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Chlorophyll (Chl) is widely taken as a proxy for phytoplankton biomass, despite well-

known variations in Chl:C:biomass ratios as an acclimative response to changing

environmental conditions. For the sake of simplicity and computational efficiency, many

large scale biogeochemical models ignore this flexibility, compromising their ability to

capture phytoplankton dynamics. Here we evaluate modelling approaches of differing

complexity for phytoplankton growth response: fixed stoichiometry, fixed stoichiometry

with photoacclimation, classical variable-composition with photoacclimation, and

Instantaneous Acclimation with optimal resource allocation. Model performance is

evaluated against biogeochemical observations from time-series sites BATS and ALOHA,

where phytoplankton composition varies substantially. We analyse the sensitivity of each

model variant to the affinity parameters for light and nutrient, respectively. Models with

fixed stoichiometry are more sensitive to parameter perturbations, but the inclusion of

photoacclimation in the fixed-stoichiometry model generally captures Chl observations

better than other variants when individually tuned for each site and when using similar

parameter sets for both sites. Compared to the fixed stoichiometry model including

photoacclimation, models with variable C:N ratio perform better in cross-validation

experiments using model-specific parameter sets tuned for the other site; i.e., they are

more portable. Compared to typical variable composition approaches, instantaneous

acclimation, which requires fewer state variables, generally yields better performance

but somewhat lower portability than the fully dynamic variant. Further assessments using

objective optimisation and more contrasting stations are suggested.

Keywords: droop quota, trade-off, instant acclimation, monod (Michaelis-Menten) model, phytoplankton

1. INTRODUCTION

Although phytoplankton largely drive the oceanic carbon cycle, including the export of carbon
(C) from the surface to depth, direct observations of their carbon biomass are rare. The most
widely observed metric of phytoplankton is chlorophyll (Chl), because of its distinctive optical
properties (Macintyre et al., 2000), but Chl:C:nutrient ratios vary widely in response to fluctuations
in ambient light, temperature, and nutrient levels (Geider and La Roche, 2002; Mongin et al.,
2006; Martiny et al., 2013; Jakobsen and Markager, 2016). Inaccurate estimates of phytoplankton
C biomass limit our ability to quantify C export, and therefore our understanding of how climate
change is affecting marine ecosystems (Polovina et al., 2008; Arteaga et al., 2016). Nonetheless,
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for the sake of computational efficiency and simplicity, many
large scale ocean biogechemical (OBGC) models use a simplistic
(Monod, 1949) type formulation for phytoplankton growth,
assuming constant composition, especially C:nutrient ratio (Le
Quere et al., 2005; Bopp et al., 2013; Totterdell, 2019). Various
approaches have been developed for modelling internal variable
phytoplankton composition, from relatively simple elemental
quotas (Droop, 1968), to resource allocation among a few
different physiological processes (Smith et al., 2011, 2016;
Pahlow and Oschlies, 2013), and more detailed macromolecular
allocation schemes (Inomura et al., 2020). In regions such as the
Mediterranean Sea or the North Atlantic, constant composition
models are able to capture the biogeochemical observations
(Faugeras et al., 2003; Ward et al., 2013), but lack of variable
composition hinders themodels’ ability to consistently reproduce
various biological as well as chemical observations in oligotrophic
regions (Steinberg et al., 2001; Mongin et al., 2006; Ayata et al.,
2013).

Compared to models assuming constant composition,
those accounting for acclimation processes (individual-level
physiologic response and associated variations in Chl:C:nutrient
ratios) better reproduce observations at oligotrophic time-
series sites (Schartau et al., 2001; Mongin et al., 2006; Ayata
et al., 2013). However, including flexible composition can be
computationally expensive; the dynamics of C and nutrients
bound to phytoplankton (i.e., internal stores) are typically
described using the Droop “quota” model (Caperon, 1968;
Droop, 1968), which requires a separate state variable for each
element or nutrient resolved (Ward, 2017; Chen and Smith,
2018b). Apart from computational cost, added complexity also
increases the number of uncertain parameters (Kwiatkowski
et al., 2014; Ward, 2017) and can make models less portable
(Friedrichs et al., 2007). Recently, a computationally efficient
“Instantaneous Acclimation” (IA) model was shown to capture
phytoplankton seasonality, including variable composition, at
two contrasting stations in a 0-D setup (Smith et al., 2016).
Further tests in a 0-D setup suggested that IA may be suitable for
application in large-scale OBGC models (Ward, 2017).

When applied in 3-D setups, particularly at the global scale
as with Earth system climate modelling, OBGC models pose the
formidable challenge of capturing a wide range of oceanic regions
with computational efficiency and minimal parameter tuning. To
assess the potential for improving the biogeochemical realism of
such 3-D models, here we evaluate different formulations for the
flexible composition and acclimative response of phytoplankton,
in terms of model performance in a spatially explicit 1-D setup,
which unlike the previous 0-D studies couples the physical
processes of advection and diffusion with the biogeochemical
dynamics. We apply the IA-based FlexPFT model (Smith et al.,
2016) and three controls: a Droop-quota model, which captures
variable composition by calculating phytoplankton C and
nitrogen (N) separately (and is therefore less computationally
efficient), a typical Monod-type fixed stoichiometry model, and
an intermediate Monod-type model with photoacclimation.

In order to fully evaluate how different aspects of acclimation
may affect growth response, each phytoplankton model is
incorporated into an otherwise identical Nutrient Phytoplankton

Detritus (NPD) model. We compare the performance of the four
model variants at two oligotrophic sites, where phytoplankton
composition is known to deviate from the average “Redfield
ratio” (Steinberg et al., 2001; Mongin et al., 2006; Ayata et al.,
2013) typically assumed in fixed stoichiometry models. Also,
zooplankton grazing rate and phytoplankton growth are tightly
coupled in these oligotrophic regions (Jackson, 1980; Gutiérrez-
Rodríguez et al., 2011; Jiang et al., 2021), and both vary
little over the seasonal cycle (Cáceres et al., 2013). Therefore,
a reasonable reproduction of the observations is possible
without explicitly representing zooplankton in the models, which
facilitates interpretation of our results concerning phytoplankton
physiology without the complications of considering various
grazing-related processes at the same time. The two sites differ in
physical conditions; ALOHA (A Long term Oligotrophic Habitat
Assessment, 22.75oN, 158oW), with permanent stratification
(Kavanaugh et al., 2018) and BATS (Bermuda Atlantic Time
Series, 31.67oN, 64.167oW) with its seasonal cycle of deep
mixing (Dave and Lozier, 2010). Apart from model formulation,
parameter values in OBGC models can strongly affect model
performance (Ward et al., 2010). To assess the response of
model skill to parameter perturbations, we explore each model’s
response to variations of the two parameters that are most
relevant to the key differences in models, photosynthesis and
nutrient uptake, respectively. Previous studies have clarified how
model complexity, in terms of the number of compartments
(Friedrichs et al., 2007) and parameters (Ward et al., 2013),
affects the applicability of models for different oceanographic
sites. However, little is known about how the complexity
of formulations for phytoplankton growth may affect the
suitability of models for different oceanic environments. Finally,
we perform cross-validation experiments to test each model’s
portability (i.e., the robustness of its response) between these two
challenging sites.

Our goal is to evaluate and compare how different
formulations affect model results and how adding
phytoplankton variable composition may improve simulations of
biogoechemical variables, in particular Chl, dissolved inorganic
nitrogen (DIN), and primary production (PP). Specifically, we
assess how light-harvesting pigments (FS vs. FSPA), variable
C:N ratio (FSPA vs. DQ), or physiological acclimation (IA vs.
DQ) may enhance model performance, as well as the sensitivity
of different phytoplankton growth formulations to parameter
perturbations, and how these affect portability.

2. MATERIALS AND METHODS

The IA model is based on the assumption that the physiological
allocation factors, and thereby the cellular nutrient and
chlorophyll contents (expressed as N:C and Chl:C ratio,
respectively) are instantly optimised to achieve maximal net
growth rate (Smith et al., 2016). We compare the IA model
with the Monod-type Fixed Stoichiometry (hereafter FS) variant,
where phytoplankton growth rate is limited by the ambient
resource levels based on a prescribed set of parameters that
describe a frozen acclimation state and the “Dynamic-Quota”
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(hereafter DQ) variant, which assumes that growth rate depends
on the non-optimal but variable internal cellular stores of
nutrients, similar to a classical Droop-quota model, and optimal
pigment density in the chloroplast. In addition to the two well-
known phytoplankton growth models, we consider a “Fixed
Stoichiometry with Photoacclimation” (FSPA), which includes
photoacclimation but not variable internal N:C ratio. This
formulation is included in order to isolate and understand the
effects of photoacclimation alone on model performance.

All model variants are run within the Nutrient flexible
Phytoplankton Detritus (NFlexPD) model (Kerimoglu et al.,
2021), written in the Framework for Aquatic Biogeochemical
Models (FABM, Bruggeman and Bolding, 2014). This
allows switching between different formulations to describe
phytoplankton growth and uptake within a common modelling
framework. Therefore, despite the different assumptions, the
model variants follow a similar set of differential equations for
the dynamics of the state variables: dissolved inorganic nitrogen
(DIN), C and N bound to phytoplankton (PhyC and PhyN),
Detritus (DetC and DetN), Dissolved Organic Nitrogen (DON),
and Dissolved Organic Carbon (DOC). Although the NFlexPD
model allows multiple phytoplankton types and different
nutrients, in this study we consider one phytoplankton type and
one limiting nutrient (nitrogen) to avoid over-complication and
facilitate the interpretation of results. The model framework is
illustrated in Figure 1 and the differential equation set describing
the fluxes between each pool can be found in Kerimoglu et al.
(2021). In the next subsection, we provide the description of
phytoplankton growth formulations for each model variant.

2.1. Model Variants
The four model variants follow a common formulation to
describe phytoplankton net growth rate (µ):

µ = µg − RChl − RN (1)

Where µg, RChl and RN are the cellular gross growth rate, the
costs associated with chlorophyll maintenance and synthesis, and
cost for nutrient uptake, respectively. Since C-fixation, which
determines phytoplankton growth, occurs in the chloroplast, the
gross growth rate µ̂g and the fractional allocation of resources to
the chloroplast, fC (see below), determine µg:

µg = µ̂g · fC (2)

The gross growth rate depends on the fractional day length, LD,
the potential maximum growth rate, µ̂0, and the light limited
growth within the photosynthetic apparatus, LI:

µ̂g = LDµ̂0LI (3)

LI is a saturating function of daytime average irradiance Ī, the
chlorophyll density in the chloroplast θ̂ , and the light affinity α:

LI = 1− exp

(

−αθ̂ Ī

µ̂0

)

(4)

The cost of maintaining and synthesising chlorophyll, RChl
is calculated by scaling the chloroplast-specific cost with the
fractional allocation of resources to the chloroplast, fC, which
determines the growth rate. Hence, similar to µg (Equation 2):

RChl = R̂Chl · fC (5)

The next subsection describes how specific physiological
processes that contribute to phytoplankton growth are modelled
across different model variants. All equations described herein
are also described in Kerimoglu et al. (2021) and Smith et al.
(2016).

2.1.1. Instant Acclimation (IA)
Phytoplankton are able to sustain high growth rates despite low
nutrient concentration, by varying their elemental composition
to produce cells that contain less of the nutrients that are in short
supply. Both the IA andDQ represent this flexibility. The classical
way to represent this flexibility is via the Droop (1968) quota
model, where gross growth rate is calculated as a function of the
nutrient quota, Q:

µg = µ∞

(

1−
Q0

Q

)

(6)

where µ∞, and Q0 are the growth rate at infinite cell quota,
and the subsistence cell quota at which growth becomes zero,
respectively. Based on the study by Pahlow and Oschlies (2013),
assuming a fixed amount of cellular nitrogen, N, is bound in the
structural material (Qs), a fraction of cellular N in excess of Qs

is allocated for nutrient uptake, as represented by fV, and the
remainder is assumed to be allocated to chloroplasts for growth
(see Equation 2), as represented by fC:

fC = 1−
2Qs

Q
− fV (7)

In turn, the quota–dependent “nutrient limitation” term in
brackets in Equation (6), is replaced by fC in our approach, as
described by Equation (2).

Increasing fV therefore decreases the gross growth rate
(Equation 2), while increasing the rate of cellular nutrient uptake,
V :

V = fVV̂ (8)

where V̂ is the protoplast specific nutrient uptake. The cost
associated with nutrient uptake RN (Equation 1), is the product
of the prescribed cost of N uptake, ζN and V itself:

RN = ζN · V (9)

Following Pahlow et al. (2013) the optimal cell quota, Q0 can be
calculated as:

Q0 = Qs






1+

√

√

√

√
1+

1

Qs

(

µ̂net

V̂
+ ζN

)






(10)

Frontiers in Marine Science | www.frontiersin.org 3 July 2021 | Volume 8 | Article 675428

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Anugerahanti et al. Models With Phytoplankton Variable Composition

FIGURE 1 | Schematic diagram of the FABM-NflexPD model. The Abiotic components (dissolved organic material (DOM), dissolved inorganic material (DIM), and

detritus (Det) are calculated within the abiotic module (shown in the left hand side). The phytoplankton module, which simulates the dynamics of PhyC and PhyN,

contains the four model variants: Dynamic Quota (DQ in Kerimoglu et al., 2021 this compartment is the Dynamic Acclimation variant, DA), Instant Acclimation (IA),

Fixed Stoichiometry with Photoacclimation (FSPA), and Fixed stouchiometry (FS). Solid and dashed circles are the state and diagnostic variables, respectively.

Symbols are defined in Tables 1, 2. Prescribed parameters in the DQ, FSPA, and FS variants are shown in solid squares. Black arrows indicate which

parameters/variables affect the diagnostic and state variables (Kerimoglu et al., 2021).

Thus, the optimal Q0 depends on the ratio of light- to nutrient-

limitation ( µ̂net

V̂
). By balancing growth and uptake, µQ = V , via

the balanced growth equation (Burmaster, 1979), it is possible to
calculate the optimal fV, f

0
V (Pahlow and Oschlies, 2013):

f 0V =

(

Qs

Q

)

− ζN(Q− Qs) (11)

where ζN is the cost of assimilating DIN [mol C (mol N-1)].
Thus, fV increases with decreasing cellular N quota, Q; i.e., more
nutrient limited cells allocate more resources towards nutrient
uptake, V̂ . This process rate depends on maximum uptake rate
V̂max and nutrient affinity Â:

V̂ =
V̂max · Â · DIN

V̂max + Â · DIN
(12)

The second fractional resource allocation is towards nutrient
affinity, fA. Increasing fA increases nutrient affinity at the expense
of decreasing maximum uptake rate:

Â = fAÂ0 (13)

V̂max = (1− fA)V̂0 (14)

Where Â0 and V̂0 are the potential maximum affinity and
nutrient uptake rate, respectively. Substituting these assumptions
to Equation (12),

V̂ =
(1− fA)V̂0 · fAÂ0 · DIN

(1− fA)V̂0 + fAÂ0 · DIN
(15)

The optimum fA maximises V̂ , therefore fA can be dynamically
calculated:

dV̂

dfA
= 0 → fA =



1+

√

Â0 · DIN

V̂0





−1

(16)

Apart from changing the Nutrient:C composition to optimise
their growth, phytoplankton are also able to adjust their Chl:C
ratio, i.e., photoacclimate under changing light conditions. The
Chl:C ratio within the chloroplast increases under low light to
enhance light-harvesting efficiency, and decreases under high
light to free up resources for other uses. In the IA and DQmodel,
this process is based on the rate of the net carbon fixation rate
within the chloroplast (Pahlow et al., 2013):

µ̂net = µ̂g − R̂Chl (17)

R̂Chl = (µ̂g + RChlM )ζChlθ̂ (18)

Where R̂Chl is the cost of light harvesting within the chloroplast,
RChlM is the cost of maintaining chlorophyll and ζChl is the cost of
chlorophyll synthesis.

From Equation (18), reducing θ̂ will also reduce the cost of
light harvesting, but will increase the light limitation, as described

in Equation (3). In the IA model, θ̂ adjusted instantaneously to
maximise the µ̂net (Pahlow et al., 2013):

θ̂ =











1

ζChl
+

µ̂0

αĪ

(

1−W0

[(

1+
RChlM

LDµ̂0

)

exp

(

1+
αĪ

µ̂0ζChl

)

])

, Ī > ĪC

0, Ī ≤ ĪC

(19)
where, W0 is the 0-branch of the Lambert-W function and ĪC is
the critical daytime average irradiance level, below which it is not
worthwhile to synthesise chlorophyll (Pahlow et al., 2013):

ĪC =
ζChlR

Chl
M

αLD
(20)

The cellular Chl:C ratio is obtained by multiplying θ̂ by the
allocation of resources towards chloroplast, fC :

θ = θ̂ · fC (21)
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2.1.2. Dynamic Quota (DQ)
The DQ variant like the IA model, resolves photoacclimation
(Equations 17–21). However, in order to make the rest of the
model resemble a typical Droop model, physiological allocation
factors, fV and fA in Equations (7, 15), respectively, are not
optimised as in the IA model, but prescribed, as the biomass-
weighted spatio-temporal averages of their values estimated by
the IA variant.

With the assumption of fixed fV, nutrient uptake rate for the
whole cell can become unrealistically high, as DIN and hence
PhyN increase, yielding unrealistically highQ. Therefore, a down-
regulation term is required to limit Q values. Following earlier
examples (e.g., Morel, 1987; Grover, 1991) this is described as a
liner function of the difference between a maximum prescribed
quota, Qmax and the actual Q, relative to the effective capacity,
given by the difference between the Qmax and subsistence quota,
Qs :

fQ =
Qmax − Q

Qmax − Qs
(22)

The nutrient uptake rate, V in Equation (8) then becomes:

V = fVV̂fQ (23)

which also affects the respiratory cost of nutrient uptake, RN
(Equation 9):

RN = ζNfVV̂fQ (24)

Another important difference from the IA model is that the DQ
variant tracks both N and C bound to phytoplankton (i.e., PhyC,
PhyN) explicitly, similar to the “DA” variant in Kerimoglu et al.
(2021), therefore Q becomes:

Q =
PhyN

PhyC
(25)

In the classical Droop approach, increasing Q to high levels
yields diminishing returns in terms of growth. The DQ variant
herein, with constant allocation factors as prescribed, retains the
typical saturating relationship between growth rate and Q from
the Droop equation, albeit somewhat flatter, as discussed in detail
in the Supplementary Material. In the DQmodel,Q is calculated
simply as the ratio of PhyN to PhyN.

Kerimoglu et al. (2021) have demonstrated that the IA
approach employed in a 1D setup yields results almost identical
to an otherwise identical model that explicitly resolves the
dynamics of C and N biomass (their “DA” variant). Therefore,
the most important difference between our IA variant and this
DQ control is that the nutrient vs. carbon uptake and nutrient
affinity vs. maximum nutrient uptake rate are optimised only in
the former.

2.1.3. Fixed Stoichiometry (FS)
The FS variant resembles the typical phytoplankton growth
model based on fixed Chl:C:N as commonly used in global
OBGC models (i.e., models in Le Quere et al., 2005; Laufkotter
et al., 2015; Totterdell, 2019), and is the same as described by

Kerimoglu et al. (2021). It describes nutrient limitation with
a rectangular hyperbolic nutrient uptake function of ambient
nutrient concentration (Monod, 1949):

µg = µ̂g ·
DIN

KN + DIN
(26)

Following Button (1978) and Smith et al. (2009), the half
saturation value KN can be diagnosed from the solution of the IA
variant, as a function of V̂max (Equation 14) and Â (Equation 13):

KN =
V̂max

Â
=

(1− fA)V̂0

fAÂ0

(27)

Based on this identity, KN is calculated from the spatio-temporal
biomass-weighted average of fA, and the prescribed values of
parameters V̂0 and Â0 used in the IA variant.

The light limitation is described by the same saturation
function used in the other variants (Equation 4), but based on
prescribed chlorophyll density, θ̂ , based on the IA run, making θ

constant, as illustrated in Figure 1. In order to ensure consistency
with the IA model, θ is calculated in its expanded form, based
on the resource allocation towards growth (fC) described in
Equation (7):

θFS =

(

1−
2Qs

Qfixed
− fV

)

· θ̂ (28)

Throughout each simulation, the terms Qfixed and fV are set
to constant values, which are their respective biomass-weighted
means from the IA variant. The cellular nutrient uptake rate,
V , is calculated based on the balanced growth equation (i.e.,
V = µ · Qfixed) as in the IA variant.

2.1.4. Fixed Stoichiometry With Photoacclimation

(FSPA)
This variant is formulated to isolate the effect of
photoacclimation on model performance and response in
the oligotrophic ocean. As in the FS variant, nutrient limitation
is calculated using the rectangular hyperbolic function and
directly determines the phytoplankton growth. However, the
Chl:C ratio within the chloroplast, θ̂ adjusts instantaneously
via Equation (19), just as in the IA variant. Thus, similar to the
FS variant, this variant uses constant values of Qfixed and fV to
calculate the resource allocated to phytoplankton growth and
hence the cellular Chl:C ratio, θ , but with time-varying θ̂ . The
nutrient limitation and gross growth rate are calculated based on
Equation (26) and its half saturation constant is approximated
from the IA variant as for the FS model (Equation 27).

2.2. Simulations and Model Metrics
We simulate two oligotrophic stations with extensive time-series
observations: ALOHA and BATS. In order to simulate realistic
conditions with a 1-D setup, the FABM-NflexPD is coupled to
the General Ocean Turbulence Model (GOTM, Burchard et al.,
2006). FABM acts as an interface between the biogeochemical and
hydrodynamic models, which allows switching between different
model formulations (i.e., versions). The hydrodynamic model
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solves the advection-diffusion-reaction equations, provides
physical variables, such as Ī, to the biogeochemical model, and
handles the model input and output. Meanwhile, FABM provides
the rate of sinking/floating of biogeochemical state variables,
which are solved as residual vertical advection (Bruggeman
and Bolding, 2014). For the vertical advection scheme we use
the third-order TVD with ULTIMATE QUICKEST limiter, and
the Runge-Kutta method for the time integration scheme with
no flux boundary condition. FABM also provides feedback
to physics, such as the light absorption, which is applied in
this study.

As the initial conditions for the hydrodynamical model, we
use in situ temperature and salinity profiles (obtained from
https://hahana.soest.hawaii.edu/hot/hot-dogs/cextraction.html
and batsftp.bios.edu/BATS/bottle/ for ALOHA and BATS,
respectively). Meteorological forcing, from the European Centre
for Medium-Range Weather Forecasts (ECMWF), ERA-5 hourly
reanalysis, with horizontal resolution of 0.25o×0.25o (https://
cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
single-levels?tab=overview), include: wind speed, air pressure,
air temperature, humidity, cloud cover, shortwave radiation,
and precipitation, each calculated using the Fairall et al. (1996)
method. The model domain, split into 100 levels with surface
zooming, extends to 500 m for ALOHA and 450 m for BATS,
where some temperature and salinity profiles are limited to 450
m. To describe the background turbidity, we assume Jerlov type
IA for ALOHA, based on field measurements in the North Pacific
(Paulson and Simpson, 1977), and Jerlov type I for the very clear
water at BATS (Kullenberg, 1984).

All model variants are run for 8 years, from 1st January 2008
to 31st December 2016. The first 3 years, as spinup period,
are forced using repeating climatology, i.e., mean hourly and
daily values for the meteorology, and the monthly means of
observed temperature and salinity from 1st January 2008 to
31st December 2016. For the rest of the year, none of the
forcings are nudged towards the observation (analytical method
in GOTM= 1). The last 5 years ofmodel output is compared with
observations of Chl from HPLC, DIN (Nitrate + Nitrite), and PP,
which are the most widely observed variables that are commonly
compared to model outputs (Mongin et al., 2006; Kwiatkowski
et al., 2014; Chen and Smith, 2018a). Of the widely available
observables, these three are also the most directly related to the
biogeochemical impacts of variable phytoplankton composition.
These observations can be obtained from http://batsftp.bios.edu/
BATS/bottle/ and https://hahana.soest.hawaii.edu/hot/hot-dogs/
bextraction.html, for BATS and ALOHA, respectively. Observed
Chl, DIN, and PP are used to tune the model variants.

In order to thoroughly assess how well each model variant
captures the observations, and its portability (i.e., applicability to
different sites without re-tuning parameter values), we perform
three experiments: (i) the reference simulations of each station
with individually tuned parameter sets (model runs labelled IA,
FS, FSPA, and DQ); (ii) cross-validation, where phytoplankton-
related parameters tuned for station ALOHA are applied at
station BATS and vice versa, (model runs labelled IA-X, FS-
X, FSPA-X and DQ-X); and (iii) simultaneous runs using a
common parameter set for phytoplankton-related processes at

both stations, (labelled IA-S, FS-S, FSPA-S, and DQ-S). For
experiments (ii) and (iii) initial conditions and some abiotic
parameters, such as sinking speed and detrital degradation rate,
are kept the same as experiment (i) for each station. The choice
of parameters for these three experiements are described in
section 2.3.We quantifymodel performance in terms of statistical
metrics (i.e., correlation, bias, and RMSE) and a weighted cost
function for overall mismatch between models and observations.

The cost function is computed as the weighted average of the
squared difference between observed and simulated values, using
the sample standard deviation of all observations of typem, σ̂m, to
appropriately weight the contribution of each model-data misfit,
as in previous studies (e.g., Friedrichs et al., 2006; Hemmings
and Challenor, 2012; Kaufman et al., 2018). However, because the
variables that we compared tend to be distributed log normally,
especially at depths where their concentration are high, we use a
square-root transformation to calculate the model data difference
(Dadou et al., 2004; Hemmings and Challenor, 2012). Thus, the
total cost function becomes:

Jm =
Cm

Nm

Nm
∑

j=1

1

σ̂m

(

√

ajm −

√

âjm

)2

(29a)

J =
1

M

M
∑

m=1

Jm (29b)

Where M is the number of variable types (M= 3; Chl, DIN,
and PP), Nm is the number of observations of type m, and
ajm and âjm are the modelled and observed values, respectively.
The term Cm in Equation (29) is included to enhance the
weight of DIN compared to the cumulative weight of the other
two phytoplankton-related variables that we evaluate, by setting
Cm = 1 for Chl and PP, and Cm = 2 for DIN. All variables
are evaluated at their observed time and depth. We quantify
model portability in terms of the portability index (PI, Friedrichs
et al., 2007) which is the ratio of total costs (Equation 29b)
from simultaneous experiment (Js) and the cross-validation (Jx)
experiment:

PI = Js/Jx (30)

PI values approaching unity indicate increasing portability.

2.3. Parameter Fitting
As explained in the introduction, this study explores how
phytoplankton growth formulation affects model performance.
Based on initial model runs, we adjust three parameters
separately for each stations: µ̂0, kdet, and kDON. We choose
a slightly lower value for µ̂0 at station ALOHA, since Chl
concentration at ALOHA is lower than BATS (Saba et al.,
2010) and this yield better results in terms of statistical metrics
compared to using the same µ̂0. A higher kdet and lower kDON
are also applied in this station to prevent the depletion of DIN
near the surface during the simulations. Mortality, Mp, and the
fraction thereof that becomes detritus, Mpart, as well as other
abiotic parameters are kept constant for all model variants at both
stations. These parameters are described on Table 1.
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TABLE 1 | Common parameter values for simulations of stations ALOHA and BATS for all model variants.

Parameter BATS ALOHA

Symbol Definition Units

Phytoplankton

kcp Specific light extiction m2 mmol N−1 0.03

wphy Vertical velocity m d−1 0

R̂chl Loss rate of chlorophyll d−1 0.08

µ̂0 Maximum potential growth rate d−1 3.8 3.7

V̂0 Maximum potential nutrient uptake rate molN molC−1d−1 1.2

ζN C-cost of N-uptake molC molN−1 0.4

ζChl C-cost of Chl-synthesis molC gChl−1 1.0

Mp Quadratic mortality rate m3 molN−1 d−1 2.0

Mpart Part of mortality that goes to detritus 0.5

Abiotic

wdet Sinking of detritus m d−1 –2.5

kc Specific light extinction m2 mmol−1 0.03

kdet Degradation rate of Detritus d−1 0.03 0.045

kdon Remineralisation rate of DON d−1 0.03 0.02

PAR0dt0 Daily average par at the surface on the first time step 4.5

kcdt0 Attenuation coefficient on the first time step 0.02

Initial conditions

PhyN Phytoplankton N biomass mmol m−3 0.7 0.5

DIN Dissolved inorganic nitrogen mmol m−3 0.7 0.5

DON Dissolved organic nitrogen mmol m−3 0.7 0.5

DOC Dissolved organic carbon mmol m−3 0.7 0.5

detN Detritus N mmol m−3 0.7 0.5

detC Detritus C mmol m−3 0.7 0.5

Initial conditions for phytoplankton carbon biomass for the DQ variants are 0.46 and 0.33 for stations BATS and ALOHA, respectively, following the Redfield ratio. The parameter values

are taken from Pahlow et al. (2013), Smith et al. (2016), and Robson et al. (2018), apart from wdet (Yool et al., 2013). Mortality rates are higher than literature values to account implicitly

for predation.

In order to ensure a fair comparison, we systematically
tune the two parameters, separately for each variant, that most
directly affect phytoplankton growth, αI and Â0, respectively
such that each model variant attains its best performance at each
station. This is achieved through an analysis of the response
surface of model skill for each variant, respectively. This analysis
also reveals how perturbing the parameters affects the model
performance, in terms of simulating the biogeochemical variables
(Chl, DIN, and PP), as well as the overall model-data agreement,
as quantified by the cost, for each station. The parameter ranges
were made as wide as practically possible, up to the limits for
which solutions can be obtained. Thus, the parameter values
explored for αI space, are 2.0, 2.5, 3.0, 3.5, 4.0, 4.2, and Â0 space
are 0.07, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, and 1.3, resulting in 48 model
simulations per variant per site. The combination of parameter
values giving the lowest overall cost for each station is used in the
reference simulation and cross validation experiments (running
the model at BATS using the parameter set that has the lowest
cost for ALOHA, and vice versa). The combination which give
the lowest total cost for both stations (JBATS + JALOHA) is used
for the simultaneous experiment (see section 2.2). The chosen
parameters for these experiments are summarised on Table 2. To

better understand the effect of parameter variations, we plotted
the landscapes of component costs (for each observable) and the
overall cost obtained over the range of parameter values.

To summarise, we perform three experiments: individual
tuning, cross validation, and simultaneous using four different
model variants, IA, FS, FSPA, and DQmodels. Short descriptions
of these experiments can be found on Table 3.

3. RESULTS

3.1. Model Skill Response Surfaces
Previous studies have shown that optimising fewer than 10
parameters tends to yield better predictive skill for models
(Friedrichs et al., 2006; Ward et al., 2013). In this study,
we choose to vary the two most important parameters that
determine the overall phytoplankton growth response under
oligotrophic conditions: the light and nutrient affinities, Â0

and αI, respectively. Apart from identifying the most suitable
parameter combinations to be applied at different stations
for each model variant, exploring this parameter space allows
us to investigate how different phytoplankton acclimation
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TABLE 2 | Parameterst values tuned based on stations and model variants.

Parameter BATS ALOHA Simultaneous

Symbol Definition Unit IA FS FSPA DQ IA FS FSPA DQ IA FS FSPA DQ

αI Initial slope of the m2 E−1 2.5 4.2 3.5 3.5 4.2 4.2 4.2 4.2 4 4.2 4.2 4.2

photosynthesis irradiance molC gChl−1

Â0 Maximum nutrient m3 mmolC−1 1.3 1.3 1.3 0.3 0.3 1.3 1.3 0.3 0.3 1.3 1.1 0.3

curve

fA Allocation towards N affinity 0.715 0.711 0.783 0.857 0.857 0.877 0.7855 0.7913 0.83117

fV Allocation towards N uptake 0.261 0.257 0.279 0.348 0.348 0.358 0.30435 0.30598 0.3204

θ̂ Chl:C ratio in the chloroplast gChl molC−1 0.206 0.209 0.2073

Qfixed N:C ratio in the cell 0.0724 0.0735 0.046 0.0463 0.059365 0.058795

The values for αI and Â0 are chosen to give the lowest overall cost during the parameter exploration experiment (see text). Other parameters are taken from Pahlow et al. (2013), Smith

et al. (2016), and Robson et al. (2018). Parameter ζChl is set to a common vallue of 1, because this allowed solutions to be obtained with all photo-acclimating variants.

TABLE 3 | Summary of experiments perform in this study.

Tuning strategy Description Label

Individual tuning Running four model variants using parameter sets that produce the lowest IA, DQ

cost during parameter sensitivity analysis (varying parameters that directly FS, FSPA

affect phytoplankto growth, see section 2.3) and evaluate their perfromances

using cost function and statistical metrics

Cross validation Running four model variants using the parameter set that produces the IA-X, DQ-X,

lowest cost at station ALOHA and vice versa and use statistical metrics to FS-X, FSPA-X

assess their performance.

Simultaneous Running four model variants using parameter set that produce the lowest IA-S, DQ-S

overall cost at both stationa during parameter sensitivity analysis and evaluate FS-S, FSPA-S

their performance using cost function and statistical metrics. Together with

cross validation, we use the cost from this experiment to calculate PI (see

section 2.2 and Equation 30)

formulations respond to parameter perturbations. Model skill
response surfaces (Figure 2) suggest two distinct regions: where
all model variants show relatively low costs (Â0 > 5.0 and αI

> 2.5), and where the cost increases steeply, especially at low
Â0. Variants lacking variable Q especially suffer in this cost
region. Despite the FSPA variant allowing photoacclimation, the
cost associated with low Â0 and low αI is similar to that in
FS model. However, adding photoacclimation lowers the cost
associated with perturbing αI, especially in the “low” cost region,
to values even lower than for the variants that include bothQ and
photoacclimation (Figures 2A,C,D). Variants with variable N:C
and Chl:C have flatter overall cost landscapes; when combining
low Â0 and low αI, the costs for both IA and DQ models are
further reduced when Â0 = 0.3 and αI < 4.0, although cost still
increases for low αI and Â0 > 0.5.

The most striking difference between the fixed stoichiometry
and variable Q groups are the shapes of their cost landscapes
for both non-phytoplankton (DIN) and phytoplankton-related
variables (Chl and PP, Figure 3). In terms of DIN, when Â0 < 0.7,
models with fixed stoichiometry show a dramatic increase in DIN
cost, and for the variants that include variable Q, cost increases
for Â0 < 0.5. For Chl, these variants show an opposite pattern

compared to DIN, where cost decreases with decreasing Â0,
with the DQ model producing higher cost and steeper landscape
compared to the IA model (Figures 3E,H). Conversely, the fixed
stoichiometry variants produce similar patterns for Chl and DIN
costs, with a sharp increase in cost for Â0 < 0.1, especially in the
FS variant (Figure 3F). Inclusion of photoacclimation in the FS
model reduces the Chl and PP costs, especially in the lower cost
region (Â0 > 0.5, and αI > 2,5, Figure 3G), or when both Â0 and
αI are low. For most of the model variants, the cost landsapes
are similar for PP and Chl. However, compared to Chl, the PP
cost increases less steeply with decreasing αI in the DQ model
(Figure 3L), while the IA model shows a slight increase in PP
cost with increasing αI (Figure 3I). The FS and FSPA models
show similar tendency in terms of the cost landscape, although
the latter produces slightly lower cost. The FS and FSPA variants
also show shallow declines in PP cost with decreasing Â0, but
sharp increases for Â0 > 0.1. For these variants, with nutrient
affinity near the low end of its range (Â0 = 0.07), PP cost declines
sharply with increasing αI .

In summary, for the overall cost, all variants follow a similar
pattern, but with less steep increases in cost as either αI and
Â0 decreases in variable Q models (IA and DQ). The variable Q
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FIGURE 2 | Mesh plots of overall cost, combined for both stations for the four model variants: IA, FS, FSPA, and DQ (A–D) as a function of the nutrient affinity (Â0)

and light affinity (αI, Chl specific slope of the PI curve) parameters.

FIGURE 3 | Mesh plots of the component costs for each observable, combined for both stations, by row: DIN (A–D), Chl (E–H), and PP (I–L) as a function of the

nutrient affinity (Â0) and light affinity (αI, Chl specific slope of the PI curve) parameters. Costs for model variants by column: IA (A,E,J), FS (B,F,J), FSPA (C,G,K), and

DQ (D,H,L), respectively.

models also generally produce flatter cost surfaces, both for the
overall cost and its components, compared to only accounting
for photoacclimation. Nevertheless, photoacclimation alone
generally improves both overall and variable-specific costs.

3.2. Performance of the Three Variants
In oligotrophic regions, summertime nutrient concentrations are
typically < 0.01 mmol m−3 within the euphotic zone (Steinberg
et al., 2001; Anderson and Pondaven, 2003; Dave and Lozier,
2010), with vertical stratification that is destroyed by deep
mixing during winter and spring (Dave and Lozier, 2010). All
model variants capture these characteristics well, as seen in the

DIN distributions (Figures 4F–I, 4U-X, 5I-P, 6C,D). At station
BATS, winter mixing typically increases DIN from ∼ 0.05 to
0.5 mmol m−3 (Figure 4J), as captured by all model variants,
but exaggerated by the IA and DQ (Figures 4F,I). At BATS all
variants overestimate the average winter time DIN within the
upper 50m (Figure 6C), but the IA underestimates the DIN
concentration in the summer. All variants also overestimate
the winter DIN concentration at ALOHA in the upper 50 m,
but capture the summer-autumn concentrations (Figure 6D).
However, at 75–125 m between summer and autumn the four
variants are more similar, with the DQ variant producing slightly
higher DIN than other variants, especially during summertime
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FIGURE 4 | Contour plots of observables by row: Chl, DIN, and PP, at stations BATS (upper panels, A–O) and ALOHA (lower panels, P–D1) from 1st of January 2011

to 31st December 2015, for each of the model variants, by column, and the in-situ time-series observations (right-most column).

(Figures 5M–P, 6G,H). Although all model variants realistically
capture DIN concentration and seasonality in the upper 50 m
(Figures 4U–Y), none captures the sporadic spikes of DIN that
occur at both stations (Figures 6G,H).

Similar to DIN, Chl in the oligotrophic region is typically
scarce in the euphotic zone due to nutrient limitation. Between
50 and 200 m depth, where nutrients are more abundant,
subsurface Chl maxima (SCM) occur during summer (Dave and
Lozier, 2010; Mignot et al., 2014). All variants capture these
characteristics qualitatively well, both seasonally and vertically
at BATS (Figures 4A–E). However, at ALOHA the FS variant
is unable to simulate low Chl in the upper 100 m, nor distinct
summertime SCM profiles (Figures 4Q, 5R) as shown in the
observation (Figure 4T) and other variants which allow variable
cell quota (Figures 4P,S). The inclusion of photoacclimation, in
the FSPA model, results in better simulation of Chl profile, with
low concentration in the upper 100 m and summertime SCM
profiles (Figures 4C,R), despite simulating slightly deeper and
lower concentration of DCM at BATS and ALOHA, respectively,
compared to IA and DQ, (Figure 5C). All model variants
capture typical Chl concentrations and seasonality for the SCMs
that usually occur between 75 and 125 m at both stations
(Figures 5A–D, 6E). However, when averaged vertically, the
IA variant tends to overestimate Chl concentrations compared
to other variants (Figures 5A, 6E). This result differs from

Ayata et al. (2013), where all models underestimated SCM
concentrations, except during blooms. Although the IA and
DQ variants are qualitatively similar at BATS, generally the
latter simulates slightly lower Chl and shallower SCMs at both
stations, compared to the IA variant (Figures 4A,D). Comparing
all model variants, from 75 to 125 m, the FS variant produces
the lowest Chl because it lacks flexible quota, but the FSPA
variant produces a similar range of averaged Chl concentration
as IA and DQ, more similar to the former during summertime
(Figures 6E,F). Despite capturing the DIN concentration in the
upper 50 m, neither the DQ nor IA variant captures Chl from
summer to winter at ALOHA (Figures 6B,D). The FS and FSPA
perform somewhat better in this regard, but still overestimate
summertime Chl at BATS (Figures 6A,B).

Unlike Chl and DIN, PP distributions in oligotrophic regions
are usually skewed towards the surface and limited to the upper
∼120 m (Dave and Lozier, 2010). All variants capture the
PP depth and its decline during summer at BATS, but with
higher PP and later peaks than observed (Figures 4K–N, 6I).
Compared to the observations and other variants, the FS variant
produces briefer spikes of higher PP (>20 mgC m−3 day−1).
The inclusion of photoacclimation prolonged the spikes of PP
and deepened its summertime distribution to depths deeper
than the IA and DQ models (Figures 4M,B1). When averaged
horizontally, the variants with variable Q generally capture well
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FIGURE 5 | Vertically averaged values of modelled (blue) and observed (red) Chl, DIN, and PP from 1st January 2011 to 31st December 2015. The error bars

represent the standard deviation of the biogeochemical variables. Profiles for station BATS are shown in (A–D,I–L,Q–T), for Chl, DIN, and PP respectively. For station

ALOHA, profiles are shown in (E–H,M–P,U–X), for Chl, DIN, and PP respectively.

observed PP (Figures 5Q,T,U,X) especially at BATS, but the FS
and FSPA underestimates PP in the top 50 m, particularly during
summer. The IA and DQ variants simulate a slight increase in
PP at ∼50 m, slightly deeper than its observed depth of ∼60
m (Figures 5Q,T). Unlike BATS, PP at ALOHA peaks in the
summer, and declines in spring (Dave and Lozier, 2010), with the
highest rate recorded in the upper 50 m, decreasing with depth
(Figures 5U–X). None of the variants completely capture these
patterns, especially the FS and FSPA variants which consistently
underestimate PP in the upper 50 m (Figures 6J, 5V,W), but the
IA and DQ do capture winter and spring PP rates at ALOHA.
The DQ variant produces generally the highest PP, which may

be because it produces the highest C:N ratio (lowest Q) within
the top 100 m and therefore agrees best with the observations at
ALOHA (Figure 6J).

The Taylor and target diagrams (Jolliff et al., 2009) shown in
Figures 7, 8 and cost values (Jm, J) listed in Table 4 summarise
the skills of model variants for all experiments. In general,
the models perform similarly for DIN, but differ more for
Chl and PP. At BATS, the statistical metrics from the latter
two show some disparity in terms of standard deviations
(Figures 8B,C), which are also reflected by their RMSDs in
the target diagrams (Figures 8E,F). At the more stable station
ALOHA, the statistical metrics differ more among the model
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FIGURE 6 | Depth averaged [upper 50 m (A–D), and between 75 and 125 m (E–H)] Chl, DIN, and PP for the period of 1st January 2011 to 31st December 2015, for

the IA (blue), FS (orange), FSPA (green), and DQ (brown) model variants respectively. Solid lines: individually tuned runs; dash-dot lines: cross-validation experiments;

red stars: monthly averaged in situ DIN, Chl, and PP measurements. The upper 50 m is most consistently stratified, and the nutricline and SCM usually occur from 75

to 125 m. PP was averaged over the upper 100 m, where PP is > 3 mgCm−3 day−1, shown in (I,J).

variants.As seen from Table 4, the FSPA variant produces
the lowest overall (Figure 2B), Chl (Figure 3B), and DIN
(Figure 3F) costs for the individually tuned runs, as reflected in
the overall cost landscape regions for high Â0 and αI (Figure 2C).
The FSPA variant also produces the lowest Chl RMSD and bias.
The absence of photoacclimation in the FS model produces the
worst overall Chl, and PP costs as well as correlation and RMSD.
Based onTable 4, The ’second best’ model in terms of overall cost,
is the IA model, which produces the lowest PP cost, RMSD, and
bias, as well as the highest Chl correlation. The DQ performs
slightly worse than the IA model in terms of cost (Figures 7, 8,
and Table 4), however it produces the best correlation for PP, and
generally performs similarly to the IA model.

3.3. Model Portability
The cross-validation experiment tests a model’s ability to
reproduce observations from different regions without tuning,
and therefore its predictive ability (Friedrichs et al., 2006).
In this experiment, all model variants differ only slightly in
their statistical metrics for DIN, compared to the individual
tuning. However, for Chl and PP, using the parameter
set tuned for a different station generally increases cost,

RMSD, and bias, while reducing correlation for all variants
(Figures 7A–F, 8A–F). In the cross-validation experiment the
FS and FSPA variants’ statistical metrics suffer most, especially
in terms of PP, where both variants greatly overestimate
and underestimate the winter and seasonal values at BATS
and ALOHA, respectively (Figures 6I,J). For the IA and DQ
variants, the cross validation and individually tuned results
differ only slightly from the observations and often capture the
observations when the reference simulations do not, especially
at BATS during summer within the upper 50 m (Figures 6A,B).
However, at 75–125 m, the cross validations from IA often
overestimate greatly the observed Chl at BATS and ALOHA
(Figures 6E,F), while the DQ variant captures the observation
well at BATS, but also overestimates the Chl at ALOHA. In
terms of cost, the DQ variant produces the lowest discrepancy
between the reference and cross validation simulation (1J=
0.0043).

The simultaneous experiment evaluates the potential
applicability of each model variant at multiple stations with
a common parameter set, as in a typical global or regional
biogeochemical model (Friedrichs et al., 2007). The simultaneous
tuning is done by choosing the parameter set that yields the
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FIGURE 7 | Taylor (A–C), target (D–F) diagrams (µRMSD is normalised RMSD), and costs (G,H) for Chl, DIN, and PP at station ALOHA for the IA (triangles), FS

(circles), FSPA (stars), and DQ (cross) variants, each tuned individually to the observations (red), cross-validated (blue), and simulating both stations with a common

parameter set (green). The cost functions Jm (G) and J (H) were calculated for the individually tuned runs, cross validation experiment (-X suffix) and the simultaneous

experiment using a common parameter set (-S suffix), for each model. Values for Jm, J and PI are provided on Table 4.

lowest overall cost, summed over both stations (JBATS + JALOHA).
This experiment yields relatively similar J values and statistical
metrics, although the results are slightly worse in terms of J,
except that for the FS and DQ variants the simultaneous runs
performed better than the reference, which is most apparent for
ALOHA (Figures 7B,C,E,F). As discussed in Friedrichs et al.
(2007), the ideal model would have a PI ∼1 (Equation 30),
indicating good performance at multiple sites without being
tuned individually for each, while also having a low cost.
Figures 7G,H, 8G,H reveal that in general photoacclimation
greatly improves model performance, especially for Chl and
DIN, and enhances portability. The inclusion of variable Q
in combination with photoacclimation (IA and DQ models)
yields even better performance in terms of PP and portability,
at least between these oligotrophic sites. Although the fixed
stoichiometry with photoacclimation (FSPA) model produces
the lowest overall cost in both the reference and simultaneous
experiments, its poor performance in the cross validation
experiment indicates that it is less portable compared to the IA
and DQ models. From Table 4 the DQ is the most portable,
however in terms of the average cost over all experiments, the
IA variant produces slightly lower cost (average costs for DQ
and IA are 0.434 and 0.424, respectively), indicating that the

DQ model is the most portable. However, compared to the DQ
model, the IA model produces nominally better RMSD and bias
for all observables in both cross validation and simultaneous
experiments, despite having fewer state variables.

4. DISCUSSION

The Chl:C:nutrient ratios of phytoplankton vary as a result of
both evolutionary adaptation, which has produced a variety of
species and strains of different compositions, and physiological
acclimation, which dynamically alters the composition of many
species (Smith et al., 2011; Moreno andMartiny, 2018). However,
many large-scale OBGC models assume constant elemental and
pigmentary composition for phytoplankton (Bopp et al., 2013;
Laufkotter et al., 2015), similar to the FS approach herein. Some
models resolve diverse phytoplankton communities by explicitly
accounting for as many as hundreds of differently adapted types
(Follows and Dutkiewicz, 2011), and a few account for inter-
specific differences in composition (Dutkiewicz et al., 2019).
Others represent these flexibilities in terms of physiological
acclimation, typically using a Droop quota model (e.g., Moore
et al., 2001), but seldom with a more consistent allocation
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FIGURE 8 | Same as Figure 7, but at station BATS.

TABLE 4 | Cumulative costs Jm for Chl, DIN, and PP (JChl, JDIN, and JPP,

respectively) and J at stations ALOHA and BATS for each model run, and

portability index PI (=Js/Jx ).

Model run J JChl JDIN JPP PI

IA 0.401 0.348 0.485 0.363

FS 0.450 0.386 0.465 0.574

FSPA 0.383 0.268 0.436 0.522

DQ 0.431 0.409 0.501 0.370

IA-S 0.416 0.381 0.488 0.363

FS-S 0.407 0.278 0.471 0.574

FSPA-S 0.414 0.295 0.462 0.547

DQ-S 0.431 0.405 0.510 0.364

IA-X 0.454 0.493 0.481 0.378 0.916

FS-X 0.532 0.461 0.508 0.758 0.765

FSPA-X 0.500 0.351 0.522 0.733 0.828

DQ-X 0.438 0.419 0.515 0.370 0.982

framework in large-scale OBGC models (Kerimoglu et al.,
2017; Kwiatkowski et al., 2018; Pahlow et al., 2020). A few
studies have even resolved variable composition for a diversity
of phytoplankton types (e.g., Blackford et al., 2004; Ward
et al., 2014; Butenschon et al., 2016). All of these approaches
typically require additional state variables and calculations and

therefore when applied to multiple phytoplankton functional
types can be computationally expensive, as demonstrated by
Kwiatkowski et al. (2014). To overcome these problems, at least
for acclimative models, Smith et al. (2016) proposed the IA
approach, which optimises Chl:C:nutrient ratios instantaneously
for local conditions, so that variable composition can be tracked
via a single state variable (biomass).

We have recently demonstrated that the IA approach behaves
similarly to the fully dynamic version (DA) in a spatially
explicit 1D setup (Kerimoglu et al., 2021). Here we assess
four different models for phytoplankton growth against in-
situ observation at two oligotrophic stations with different
physical conditions. Comparing the FS, FSPA, DQ, and IA
models, which differ in their degrees of flexible composition
and computational efficiency, has allowed us to disentangle the
impact of different aspects of acclimative response on model
performance and portability.

4.1. Cost Landscapes
The steep increase in cost with decreasing nutrient affinity
for the FS and FSPA variants reveals their greater sensitivity,
compared to the DQ and IA variants. This is because with
the Monod formulation used in the FS and FSPA models,
growth rate depends directly and immediately on the ambient
nutrient concentration and the nutrient affinity, Â0, which
determines nutrient uptake rate at low nutrient concentrations
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(Button, 1978; Healey, 1980; Smith et al., 2014). For the
IA and DQ models, changes in Â0 do not so directly alter
growth rate, because growth depends on the variable cell
quota, Q. It has long been appreciated that internally stored
nutrients, in excess of immediate requirements for growth, allow
sustained growth under low ambient nutrient concentrations in
temporally (Grover, 1991) or spatially (Kerimoglu et al., 2012)
heterogeneous environments.

Previous studies have found that, compared to variable quota
models, Monod-type models are more sensitive to fluctuations
in nutrient supply, even in nutrient-replete regions (Cerco et al.,
2004; Pauer et al., 2020). In low-nutrient regions, variations in
nutrient supply (or affinity) would be expected to have even
greater impact on growth rates, because of the typically saturating
response for nutrient uptake (Button, 1978; Healey, 1980; Smith
et al., 2014). The similar cost landscapes for DQ and IA models
reveal that the IA model captures this storage effect despite its
instantaneous adjustment of Q (hence C:N ratio). One reason for
this is that the IA model’s optimal resource allocation scheme
compensates for low Â0 values by increasing the fractional
allocations of intracellular resources towards nutrient uptake
broadly (fV), and affinity specifically (fA). The decoupling of
growth rate from ambient nutrient concentrations may explain
why the DQ and IA variants yield higher overall cost for the
reference and simultaneous runs, compared to the FSPA model;
i.e., regions where JDIN is high coincide with regions where JCHL

and JPP are low. However, since these models have flatter overall
cost landscapes, their costs differ less between the simultaneous
and cross validation experiments (i.e., they are more portable),
compared to the FS and FSPA models.

4.2. Model Performance With Individual
Tuning
With parameters tuned individually for each station, compared
to the FS variant, the photo-acclimative variants capture better
common features in the oligotrophic ocean, such as the depletion
of DIN and Chl in the summer, near-surface primary production,
and deep SCM (Mongin et al., 2006; Mignot et al., 2014;
Kavanaugh et al., 2018). Even with data-assimilation, models that
have fixed stoichiometry are unable to reproduce these features
(Schartau et al., 2001; Ayata et al., 2013; Ward et al., 2013).
Because the FS variant cannot adjust its internal composition,
i.e., decrease its Chl:C during the stratified summer, it often
overestimates near-surface Chl and DIN, and underestimates
SCM concentrations. Additionally, the lack of variable Q in the
FS and FSPA variants limits their ability to capture continuously
high PP through summer, as observed. This is because with
the Monod formulation used in these models, growth and PP
are directly proportional to nutrient uptake rate, and therefore
decline instantaneously with ambient DIN. The four variants
differ most in terms of Chl between 75 and 125 m, especially
at ALOHA, where the optimal physiological acclimation in
the IA variant sustains growth and hence higher biomass and
Chl, with higher C:N ratio (lower Q) than the DQ during
summertime nutrient depletion (Figures 6E,F). The FSPAmodel
also captures the sustained high summer Chl concentration at

the DCM, because it uses fixed Q from the biomass-averaged
Q obtained from the IA model. Nevertheless, compared to the
FS model, the addition of only photoacclimation in the FSPA
variant indeed improves the overall model performance, yielding
the lowest overall cost, especially in terms of DIN and Chl,
when tuned separately for each station. This improvement in
model performance may be because of the lack of variable cell
quota which causes a lag in nutrient consumption, therefore
consuming more nutrients and producing more Chl nearer
the surface (thus capturing the observations better, as shown
in Figures 6B,D). However, this hinders the model’s ability
to capture the seasonality of PP, which depends on PhyC as
calculated from the cell quota.

A more thorough assessment of the realism of the model
variants under consideration could in principle include a
comparison of modelled POC:PON ratios against in situ
observations (as in, e.g., Mongin et al., 2006), but that would
require modelling a variety of other processes that alter the
composition of detritus (e.g., digestion, excretion and detritivory
by zooplankton, and differential degradation by bacteria),
which would add considerable uncertainties and complicate the
interpretation of model results. As a more direct alternative, it
may soon be possible to compare model results against single-cell
or species-level observations of cellular composition, which have
only recently become available for certain types of phytoplankton
in selected regions (e.g., Lopez et al., 2016; Baer et al., 2017).

In terms of PP, both the IA and DQ variants produce lower
costs than the fixed quota variants. Although the FSPA variant
performs substantially better than the FS in terms of Chl, it
does not allow variable Q (hence, N:C), which limits its ability
to capture the seasonality of PP. Additionally, inclusion of
optimal resource allocation, as represented by the IA variant,
indeed improves the simulation of PP, although the DQ variant
captures better the maintenance of high PP during summer
(Figures 4K,N,Z,C1), resulting in better PP cost at ALOHA than
BATS. This may be because the DQ variant produces lower Q
whenµ is high due to the prescribed fV as well as its flatterµ vs.Q
curve compared to the IA variant (see Supplementary Material),
which smooths the transition between ’bloom’ time and non-
bloom times, as shown in the observed PP (Figures 4L,X, 6I,J).
Compared to the DQ model, the IA assumption constrains
variations of Q more narrowly, which limits its ability to capture
the storage effect. This is one reason why the IA model produces
less PhyC (Kerimoglu et al., 2012, 2021), and therefore PP,
compared to the DQmodel. In effect, the IA assumption restricts
luxury uptake in order to allow faster growth immediately
under nutrient-replete conditions (Kerimoglu et al., 2021), which
can yield slower growth under subsequent nutrient scarcity
compared to models that resolve more internal storage. This may
also explain why the IA model overestimates Chl concentrations
near the DCM.

Although almost all variants realistically simulate near-surface
DIN (Figure 6D) and elevated PP in spring, none captures
the typical increase between May to August (Dave and Lozier,
2010) in the North Pacific Subtropical Gyre. This discrepancy
may be due to the absence of nitrogen fixers in NFlexPD
(Dore et al., 2008; Church et al., 2009; Böttjer et al., 2017) and
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nanophytoplankton, such as Prochlorococcus (Jiang et al., 2021),
which despite being low in actual biomass, can contribute up
to 40% in terms of PP (White et al., 2015; Kavanaugh et al.,
2018). Indeed, it would be technically straightforward to extend
the model with additional phytoplankton (or zooplankton) types,
which may improve these results. However, as mentioned in the
introduction, this would over-complicate the interpretation of
the impacts of phytoplankton growth formulations, and their
differing responses to parameter perturbations and physical
settings (ALOHA vs. BATS). For this reason, we prefer to keep the
model configuration as simple as possible in the current study.
The lack of sporadic mixing, which lifts the thin layer of Chl
towards the surface (Dore et al., 2008) and other processes, such
as anticyclonic eddies or effects of El-Nino (Church et al., 2009;
Kavanaugh et al., 2018) that are not well simulated by the 1D
physical model may also be reasons for our underestimated PP
values. The in situ PP measurements, based on 14C incubations
at both stations (Letelier et al., 1996; Steinberg et al., 2001), are
also known to result in inaccurate PP values, including over-
estimates in the presence of slow-growing species (Pei and Laws,
2013, 2014), and it is unclear whether they measure net or gross
PP (Marra, 2009; Kavanaugh et al., 2018).

4.3. Model Portability
The physiological acclimation, which aims to optimise growth
rate in the IA andDQ variants, is similar to dynamic optimisation
of parameter values (e.g., Mattern et al., 2012), as is typically
applied to capture complex adaptive behaviours in response
to environmental changes (Arhonditsis and Brett, 2004), e.g.,
physiological plasticity or succession of plankton groups (Follows
and Dutkiewicz, 2011). It is therefore expected that the IA
variant, which continually re-allocates resources to optimise
growth, would capture better DIN and Chl dynamics at both
stations in the cross-validation and simultaneous experiments.
Although earlier studies (Friedrichs et al., 2007; Kriest et al., 2012;
Ward et al., 2013) found that increasing model complexity does
not necessarily improve misfits or predictive capability, here we
found that the inclusion of photoacclimation improves the model
portability. That is, the more “complex” acclimative models
overall perform better compared to the simpler FS variant.
However, a previous study from Ward et al. (2013) showed
that with objective parameter tuning, a biogeochemical model is
sufficient to capture the observation without photoacclimation at
the temperate North Atlantic. A future investigation including
data assimilation would provide a more thorough and conclusive
assessment of how the different aspects of photoacclimation
impact model performance and portability at both temperate and
oligotrophic stations.

As explained in subsection 4.1, the DQ and IA variants
differ least between the simultaneous and cross validation
experiments, and therefore are the two most portable. However,
because for the DQ model the same value of Â0 is applied for
BATS and ALOHA, its cost varies less with αI than with Â0.
Therefore, in this particular experiment the DQ model is more
portable than the IA variant. However, the IA variant generally
produces better statistical metrics for all the observed variables
than the DQ model. Thus, when applied to a 3D regional

OBGC model, for oligotrophic regions, the IA variant can be
expected to more realistically capture phytoplankton growth,
nutrient uptake, and chlorophyll concentrations with fewer state
variables.

4.4. Future Outlook
This study shows that adding photoacclimation improves model
performance at two oligotrophic stations, and adding variable
phytoplankton C:N makes models less sensitive to parameter
perturbations, especially those related to affinity, and therefore
improves portability. The sensitivity analysis could in future
be expanded by perturbing other parameters, such as mortality
and potential maximum growth, which are directly linked
to phytoplankton biomass. The portability experiment could
be extended by applying data assimilation to fit each model
variant to the observations, as done previously in a 0-D
setup (Smith et al., 2016), and by performing cross validation
experiments between more contrasting (e.g., subpolar and
subtropical) regions. Although both the IA and DQ variants
capture Chl, PP, and DIN concentrations fairly well, the
idealised models presented herein are too simplistic to fully
capture oligotrophic ecosystem dynamics. Multiple plankton
types inhabit oligotrophic regions, including zooplankton (Dave
et al., 2015) and N-fixers (Dore et al., 2008; Karl et al., 2012)
as well as other nutrients, such as phosphate (Steinberg et al.,
2001; Karl et al., 2012); but our models only represent one type
of phytoplankton and nutrient. Adding predation or another
trophic level, depending on the grazing formulation, may change
the depth of the DCM, and may also change the timing and
magnitude of phytoplankton blooms (Anderson et al., 2010).
However, how this may change the portability remains an
open question. Three dimensional modelling studies will be
required to evaluate the impacts of physical processes such
as mesoscale eddies and inter-annual variations driven by El-
Nino/La-Nina events, which our 1-D setup cannot capture. For
more comprehensive OBGC model applications, it will also be
essential to trace C, O2, and alkalinity (Kwiatkowski et al.,
2014).

Behrenfeld et al. (2016) showed that across most of
the ocean variations in Chl, the most widely observed
metric of phytoplankton, result more from physiological
acclimation than from variations in their biomass. Models
that account for photoacclimation can help to disentangle the
mechanisms underlying observed Chl variations. In a broader
sense, although the effects of physiological acclimation and
evolutionary adaptation can in many cases be modelled
with the same mathematical approaches (Smith et al.,
2011), they can be expected to have distinct effects on
large scale chlorophyll distributions and biogeochemistry
(Moreno and Martiny, 2018). Disentangling their relative
contributions remains a formidable challenge, which will
require resolving explicitly both intra- and inter-specific
variability in models. Our results suggest that for such
purposes, the IA approach may be useful to reduce the
massive computational cost of resolving acclimation processes
for many phytoplankton types.

Frontiers in Marine Science | www.frontiersin.org 16 July 2021 | Volume 8 | Article 675428

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Anugerahanti et al. Models With Phytoplankton Variable Composition

5. CONCLUSIONS

We test an NPD-type model with four different variants
differing with respect to phytoplankton flexible composition
and acclimative response: A Monod-type variant with fixed
stoichiometry (FS), an improved monod-type variant with
photoacclimation (FSPA), a variant with both variable
composition using a classical Droop-quota approach and
photoacclimation (DQ), and finally the Instantaneous
Acclimation (IA) variant. We assess whether adding variable
composition and acclimation can enhance generality and
portability at two oligotrophic stations BATS and ALOHA.
Additionally, we conduct a sensitivity analysis to explore
how different phytoplankton growth formulations respond to
parameter perturbations, especially those related to nutrient
and light affinity. When individually tuned, we find that FSPA
model captures Chl and DIN observations at both stations better
than the other three variants, but the DQ and IA variants with
variable C:N and Chl:C ratios capture the observed PP better
and are less sensitive to parameter perturbations. Therefore,
flexible composition and photoacclimation can be expected to
enhance portability and hence potential applicability at large
scales. The addition of optimal resource allocation slightly
enhances model performance as quantified by statistical metrics.
However, the DQ model, which calculates the dynamics of
phytoplankton C and N explicitly, is more portable than
the IA approach. It should be noted that these experiments
are done without any formal parameter optimisation
and limited to oligotrophic sites. Further studies using
objective optimisation (data assimilation) and including more
contrasting regions would provide a more comprehensive and
thorough assessment.
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