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Recent years have witnessed the increase in applications of artificial intelligence (AI)
into the detection of oceanic features. Oceanic eddies, ubiquitous in the global ocean,
are important in the transport of materials and energy. A series of eddy detection
schemes based on oceanic dynamics have been developed while the AI-based eddy
identification scheme starts to be reported in literature. In the present study, to find
out applicable AI-based schemes in eddy detection, three AI-based algorithms are
employed in eddy detection, including the pyramid scene parsing network (PSPNet)
algorithm, the DeepLabV3+ algorithm and the bilateral segmentation network (BiSeNet)
algorithm. To justify the AI-based eddy detection schemes, the results are compared
with one dynamic-based eddy detection method. It is found that more eddies are
identified using the three AI-based methods. The three methods’ results are compared
in terms of the numbers, sizes and lifetimes of detected eddies. In terms of eddy
numbers, the PSPNet algorithm identifies the largest number of ocean eddies among
the three AI-based methods. In terms of eddy sizes, the BiSeNet can find more large-
scale eddies than the two other methods, because the Spatial Path is introduced into
the algorithm to avoid destroying the eddy edge information. Regarding eddy lifetimes,
the DeepLabV3+ cannot track longer lifetimes of ocean eddies.

Keywords: oceanic eddy detection, deep learning, PSPNet, BiSeNet, DeepLabV3+

INTRODUCTION

Oceanic eddies are ubiquitous in the global ocean. They play an important role in material
and energy transport, and global climate changes. On a global scale, oceanic mesoscale eddies
contribute significantly to horizontal heat and salt transports (Dong et al., 2014; Moreau et al.,
2017; Patel et al., 2019, 2020). Many eddies identification methods based on different kinds
of remote sensing data have been developed (Chelton et al., 2007; Chaigneau et al., 2008;
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Nencioli et al., 2010; Dong et al., 2011a,b; Faghmous et al., 2012;
Chen et al., 2016).

Deep learning schemes have been used in oceanic eddies
detection during the past few years. Lguensat et al. (2017) firstly
applied a deep learning algorithm based on the encoder-decoder
network to oceanic eddies detection in the classic framework of
the semantic segmentation. The encoder-decoder network with
the simple convolution module and the upsampling module
was also used to detect and track oceanic eddies (Franz et al.,
2018). Based on synthetic aperture radar images, deep learning
was applied to automatically detect oceanic eddies according to
the extracted higher-level features and fused multi-scale features
(Du et al., 2019). Xu et al. (2019) applied the pyramid scene
parsing network (PSPNet) to identify oceanic eddies and find that
the PSPNet has great advantage in the detection of small-scale
eddies. Duo et al. (2019) proposed an Ocean Eddy Detection Net
(OEDNet) based on an object detection network to recognize the
eddy field by enhancing the accurate small sample data to obtain
the training dataset.

Systematic comparison of the performances of these AI-based
methods discussed above is required to justify which one is the
most applicable in eddy detection. Such comparison can also
shed light on the application of AI algorithms into oceanography.
The present study employs three different AI-based algorithms
into eddy detection, including Pyramid Scene Parsing Network
(PSPNet), DeepLabV3+ and Bilateral Segmentation Network
(BiSeNet), and makes the comparisons of their results based on
a few eddy parameters, such as eddy number, size and lifetime.

MATERIALS AND METHODS

Pyramid Scene Parsing Network
(PSPNet)
The PSPNet (Zhao et al., 2017) incorporates the pyramid pooling
module (He et al., 2014) and the reduced convolution (Yu and
Koltun, 2016), which fully uses the global scene to capture more
details of the context information between the different category

FIGURE 1 | Schematic diagram of PSPNet.

FIGURE 2 | Schematic diagram of DeepLab V3+.
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FIGURE 3 | Schematic diagram of BiSeNet.

labels. Sea surface height anomaly (SSHA) data labeled with eddy
information are used as the training data. Figure 1 shows the
configuration of the PSPNet. A 101-level ResNet (ResNet101)

model with a dilated network strategy (Yu and Koltun, 2016;
Chen et al., 2017) is implemented to an input SSHA image to
extract the feature map at different levels. The final feature map is
reduced to 1/8 of the input image. The pyramid pooling module
is then employed to obtain context information. A four-level
pyramid fuses the images at the different sizes as the global prior.
The prior is connected to the original feature and a convolution
layer to generate the final prediction. The PSPNet program,
proposed by Zhao et al. (2017), is publicly available at https:
//github.com/hszhao/PSPNet.

DeepLabV3+
The DeepLabv3+ (Chen et al., 2017) employs the Spatial Pyramid
Pooling module (SPP) and the encoder-decoder structure for
the semantic segmentation based on the deep-learning network
(Figure 2). SPP applies atrous convolution with different rates
to obtain convolutional features at multiple scales to mine the
multi-scale context information. The low-level features of the
encoder are able to capture larger spatial information. The
spatial information is used to recover the details and spatial
dimensions of the target during the decoder stage, and to
refine the segmentation results along object boundaries. The
DeepLabV3+ program, proposed by Chen et al. (2017), can
be obtained from https://github.com/tensorflow/models/tree/
master/research/deeplab.

FIGURE 4 | Oceanic eddies identified by VG (A), PSPNet (B), DeepLabV3+ (C), and BiSeNet (D) algorithms in the STCC region on 19 August 2015.
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Bilateral Segmentation Network
(BiSeNet)
The BiSeNet (Yu et al., 2018) is divided into three parts: Spatial
Path, Context Path, and Feature Fusion Module, as shown in
Figure 3. The Spatial Path encodes the detailed information
captured from the image into spatial information. The Context
Path is applied to encode the context information and the
Feature Fusion Module is used to fuse the spatial information
and the context information. According to the characteristics of
the different levels, the spatial and the context information are
connected in series, and a batch normalization is adopted to
balance the feature information scale. The connected features are

FIGURE 5 | Time series of the daily number of eddies identified by the VG and
three AI algorithms in the STCC region during 2015. Black, red, blue, and
purple curves represent the results from VG, PSPNet, DeepLabV3+, and
BiSeNer algorithm, respectively. “Error” is the difference between the three
AI-based results and the VG results, “re-error” is the relative error which is
defined as the error divided by the VG results, and “corr” is the correlation
coefficient between the results from the three AI-based algorithms and the VG
algorithm.

FIGURE 6 | Size distribution of the identified eddies from the four different
algorithms in the STCC region during 2015. Black, red, blue, and purple bars
represent the results from VG, PSPNet, DeepLabV3+, and BiSeNet algorithm,
respectively.

applied to obtain a weight vector employed to select and combine
the feature information, and to get the final result. The BiSeNet
program, proposed by Yu et al. (2018), can be download from
https://github.com/CoinCheung/BiSeNet.

Vector Geometry—Based Eddy
Detection Algorithm (VG)
We apply the method based on the geometry of velocity vectors
of the flow field (Dong et al., 2009; Nencioli et al., 2010) for
mesoscale eddy identification and tracking from geostrophic
current, which is obtained from SSHA data. Eddy centers are
determined by four criterions as follows (Nencioli et al., 2010):
(a) along an east-west section, meridional velocity v has to reverse
in sign across the eddy center and its magnitude has to increase
away from it; (b) along a north—south section, zonal velocity u
has to reverse in sign across the eddy center and its magnitude
has to increase away from it: the sense of rotation has to be the
same as for v; (c) velocity magnitude has a local minimum at the
eddy center; and (d) around the eddy center, the directions of the
velocity vectors have to change with a constant sense of rotation
and the directions of two neighboring velocity vectors have to
lay within the same or two adjacent quadrants. Eddy boundary
is determined by the closed contour of the stream function
field. Eddy tracks are retrieved by comparing the distribution
of eddy centers at successive time steps. The tracking methods
for the AI-based algorithms are the same as that for VG. The
tracking method is one part of the VG, which can be found in
Nencioli et al. (2010).

Data
Eddies were identified from daily SSHA data with a spatial
resolution of 1/4◦ × 1/4◦. The data, obtained from Copernicus
Marine Environment Monitoring Service (CMEMS)1, was a

1http://marine.copernicus.eu

FIGURE 7 | Same as Figure 5 except for the comparison of the daily number
of eddies with radii greater than 25 km.
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global product from multiple satellite altimeter along-track data.
The SSHA data in the period from 2011 to 2015 were used
in this study. The SSHA data were linearly interpolated onto a
1/8× 1/8◦ grid to extend the eddy field for a larger number of grid
points in order to improve further the performance of the eddy
detection scheme (Liu et al., 2012). The SSHA data from 2011 to
2014 was used as the training data containing the labels of eddy
information, while the 2015 were used as the validation set. This
study focused on the North Pacific Subtropical Countercurrent
(STCC, 15◦ N ∼ 30◦ N, 115◦ E ∼ 150◦ W), extending from east
of Luzon Strait to the Hawaii Islands.

RESULTS

The training SSHA data from 2011 to 2014 in the STCC
region, which is labeled with cyclonic and anticyclonic eddies,
is produced based on the traditional VG algorithm. In order to
ensure validity and consistency of the training dataset, the eddy
information are cleaned, dealing with invalid and missing data.
Finally, the three different AI schemes are employed for deep
learning with the training dataset from 2011 to 2014 and for eddy
identification with the validation dataset during 2015.

The eddies identified based on the three different algorithms
in the STCC region are compared on 19 August (Figure 4). Using
the traditional VG algorithm, 172 ocean eddies are detected,
including 84 cyclonic and 88 anticyclonic eddies. However, the
other three deep learning algorithms all identify more eddies: 185
eddies (87 cyclonic and 98 anticyclonic eddies) from the PSPNet
algorithm, 184 eddies (87 cyclonic and 97 anticyclonic eddies)
from the DeepLabV3+ algorithm and 188 eddies (89 cyclonic
and 99 anticyclonic eddies) from the BiSeNet algorithm.

The comparisons of oceanic eddies detected from the AI-
based algorithms are made based on a few eddy parameters, such
as eddy number, size and lifetime.

Figure 5 compares the daily number of eddies detected by
the VG, PSPNet, DeepLabV3+ and BiSeNet algorithms in the
STCC region during 2015. A total of 68,010 oceanic eddies are
identified by the VG algorithm, including 32,783 cyclonic and
35,227 anticyclonic eddies, which are less than those identified
by the three AI algorithms. Among the three AI methods, the
PSPNet algorithm detects the largest number of oceanic eddies
(a total of 77,462 eddies). The DeepLabV3+ and the BiSeNet
algorithm identify 72,264 and 75,579 eddies, respectively.

Compared with the traditional VG method results, the
PSPNet,DeepLabV3+ and BiSeNet algorithm on average identify
25.90, 11.65, and 20.74 more eddies per day, respectively. There is
a good correlation between the daily eddy numbers from the VG
algorithm and the PSPNet (0.93), and the DeepLabV3+ (0.94)
algorithm. The correlation of the daily eddy numbers between
the BiSeNet and the VG method is less than the other two
AI methods, with a correlation coefficient of 0.86. In Figure 6,
the time series of the daily number of eddies detected by the
DeepLabV3+ algorithm is the most consistent with that by the
VG algorithm. In addition, based on the VG algorithm results,
the differences in the results from the PSPNet and BiSeNet
algorithms have seasonal variation characteristics. The PSPNet
algorithm detected more eddies in spring and summer, while the
BiSeNet algorithm detected a larger number of eddies in winter.

The radii of the oceanic eddies detected by the four different
methods are compared in Figure 6. All the identified eddies peak
at the 25–50 km bin, except for the DeepLabV3+, which has the
highest number at the 50–75 km bin. The PSPNet algorithm has
an obvious advantage in detecting small-scale eddies with radii

FIGURE 8 | Lifetime distribution of eddies identified by the VG (black), PSPNet (red), DeepLabV3+ (blue), and BiSeNet (purple) algorithms in the STCC region during
2015. (A) Cyclones; (B) anticyclones.

Frontiers in Marine Science | www.frontiersin.org 5 June 2021 | Volume 8 | Article 672334

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-672334 June 14, 2021 Time: 12:15 # 6

Xu et al. AI-Based Oceanic Eddy Detection

of less than 25 km. The DeepLabV3+ algorithm identified the
highest number of eddies with radius between 50 and 100 km.
Furthermore, the BiSeNet algorithm detects more bigger eddies
(greater than 100 km) than the other three methods.

The resolution of the altimetry data limits the presentation of
small eddies. The facticity of the small-scale eddy needs further
confirmation, so the results of detected eddies with radii less than
25 km are removed and the comparison among the algorithms
is plotted in Figure 7. 64586 eddies are afterward detected by
the VG method, while 65,034, 66,023, and 69,153 eddies are,
respectively, detected by the PSPNet, DeepLabV3+ and BiSeNet

algorithms. The differences between the traditional and AI-based
results decrease with a similar pattern during 2015. The BiSeNet
algorithm identifies the largest number of oceanic eddies among
the three AI-based methods. 12.51 eddies more, on average, are
identified per day with a relative error of 7.74%. It is suggested
that the BiSeNet algorithm takes an advantage in identifying
large-scale eddies, which can be verified in Figure 6. However,
the majority of the additional eddies detected by the PSPNet
algorithm are small-scale ones.

Lifetime is another important eddy characteristic. The lifetime
distribution of the eddies identified by the four algorithms are

FIGURE 9 | Comparison of the oceanic eddies longer than 4 weeks from the five versions in the STCC region on June 07, 2015. (A) The VG version; (B) the PSPNet
version; (C) the DeepLabV3+ version; (D) the BiSeNet version; (E) the AVISO+ version. Triangles and squares represent the center of the cyclonic and anticyclonic
eddies, respectively.
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TABLE 1 | Comparisons of eddy properties base on the five results.

Lifetime (days) Amplitude (cm) Radius (km) Displacement (km) Translational speed
(km day−1)

VG Mean 50.1 7.2 80.9 332.2 6.7

Maximum 223 40.5 298.7 1453.7 25.0

PSPNet Mean 63.4 8.2 89.4 343.7 6.8

Maximum 347 45.4 296.5 3174.0 25.0

DeepLabV3+ Mean 57.3 8.4 92.8 299.2 6.3

Maximum 365 40.6 284.5 1498.6 25.0

BiSeNet Mean 57.6 9.3 104.6 408.9 7.8

Maximum 233 39.3 296.7 1769.4 25.0

AVISO+ Mean 72.2 8.0 99.8 544.5 6.9

Maximum 365 34.3 267 3355.3 25.0

presented in Figure 8. A total of 844 eddies with lifetimes greater
than 4 weeks (387 anticyclones and 457 cyclones) are identified by
the traditional VG algorithm. Considering eddies which survive
more than 4 weeks, the PSPNet, DeepLabV3 + and BiSeNet
algorithms detect 875 eddies (400 anticyclonic and 475 cyclonic
eddies), 805 eddies (370 anticyclonic and 435 cyclonic eddies),
and 819 eddies (383 anticyclonic and 436 cyclonic eddies),
respectively. The eddies identified by the three AI algorithms
survive longer than that identified by the VG algorithm because
the AI algorithms can detect small-sized eddies during the
growing and decaying periods. Among the three AI-based
methods, eddies detected by the DeepLabV3+ algorithm have the
shortest lifetimes.

DISCUSSION

In order to further discuss the AI-based results, the eddies
identified by the AI-based algorithms and by the VG algorithm
in the STCC region during 2015 are compared with mesoscale
eddy trajectory atlas product (Ver 2.0), which is obtained from
AVISO+2. Since the AVISO+ product provides the eddies with
the lifetimes longer than 4 weeks but without the boundary
information (only radius), only the center locations of the eddies
with the lifetimes longer than 4 weeks and with the radii greater
than 25 km in the STCC region on June 07, 2015 are plotted
in Figure 9 for the comparison of the results from the five
versions. The PSPNet algorithm detects the most oceanic eddies
(176 eddies) of the three versions, followed by 142 ones for the
AVISO+ version, 137 ones for the VG version, 128 ones for
the BiSeNet version and 125 ones for the DeepLabV3+. During
the 1 year period, 637 eddy tracks are totally obtained from the
AVISO product, all of which survive longer than 4 weeks. The
PSPNet algorithm detects 875 eddy tracks with lifetimes longer
than 4 weeks, while 844 tracks by the VG algorithm, 819 tracks
by the BiSeNet and 805 tracks by the DeepLabV3+. The number
of eddy tracks from the AVISO+ version is the smallest among
those from the five versions.

2https://www.aviso.altimetry.fr/en/data/products/value-added-products/global-
mesoscale-eddy-trajectory-product.html

Several eddy parameters are compared among these five
results in Table 1. The mean lifetimes of eddies identified by
the AI-based algorithms are all shorter than that from the
AVISO+ version but longer than that detected by the VG
algorithm. The eddies from the AVISO+ version, the PSPNet
version and the BiSeNet version survive for up to a year. The
mean amplitude (9.3 cm) and the mean radius (104.6 km) of
the eddies from the BiSeNet version are greater than those
from the other four versions, which suggests that the BiSeNet
has an advantage in large-scale eddy. And the maximum eddy
radii are all larger than 260 km, even close to 300 km, for
the five versions. The mean displacements of the eddies from
the AI-based versions and the VG version are both shorter
than that from the AVISO+ version. But the eddies from
the PSPNet version and the AVISO+ version moves up to
more than 3,000 km. Furthermore, the eddies from the three
versions propagate with the similar mean speed at 6.3 ∼7.8 km
day−1.

CONCLUSION

Compared to the traditional eddy detection method, deep
learning-based algorithms are novel. Three different AI-based
algorithms were applied to identify ocean eddies, including the
PSPNet, DeepLabV3+ and BiSeNet algorithms. SSHA data from
2011 to 2014 in the STCC region, labeled with eddy information
detected by the VG algorithm, are employed for training, and
SSHA data in 2015 used for validation. Eddies detected by the
three AI-based methods are compared with each other and
with the results from the traditional method. All three AI-
based algorithms extract more eddies than the traditional VG
algorithm. The PSPNet algorithm detects the highest number
of eddies. The BiSeNet algorithm performs better in large-scale
eddy identification than the other two AI-based algorithms,
because the Spatial Path is introduced into the algorithm to
avoid destroying the eddy edge information. The eddies identified
by the AI-based algorithms tend to survive longer than those
identified by the VG method. The lifetimes of the eddies extracted
by the DeepLabV3+ algorithm are the shortest among the results
from the AI-based methods.
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