than N1, possibly due to increased water flow from
the channel near this nursery location. Temperature and depth
were consistent across all sites; therefore, it is likely that other
environmental conditions, while not directly measured in this
study, influenced survival and growth. Research by Nakamura
and van Woesik (2001) demonstrated that branches in Acropora
digitifera survived better in increased water flow conditions,
even when exposed to higher water temperatures. Similarly,
natural colonies and outplants of A. cervicornis had greater
survival and abundance in areas with moderate to high water
flow (D’Antonio et al., 2016; van Woesik et al., 2020). In this
study, the negative impacts of stagnant water and increased
water temperatures at all sites during the summer months
likely outweighed the benefits of a more protected location.
As suggested by Schopmeyer et al. (2017), survivorship < 80%
over 12 months after collection may be due to poor nursery
locations or genotypic differences. While Schopmeyer et al.
(2017) compared A. cervicornis fragments, the same benchmarks
could be applied for all taxa used in this study, and as such
it is likely that site differences contributed to the less-than-
ideal survival.

The light intensity data recorded after the third deployment
(March 2019) shows differences between sites, with site N1
having the lowest intensity. Site N1 was located nearest to
seagrass beds but in fine sediment compared to the other two
nursery locations. It was the site that observationally had the
greatest turbidity across the study period, which aligns with
the low lux (lumens/ft2) values from the light logger data.
However, it is difficult to extrapolate this information further
into the summer months. PAR is a useful metric to determine
the ideal light intensity for photosynthesizing organisms, such
as coral symbionts. Unfortunately, the lux data collected in
this study requires direct calibration with a PAR meter, which
was not available for comparison. As such, the light intensity
data was used only as a secondary indicator of environmental
conditions after temperature in this study. Turbid conditions
may reduce the impact of irradiance on coral health (Wagner
et al., 2010; van Woesik et al., 2012; Morgan et al., 2017;
Sully and van Woesik, 2020; van Woesik et al., 2020). Other
research has shown connectivity between adjacent seagrass
beds and coral reefs via fish species and particulate matter
(Dorenbosch et al., 2005; Heck et al., 2008), which could lead
to increased food/nutrient supply (and therefore growth) for
nursery fragments. However, high sediment input and long-term
turbidity can increase prevalence of disease and other stressors to
corals, likely impacting long-term growth and survival (Pollock
et al., 2014; Ng et al., 2016).

Overall, growth is only a secondary measure of success if
nursery fragments do not survive. As such, site selection based on
survival alone should be a priority before considering growth. Site
selection criteria should consider depth, water temperature, site
accessibility, hydrodynamics, and nutrient flux in the area, which
could be evaluated using smaller pilot studies. Locations with
optimal depth, moderate water flow, adequate light attenuation,
and a limited range of temperatures will likely lead to the most
successful coral fragment survival and growth (Edwards, 2010;
Johnson et al., 2011).

CONCLUSION

The hybrid coral utilized in this study showed greater fitness
than the parental species. Coral restoration managers should
consider the fast-growing hybrid A. prolifera as an option for
restoration. The hybrid survives as well as and grows faster
than the parental species, and as such is a potential option
to increase shallow reef infrastructure through restoration.
Including the hybrid taxa and increasing the number of
unique parental genotypes in a nursery will increase genetic
diversity among all three taxa in future restoration activities.
As shown in this study, evaluating appropriate nursery sites
before setup is crucial to project success. Although apical
tips of colonies prove to be a source for fast growing tissue,
further research is needed to confirm there are no tradeoffs
between growth and survival. Finally, our study took place over
the course of one year at a remote island in the Bahamas.
Incorporating the hybrid in different aspects of active restoration
at sites throughout the Caribbean or at larger scales would
help determine how this taxon fits into the larger picture of
coral restoration.
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Supplementary Figure 1 | Coral collection locations around New Providence,
shown by the yellow points. Inset: New Providence (in box) in relation to Florida
and the Berry Islands.

Supplementary Figure 2 | Nursery site experimental setup. Coral fragments
were placed on the middle three tree branches shown here with a letter and
number value. Fragment sections were individually tagged. C, P, and H denote
taxa (A. cervicornis, A. palmata, and A. prolifera (hybrid), respectively), and
numbers denote genotype. Not all putative genotypes were unique, and so some
genotypes had a higher number of fragments after analysis. The fragment section
changed branches between trees at each site. Dashes denote no
fragment attached.

Supplementary Figure 3 | Growth (TLE) over time by genotype. TLE (mm) is
along the y-axis, and time is along the x-axis. C, P, and H denote A. cervicornis, A.
palmata, and A. prolifera (hybrid), respectively.

Supplementary Figure 4 | Frequency analysis of conditions present across the
study period by taxa. Conditions are listed along the top x-axis, with taxon listed
along the y-axis. Algal overgrowth, bleaching, and paling are denoted by OGA,
Blch, and Pale, respectively. Blue boxes indicate that the condition occurred more
than expected for a specific taxon, while red indicates the condition occurred less
than expected. Gray boxes indicate that a condition occurred as
expected for that taxon.

Supplementary Figure 5 | Mean daily temperature by site from June 2018 to July
2019. Purple line denotes published approximate bleaching threshold at 29.8◦C
(Manzello et al., 2007). Sites are differentiated by color, shown in the legend.

Supplementary Table 1 | Linear growth (TLE) at 12 months by genotype. C, P,
and H denote A. cervicornis, A. palmata, and A. prolifera (hybrid), respectively.
Genotype with ∗ indicates only 3 fragments left at 12 months.

Supplementary Table 2 | Monthly temperature ranges (◦C) from June
2018 to July 2019.

Supplementary Table 3 | GPS coordinates for nursery locations.
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