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The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)
project has deployed 194 profiling floats equipped with biogeochemical (BGC) sensors,
making it one of the largest contributors to global BGC-Argo. Post-deployment quality
control (QC) of float-based oxygen, nitrate, and pH data is a crucial step in the
processing and dissemination of such data, as in situ chemical sensors remain in early
stages of development. In situ calibration of chemical sensors on profiling floats using
atmospheric reanalysis and empirical algorithms can bring accuracy to within 3 µmol
O2 kg−1, 0.5 µmol NO3

− kg−1, and 0.007 pH units. Routine QC efforts utilizing these
methods can be conducted manually through visual inspection of data to assess sensor
drifts and offsets, but more automated processes are preferred to support the growing
number of BGC floats and reduce subjectivity among delayed-mode operators. Here
we present a methodology and accompanying software designed to easily visualize float
data against select reference datasets and assess QC adjustments within a quantitative
framework. The software is intended for global use and has been used successfully
in the post-deployment calibration and QC of over 250 BGC floats, including all floats
within the SOCCOM array. Results from validation of the proposed methodology are
also presented which help to verify the quality of the data adjustments through time.

Keywords: ocean observation, calibration, validation, profiling float, ARGO, oxygen, nitrate, pH

INTRODUCTION

The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project has
finished its sixth year reaching a total of 194 biogeochemical (BGC)-Argo profiling floats deployed
throughout the Southern Ocean (Figure 1). Funded by the United States National Science
Foundation (NSF) Office of Polar Programs, this novel basin-scale network of biogeochemical
sensors has filled one of the largest observational gaps in the global ocean. Due to the success
of the current program, the SOCCOM project has been renewed for an additional 4 years, with
the goal of deploying 120 more BGC profiling floats south of 30◦S. In addition, the NSF has
funded the Global Ocean Biogeochemistry (GO-BGC) Array, which will extend the current BGC-
Argo program considerably through the deployment of an additional 500 floats throughout the
global ocean. Emerging data from floats within the SOCCOM array have already expanded our
understanding of the Southern Ocean’s role in the global carbon cycle and have improved the
capability of ocean models to predict future change (Verdy and Mazloff, 2017; Gray et al., 2018;
Russell et al., 2018; Williams et al., 2018; Bushinsky et al., 2019a; Swart et al., 2019). Key to these
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advancements has been the underlying quality of the dataset
which relies on pre-deployment sensor calibration and post-
deployment quality control (QC), bringing sensor accuracies to
within the narrow range required for climate studies (Johnson
et al., 2017). Operational procedures for post-deployment
processing of CTD data from the Argo array are well established.
A number of real-time checks constitute the first level of
QC, many of which have been adopted for BGC data as well
(Schmechtig et al., 2016). Salinity profiles from Argo floats are
also subject to delayed-mode assessments that typically apply
interpolation methods to relate float data to a climatology
(Wong et al., 2003; Gaillard et al., 2009; Guinehut et al., 2009;
Owens and Wong, 2009). Argo salinity data have been estimated
to be accurate to 0.01 PSU after delayed-mode adjustments,
and temperature and pressure data are generally thought of
as acceptable for use in data assimilation and other direct
applications prior to receiving any delayed-mode assessment
(Wong et al., 2020).

In contrast, in situ chemical sensors for measuring oxygen,
nitrate, and pH on BGC-Argo floats represent newer technologies
that require significantly more QC. Generally, the scientific use
of raw, unadjusted BGC-Argo float data is not recommended.
The real-time and delayed-mode adjustment processes greatly
improve the quality of the BGC sensor data and result in a data
set that is suited for research in a variety of applications. Various
delayed-mode methods for BGC sensor recalibration and QC for
oxygen, pH, and nitrate have been suggested (Johnson et al., 2013,
2015, 2017; Takeshita et al., 2013; Williams et al., 2016; Bittig et al.,
2018a) but integrating the suite of methodologies into a coherent
framework that can be used operationally across a fleet has
proven challenging. Producing science-quality biogeochemical
data requires consistent and traceable correction methods that
can be adopted globally across all data centers involved in the
processing and dissemination of BGC-Argo float data.

In this article we present the methodology developed as
part of the SOCCOM program to assess oxygen, nitrate, and
pH sensor gain, drifts and offsets in delayed-mode. The two
accompanying MATLAB tools, SAGE (SOCCOM Assessment
and Graphical Evaluation) and SAGE-O2, are also described.
The magnitude of required adjustments within the SOCCOM
array and an independent validation of the described methods
are also discussed.

SOCCOM Float Array
The SOCCOM array of profiling floats includes both
Teledyne/Webb Research (TWR) APEX and Sea-Bird Scientific
(SBE) Navis floats. All SOCCOM floats utilize Iridium two-way
satellite communication and are equipped with ice-avoidance
software as described in Riser et al. (2018) (following the method
originally developed by Klatt et al. (2007)). For profiles taken
while under ice, geographic coordinates cannot be obtained so
latitude and longitude are estimated through linear interpolation.
All SOCCOM floats are programmed to perform the nominal
Argo mission of 10-day profile frequency from a maximum
depth of 2000 m with an interim park depth of 1000 m.

The Southern Ocean Carbon and Climate Observations
and Modeling floats carry a suite of biogeochemical sensors

FIGURE 1 | Current location (circles) and associated trajectories (lines) from
floats within the SOCCOM array, as of December, 2020. Both operational
(yellow) and inactive (red) floats are shown.

for measuring dissolved oxygen, nitrate, pH, chlorophyll
fluorescence, and optical backscatter [colored dissolved organic
matter (CDOM) fluorescence is also measured by sensors
onboard certain Navis floats]. Although delayed-mode QC of the
bio-optical parameters is a current area of research, chlorophyll-
a, backscatter and CDOM visualizations have not been integrated
into the SAGE software and these sensors are thus not considered
further in this article. For information on the real-time processing
and adjustment of these parameters see Johnson et al. (2017) and
(Schmechtig et al., 2015, 2016, 2017, 2018a,b). The processing
of raw oxygen, nitrate and pH sensor data from SOCCOM
floats follows the procedures outlined within Argo processing
documentation (Johnson et al., 2018a,b, Thierry et al., 2018a).
Oxygen, nitrate, and pH sensor models vary slightly between the
two float platforms used in SOCCOM. The In Situ Ultraviolet
Spectrophotometer (ISUS) nitrate (Johnson and Coletti, 2002)
and Deep-Sea DuraFET pH (Johnson et al., 2016) sensors
used on APEX floats are primarily built and calibrated at
the Monterey Bay Aquarium Research Institute (MBARI). pH
sensors manufactured at SBE are also deployed on APEX floats.
These receive pressure and temperature calibrations at SBE, and
a final pH calibration at MBARI. All other sensors (including
the SBE pH sensor onboard Navis floats, Submersible Ultraviolet
Nitrate Analyzer, and SBE63 optodes onboard Navis floats,
and Aanderaa optodes onboard APEX floats) receive factory-
calibration direct from the manufacturer. Both sensor categories
(MBARI-calibrated or manufacturer-calibrated) can suffer from
shifts in laboratory calibration leading to changes in performance
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FIGURE 2 | SOCCOM float tracks colored by data quality for (A) oxygen, (B) nitrate, and (C) pH. Points along a float track marked in purple represent profiles where
100% of the data has been marked “bad” by one of the automated QC tests. All other profile locations are indicated in green.

that manifest as sensor offsets or drifts in the field. While the root
cause of such a calibration shift is not always known, the methods
described herein provide a robust means for correction.

Automatic QC procedures are applied in real-time to flag
grossly erroneous data within the SOCCOM array. These tests
roughly follow the Argo real-time tests for BGC data as outlined
in Schmechtig et al. (2016). Figure 2 shows SOCCOM float
tracks colored by data quality, which is a useful way to assess the
regional coverage of “good” BGC sensor data within the Southern
Ocean and aids in deployment planning. Points along a float track
marked in purple represent profiles where the automated QC
tests have marked 100% of the data “bad.” Of the three parameters
shown, pH sensor data have the highest number of “bad” quality
flags, at 32.52% of the data, with a large regional gap located in
the Pacific. Note that historical data from inactive floats remain a
valuable part of the SOCCOM dataset.

After passing the real-time quality checks, oxygen, nitrate,
and pH data that are considered adjustable can be brought up
to the accuracy level required for global biogeochemical studies
through relatively simple correction procedures (Johnson et al.,
2018b; Thierry et al., 2018b). This represents the second level
of QC (Bittig et al., 2019). In the next sections, the delayed-
mode procedures and accompanying software tools used to adjust
oxygen, nitrate, and pH data from BGC-Argo profiling floats used
by the SOCCOM program are presented.

METHODS

Adjustment of Oxygen Data
The delayed-mode correction procedure for biogeochemical data
on a SOCCOM float begins with oxygen. This is because the
deep reference fields used in nitrate and pH QC (described in
section “Reference Models Used in the Adjustment of Nitrate and
pH Data”) are generated from empirical algorithms that require
accurate oxygen measurements (along with other core variables
and position information) as input parameters. Takeshita et al.
(2013) have shown that the raw oxygen data from floats can be
in error by as much as 20% of surface water oxygen saturation
due to sensor drift during storage out of the water. Following

Johnson et al. (2015), oxygen concentrations [(O2), µmol kg−1]
can be corrected using a multiplicative gain factor, G, to improve
the accuracy of a sensor suffering from the effects of storage drift
[for additional information on optode storage drift see Bittig et al.
(2018a) and D’Asaro and McNeil (2013)]:

[O2]corr = G × [O2]raw (1)

There is some evidence in the literature that a slope correction
on oxygen concentration could potentially be improved by the
inclusion of an intercept, especially in regions of near-zero
oxygen levels (Bittig and Körtzinger, 2015; Bushinsky et al., 2016;
Drucker and Riser, 2016; Nicholson and Feen, 2017). However,
such corrections appear to be small (<1 µmol kg−1), based on
an assessment of 20 floats in the Arabian Sea and Bay of Bengal
(Johnson et al., 2019) and are thus not implemented within
the SOCCOM program.

SAGE-O2 is the MATLAB Graphical User Interface (GUI)
developed at MBARI to assist in deriving oxygen optode
gain corrections by comparing oxygen data from a float to
various reference datasets, including reanalysis values of oxygen
partial pressure in the atmosphere. Images of the interface,
including plot displays and user-controlled sidebars are shown
in Figure 3 for SOCCOM float 9752 (WMO 5904694) in
the Southwest Pacific, east of New Zealand. The top panel
of each interface displays a time series of float data (blue)
in comparison to the user-selected reference (red). The user
can select whether to display raw float data (“RAW” tab,
Figure 3A) or float data that has been adjusted using coefficients
derived through the software (“QC” tab, Figure 3B). Details
related to the calculation of the gain factor, G, over the
lifetime of a float, as implemented through the software, are
described further below.

Gain Computation Using In-Air Measurements
In-air calibration of oxygen optodes onboard profiling floats has
been shown to bring accuracy to within 1% and is currently the
operational standard (Johnson et al., 2015). For floats with in-air
measurement capabilities, an estimate of atmospheric pressure
must be available to compute the local oxygen partial pressure.
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FIGURE 3 | SAGE-O2 software interface showing results of the calibration for sample float 9752, WMO 5904694. The view in (A) displays the raw oxygen float data
against the reference, while the view in (B) displays float data that was adjusted using the coefficients derived through the software. The map display functionality is
also indicated in (B).

The product referenced for oxygen gain computation within
the SAGE-O2 software is NCEP/NCAR Reanalysis-1 six-hourly
surface pressure (Kalnay et al., 1996). This is a Gaussian gridded
product with units of Pascals, which are converted to hectopascals
(millibar equivalent) prior to proceeding. The NCEP atmospheric

surface pressure (PNCEP) values are interpolated to the time
and location of the float’s surfacing. Values are then converted
to oxygen partial pressure (pO2 ) based on the assumption that
the atmosphere is 100% saturated with water vapor at the sea
surface (Equation 2). The water vapor pressure (pH2O, in hPa)
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is calculated using Equation 3, where T represents temperature
from the float in degrees Celsius (Aanderaa Instruments, 2017).

pO2 =
(
PNCEP − pH2O

)
× 0.20946 (2)

pH2O = e
[

52.57−
(

6690.9
T+273.15

)
−4.681×ln(T+273.15)

]
(3)

The sensor gain that is estimated from air oxygen for each
individual profile, i, is then computed using Equation 4, as
outlined in Johnson et al. (2015):

Gi = pO2NCEP/pO2FLOAT (4)

where pO2NCEP follows from Equation 2 and pO2FLOAT is the
partial pressure of oxygen computed from the float (reported
in millibars). The overall gain factor, G, used to correct all in
water oxygen observations is then the mean of the n individual
Gi values.

Mean gain values over the float’s life are displayed within
the SAGE-O2 interface in blue to the right of the plot panels
(Figures 3A,B). Note that at the start of the SOCCOM program,
APEX floats were programmed to take a single in-air oxygen
reading with each surfacing that was associated with the telemetry
phase of the cycle. A subsequent upgrade to the mission
programming was initialized such that the optodes on APEX
floats take a sequence of 8 in-air measurements at each surfacing
at the end of ascent. Therefore, the majority of APEX floats in
the SOCCOM program have two sets of in-air measurements:
the original one associated with the telemetry phase (light blue
in the GUI interface, labeled “AIRold”), and another larger set
associated with the in-air measurement series (dark blue in the
interface, labeled “AIRnew”). Both of these are plotted in the GUI
for comparison. Average gain between the two sets differs by less
than 0.1% fleet-wide.

Additional reanalysis products from other centers are also
available, including the now real-time NCEP/DOE-R2 and
the European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA5 reanalysis. The ERA5 product utilizes a more
state-of-the-art (4D-variational) data assimilation system but its
data latency (3 months lag for quality assured updates) may limit
timely delayed-mode QC operations. In the future, the SAGE-
O2 software may be upgraded to utilize additional reanalysis
products. The absolute uncertainty in reanalysis surface pressure
fields from different products can be difficult to fully quantify.
However, a comparison of NCEP and ECMWF operational
models by Salstein et al. (2008) found that rms differences
between surface pressure and shipboard observational stations
were between 2 and 5 hPa in Southern latitudes with minimal
difference between the two products, especially in more recent
years. Surface pressure uncertainties of this magnitude roughly
translate to less than 0.5% change in corrected O2 measurements
on individual floats.

Gain Computation Using Shipboard Bottle Data
The SBE63 optodes onboard SOCCOM Navis floats are plumbed
in line with the pumped CTD flow stream and are thus not
fully exposed to ambient air during surfacing. Thus, in situ

calibration of these floats is performed by comparing float data
to high-quality Winkler titrations from shipboard samples taken
at the time of float deployment. The Winkler oxygen data
are generated primarily on GO-SHIP cruises or by research
groups that regularly participate in GO-SHIP cruises and they
are considered to be of a quality consistent with GO-SHIP
measurements (Hood et al., 2010 state a target accuracy of 2σ

less than 0.5% of the largest oxygen concentration found in the
ocean). Comparisons of the float and bottle data can be viewed
through the software (Figure 4). We focus on the upper 50 m
near the surface where oxygen is close to 100% saturated and the
vertical gradients are small. A comparison of average gain values
derived using shipboard Winkler measurements versus in-air
samples for 97 SOCCOM APEX floats shows a mean difference
(float minus bottle) of−0.31% [standard deviation (SD) of 2.2%].
This is not a large systematic bias for Navis floats with SBE63
optodes, but should not be ignored when trying to resolve gradual
long term trends within the array.

In addition to providing an alternative approach to in situ
optode calibration, comparison to shipboard data offers a simple
and independent means for validating gain values derived from
other methods, as described in sections “Gain Computation
Using In-Air Measurements” and “Gain Computation Using
Shipboard Bottle Data.” The gain correction for the float
shown in Figure 3 was performed using in-air measurement
data as described in section “Gain Computation Using In-Air
Measurements.” Figure 4 shows data from this float in profile
view. Pressure is along the x-axis for all plot panels. The top
two panels show mean float data (solid blue line) along with
Global Data Analysis Project v2 (GLODAPv2) profile data that
are within a 30 km radius of the float data, and the computed
residuals (note that the search radius can be modified by the
user and is only applicable in profile view). The bottom two
panels show the float’s first and second profiles (blue) along
with shipboard Winkler and CTD oxygen data (circles), and
computed residuals. Note that the “QC” tab is selected, thus all
float data in the display have been adjusted using the computed
gain shown in Figure 3. If the “Raw” tab was chosen, the float
profile would have no adjustments applied. The small positive
bias shown in reference to the bottle data is due to temporal
mismatch between the shipboard data and float measurements
within high-gradient regions of the profile. The mean residual
(bottle-float) is 1.245 µmol kg−1. The mean residual against all
GLODAPv2 data within 30 km is −0.060 µmol kg−1, although
the range is larger than the hydrocast data due to the larger time
range included in the matchup criteria.

Gain Computation Using World Ocean Atlas
Climatology
For floats incapable of taking in-air oxygen measurements, and
when shipboard reference data are not yet available, a preliminary
optode gain correction factor can be derived within the SAGE-O2
GUI using WOA percent oxygen saturation in surface water. This
method follows Takeshita et al. (2013), which suggest an accuracy
of 1–3% for sensors calibrated against WOA values. Percent
saturation from the float is calculated following Equation 5 below.
Solubility of oxygen (O2Sol) is computed following section 1.3.3
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FIGURE 4 | A comparison of adjusted oxygen data to GLODAPv2 (top two panels) and shipboard hydrocast matchups (lower two panels), as viewed through the
SAGE-O2 interface for UW/MBARI float 9752 (WMO 5904694).

in the Argo oxygen processing manual (Thierry et al., 2018a).
Individual gain values, Gi, are then computed using Equation
6, where %SatWOA and %SatFloat represent the mean WOA and
mean float percent saturation values for the upper 25 m of the
profile, respectively.

%Sat = [O2] / [O2Sol]× 100 (5)

Gi = %SatWOA/%SatFloat (6)

The overall gain factor, G, is calculated as the mean of
the individual gain values (Gi) computed for each cycle.
A comparison of gain factors computed using WOA percent
saturation versus NCEP reanalysis air pressure as reference for
95 floats with in-air measurement capabilities shows a bias
between the methods of 1.4% with a SD near 2%. The largest
differences occur in floats near seasonal sea ice or very close
to the coast where WOA reference climatology data are limited
and/or seasonally biased. Note that for many floats within the
global BGC Argo array, this method is the most accessible option
for data managers and should be applied wherever possible as a
first-order correction.

Drift in Optode Gain
The effects of pre-deployment storage drift are readily apparent
across the majority of optodes used on profiling floats. Oxygen
data from all Aanderaa and Sea-Bird optodes onboard SOCCOM
floats require gain correction, with a fleet-wide mean gain

correction of 7.0 ± 4.6 (1 SD) %. While an optode’s stability
once deployed is substantially greater, it is less predictable (Bittig
and Körtzinger, 2015, 2017; Johnson et al., 2015; Bushinsky
et al., 2016). Bittig et al. (2018a) provides a thorough review
on this topic, and suggests that individual optodes may exhibit
significant post-deployment drift of up to ±0.6% year−1. If not
accounted for, such drift could lead to significant biases in certain
biogeochemical analyses such as air-sea fluxes.

Characterizing the amount of optode drift is possible within
the SAGE-O2 software through comparison against reference
values over time. This method was recently put into practice for
select floats within the SOCCOM array. The software allows the
user to auto-calculate the drift relative to a reference such as
NCEP. The computed offset (initial gain), b, and slope (drift),
m, are calculated using a model I regression of computed gain
on each cycle against cycle time. For a float drifting since
deployment, the gain value applied at each cycle (following
Equation 1) then becomes:

Gi=1:k = b+m(4T) (7)

where 4T is the time, in years, elapsed since the first cycle.
In situ optode drift is considered a slow process and a linear
model is thought to best approximate sensor behavior (Bittig and
Körtzinger, 2017). However, the software is flexible enough to
support rare cases requiring a segmented drift correction. If the
chosen ending node at cycle k is not the final cycle reported from
the float upon assessment, a drift assessment on the subsequent
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segment (cycles i = k:n) is automatically performed. The slope
of the second segment, m2, is found by first subtracting the
recomputed gain at the end of the first segment (Gk) from
individual gains, gi, of segment 2, and then regressing segment
2 through the origin. This can be expressed as

m2 =

∑n
i=k
(
gi − Gk

)
∗ xi∑n

i=k xi2
(8)

where x represents the time elapsed since the ending cycle of
segment 2. This method results in drifting gains that remain
continuous throughout segments. However, note that drift
assessment within the GUI (and especially multi-segment drifts)
should be limited to advanced users. It is recommended that drift
assessment be performed only after a sufficient amount of data
has been received (optimally at least 2 years). Care must be taken
in order to prevent correcting for an apparent drift that has been
influenced by a seasonal cycle.

Within the GUI there are two methods to test whether or
not a computed drift over the lifetime of a float is statistically
robust. Upon auto-computation of the drift, a two-tailed T-test is
performed to assess whether the calculated slope is significantly
different than zero at the 95% confidence interval (results are
returned on screen). Additionally, on the right-side panel in the
interface (see Figure 3), the GUI reports the computed Bayesian
Information Criteria (BIC) (Schwarz, 1978) following Equation 9
below, where SSR represents the sum of squared residuals of the
model, K is the number of model parameters, and n represents
the number of data points in the time series. The BIC weighs the
number of predictors within a model against the goodness-of-fit,
allowing the user to prevent over-fitting of the data (the model
with the lowest BIC is always preferred).

BIC = log
(
SSR
n

)
+

Klog n
n

(9)

In the SOCCOM array, of the 126 floats currently considered
candidates for optode drift correction, 32 exhibited significant
drift rates. Both positive and negative drift rates were observed,
with a mean of −0.07% per year, a SD of 0.65% per year and a
total range of−1.1 to 1.2% per year.

The drift correction proposed here relies on the existence
of air oxygen measurements relative to the NCEP atmospheric
reference. However it does not address the root cause of sensor
drift behavior which is somewhat unsatisfying. Bittig et al. (2018a)
show how inadequate temperature calibration of the oxygen
optode can oftentimes account for in situ drift rates apparent in
a float’s optode time series. They describe a correction method
(equation 23 of referenced publication) that can simultaneously
correct for inadequate temperature calibration and any seawater
carryover on the sensor during sampling while in air. The
supplementary material to their paper highlights the results of
applying the method to UW/MBARI float 9313 (WMO 5904474);
the strong oxygen-temperature response exhibited by this float
is shown to bias the sensor gain time series and application
of the correction method effectively removes the apparent drift
in sensor gain. However, recent testing demonstrates that this
correction approach may not be applicable across the full

FIGURE 5 | Comparison of post-deployment optode drift before and after
application of Bittig et al. (2018a, equation 23). Analysis includes 82
SOCCOM floats. Dashed line depicts the 1:1 relationship; red line is a Model II
regression (uncertainty in both X and Y ).

SOCCOM array. Figure 5 plots computed drift in optode gain
against the residual drift in optode gain after temperature
compensation using equation 23 from Bittig et al. (2018a) is
applied for 82 SOCCOM floats that have been operational for
at least 2 years. A Model II regression (shown in red) gives an
offset of 0 which suggests that the Bittig et al. (2018a) correction
is robust and does not add spurious drift. The slope of the Model
II regression is 0.797 (different than 1 at the 99% significance
level) suggesting that across the SOCCOM array, the correction
reduces the apparent drift in gain by 20.3%. For certain floats,
the Bittig et al. (2018a) correction tends to underestimate the
magnitude of the true drift of the optode, suggesting that error in
the temperature calibration of the optode is not the only potential
mechanism affecting optode drift and additional drift correction
may be warranted. The mean difference in gain drift before versus
after the correction is −0.021% per year and the SD of the
differences is 0.319% per year. These results highlight the fact
that the optode-temperature response is unique to each sensor.
This result is in accordance with findings of Johnson et al. (2017)
who show that only 20% of the change in gain over time can be
accounted for by temperature changes observed by a float. Such
corrections should therefore not be applied systemically across
the whole fleet, but rather integrated on a float-by-float basis in
delayed-mode with statistical indexing to weigh the benefit of
added complexity of the correction, similar to what is currently
being done to assess the need for drift corrections. These methods
may be integrated into the GUI framework in a similar manner
in a future revision.

Adjustment of Nitrate and pH Data
Adjustment of nitrate and pH data are performed after oxygen
data has been corrected. Similar to oxygen optodes, nitrate,
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and pH sensors on profiling floats often suffer from initial
calibration shifts that must be corrected prior to scientific use.
Such inaccuracies can manifest as offsets and/or drifts throughout
the data series. As described in Johnson et al. (2017), pH
offsets and drifts can be attributed to changes to the sensor
reference potential (k0) over time, while those apparent in nitrate
usually result from changes in light throughput due to aging or
fouled optical components. Therefore, adjustments to pH and
nitrate are applied as offsets to k0 and nitrate concentration
(µmol kg−1), respectively.

The general adjustment process for pH and nitrate is based on
evidence that the offsets and drifts are constant throughout an
entire profile (Johnson et al., 2013, 2017). For example, Johnson
et al. (2013) show that deviations of surface nitrate from zero
are paralleled at depth (1000 m) for a profiling float near station
Hawaii Ocean Timeseries; offsets derived at the surface applied
to the entire profile yielded corrected data within 1 µmol kg−1

of reference at 1000 m depth. Corrections for SOCCOM floats
involve comparison of raw float data to select reference fields at
depths below 1000 m (1500 m is the default target depth used in
SOCCOM operations) where spatial and temporal variability in
ocean chemistry is minimal. The corrections determined at depth
are then applied to the entire profile. This process is similar to the
protocol used to correct Argo salinity data (Owens and Wong,
2009). Figure 6 below shows the SAGE GUI interface where such
comparisons can easily be performed. Upon selecting a float,
default view specifications are loaded into the GUI, including
a profile window encompassing the entirety of the float’s life-
span, and a pressure range of 1480–1520 m where adjustment
assessment is performed (although this depth range can be
adjusted by the user). Float (blue) and reference (red) data within
selected time and pressure ranges are plotted in the top panels,
and the anomaly series (float minus reference) is plotted below
in green (see section “Reference Models Used in the Adjustment
of Nitrate and pH Data” below for a description of optional
reference datasets). GLODAPv2 (Olsen et al., 2020) crossover
data are also shown in the upper panel plots as a climatological
reference, but only to assess the consistency of adjusted data. As
in SAGE-O2, the search distance for GLODAPv2 data from each
profile can be set in the GUI.

Similar to conductivity sensors (Owens and Wong, 2009),
drifts and offsets occurring in data from nitrate and pH sensors
often vary linearly over long time periods, but calibration jumps
in the time series are not uncommon. Oftentimes the largest
drift rates occur over the first few cycles in a float’s life as can
be seen in the nitrate anomalies shown in Figure 6A. Nitrate
and pH anomalies from a float data series are thus best modeled
as discontinuous piecewise linear fits, where both drifts and
offsets change independently between segments that are bounded
on either side by defined cycle breakpoints. In the Figure 7
schematic, the correction, 1ANOM, at each cycle breakpoint, j,
is calculated as

ANOMj = Oj (10)

and the data correction for any subsequent cycle, i, within the
same segment becomes

ANOMi = Oj + Dj
(
Ti − Tj

)
(11)

FIGURE 7 | Qualitative schematic showing the adjustment model of a
theoretical sensor anomaly series. The two series breakpoints, identified in
purple, occur at cycles 1 and 5. Gray lines represent the least-squares fit
(adjustment model) to the elements (green dots) within each segment.

where O and D represent the offset (in µmol kg−1) and drift (in
µmol kg−1 per year), respectively, of the linear least squares fit
to the anomaly data series between cycles located at breakpoints
j and j + 1 (not including the latter bounding breakpoint),
and T represents time (in years). For nitrate data, this modeled
correction (represented by gray lines in Figure 7) is then
subtracted from the original data series. For pH data, the modeled
correction is applied as an offset to the reference potential (k0) of
the sensor as described in Johnson et al. (2016). Note that Johnson
et al. (2018b) describe a correction that is applied as a pH offset
at the depth where the anomaly was determined, rather than a
reference potential offset. The correction in Johnson et al. (2018b)
is conceptually incorrect and adjustments should be made to k0,
although as implemented in Johnson et al. (2018b) the results
were nearly identical. A matrix of correction factors (as shown
in the lower left corners of Figures 6A,B) is stored in a float-
specific text file along with any derived oxygen corrections for use
in reprocessing applications. This method constitutes a delayed-
mode correction approach that can be revisited and characterized
at periodic intervals throughout the float’s life.

Reference Models Used in the
Adjustment of Nitrate and pH Data
Multiple options are available for use in the estimation of deep
pH and nitrate reference fields for comparison against float data.
These include World Ocean Atlas climatological fields as well
as empirical algorithms derived from high-quality shipboard
data acquired from GO-SHIP cruises (Williams et al., 2016;
Bittig et al., 2018b; Carter et al., 2018). While the algorithms
provide estimated fields rather than direct measurements, their
performance has been extensively validated. The set of multiple
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FIGURE 6 | SAGE software interface showing nitrate data (blue) from MBARI/UW float 9752 (WMO 5904694) against the selected “LIR” reference (red) and the
resulting float minus reference anomaly time series (green). The view in (A) displays the raw nitrate float data; the view in (B) displays nitrate data that has been
adjusted using coefficients derived through the software.
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linear regression models (MLRs) by Williams et al. (2016) were
the first of such reference algorithms available in the Southern
Ocean and were utilized in the QC of SOCCOM nitrate and
pH float data during the early years of the program. Nitrate
and pH estimates produced using the Williams method rely
on MLR equations specific to two latitudinal bands around the
Southern Ocean. Predictor variables include pressure, salinity,
temperature, and oxygen. A key distinction between the Williams
MLRs and the other methods available for use within the SAGE
software is the lack of global extent in the Williams MLRs. In
addition, this method is limited in depth space to the range of
1000–2100 m. While this fully encompasses the depth nominally
used in QC for the majority of SOCCOM floats, sometimes
shallower reference depths are required, for example when a
float is under-ballasted and cannot reach 1000 m. Nonetheless,
the Williams MLR algorithms perform very well when used
within their specific range limits. Williams et al. (2016) states
root mean square errors (RMSE) of 0.3 µmol kg−1 and 0.004
total pH units for deep (1500 m) nitrate and pH estimates,
respectively. Additionally, Johnson et al. (2017) show linear
regressions between first nitrate and pH profiles from SOCCOM
floats, adjusted to the Williams MLRs at depth, and shipboard
bottle data taken at the time of deployment to be near unity,
with midrange differences (bottle minus float) of−0.1 µmol kg−1

and 0.006 pH units, respectively. These findings validate the
method as an acceptable reference option for float programs in
the Southern Ocean.

However, as increasing numbers of BGC floats are being
deployed outside of the Southern Ocean, an alternative reference
algorithm with full global extent is now the operational standard.
This allows for a consistent procedure, homogenous across
float arrays. The current default choices for estimating nitrate
and pH for comparison against SOCCOM float data are the
locally interpolated nitrate regression (LINR) and the locally
interpolated pH regression (LIPHR) (or LIRs, collectively)
(Carter et al., 2018). The LIR algorithms were developed from a
series of MLRs trained using GLODAPv2, resulting in a separate
set of coefficients for each 5◦ latitude and longitude grid box
and 33 different depth surfaces. The derived coefficients at each
grid point then get interpolated onto a float’s location for use
in generating a final nitrate or pH estimate. For SOCCOM
assessments, depth, salinity, temperature, dissolved oxygen as
well as profile latitude and longitude are used as predictor
variables (LIR regression #7). The RMSE of the residuals between
LIPHR and LINR estimates within 1000 and 2000 m using
predictor set #7 and the test observations used for algorithm
validation were 0.006 pH units and 0.47 µmol kg−1, respectively
(Carter et al., 2018).

A third optional reference algorithm is the CArbonate system
and Nutrient concentration from hYdrological properties and
Oxygen using a Neural-network, Bayesian approach (CANYON-
B, Bittig et al., 2018b). This is a neural network mapping
performed in a Bayesian framework, that is, informed by an
ensemble of model components at each stage rather than fixed
values. This model is a revised version of an earlier individual
neural-network approach, CANYON, originally developed by
Sauzède et al. (2017). In their publication, Bittig et al.

(2018b) compare the performance of CANYON-B with LIR
for various parameters, including nitrate and pH, against a
post-GLODAPv2 validation dataset. The authors stress that,
while both methods perform similarly well in a bulk statistical
sense, local estimates can still be quite different. Figure 8
compares differences between pH and NO3

− estimates for
the SOCCOM array using CANYON-B and LIR algorithms.
The mean (SD) of the differences at the 1500 m depth
level (the target depth for QC assessment in SAGE) are
−0.001 (0.006) for pH and −0.053 (0.278) µmol kg−1 for
NO3

−. Larger differences near the surface are largely due to
greater uncertainty in the LIR algorithms at these depths,
as is discussed in Bittig et al. (2018b) (see figure 3 and
associated text from their publication). However, as is also
noted by Bittig et al. (2018b), estimates from all algorithms
show some level of enhanced uncertainty toward the surface
due to difficulty in accurately capturing seasonal variability and
effects of air-sea gas exchange. It should be noted that pH
estimates generated by CANYON-B are intended to be in line
with pH calculated from DIC and TA, whereas pH estimates
using the LIPHR method are considered to be consistent
with pH that has been spectrophotometrically measured (for
further discussion on the pH-dependent bias that exists between
computed versus spectrophotometrically measured pH, please
see Carter et al., 2018). While the LIPHR algorithm has
a flag to apply a linear adjustment that will subsequently
produce estimates consistent with calculated pH, this method
should not be used for calibrating a pH measurement from a
float, as ISFET pH is consistent with spectrophotometric pH
measurements (Takeshita et al., 2020). The differences shown
in Figure 8 were performed after a linear transformation
was applied to CANYON-B estimates following Carter et al.
(2018, equation 1) to bring estimates back into alignment with
spectrophotometrically measured pH.

A final note should be made regarding the use of pH estimates
that are based on measurements made over a large time span.
Ocean pH is decreasing due to increasing atmospheric carbon
dioxide concentrations and these effects are sometimes detectable
at the depth range used for pH sensor adjustment (Ríos et al.,
2015). Each of the algorithms described here has been trained
on shipboard data that may exhibit this effect. While the LIPHR
algorithm does include a flag for optional application of an ocean
acidification adjustment, this is a static adjustment and does not
account for geographic differences in ocean acidification rates,
nor does it account for changes in global ocean acidification rates
over time. This highlights the need for such reference equations
to be periodically updated, utilizing recent training datasets to
provide more accurate algorithm coefficients.

Computation of Nitrate and pH
Adjustments Using Automated
Change-Point Detection
In the initial version of the SAGE software, the user manually
chose the location of each breakpoint (node). The inherent
subjectivity in this approach in addition to the increasing time
investment required by the operator to complete a full adjustment
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FIGURE 8 | Fleet-wide differences of computed pH (left) and nitrate (right) using CANYON-B and LIR algorithms. Data were binned at 10, 50, and 100 m pressure
intervals for 0–350, 350–1000, and 1000–2000 db, respectively. The blue line represents the median difference and the shaded areas represent the interquartile
range.

assessment of the SOCCOM array proved less than optimal.
In the current software version, both the optimal number
and location of each breakpoint can be assigned automatically
through an automated multi-step process. First, the binary
segmentation method of change-point detection is applied using
the MATLAB function, ischange, which begins by splitting the
data series for variable y, of length n, into two segments separated
by a change-point, j (Killick et al., 2012). The location of j along
the time series is then iteratively shifted until a minimization of
the left side of the following equation is reached:

C
(
y1:j
)
+ C

(
y(j+1):n

)
< C

(
y1:n

)
(12)

where C represents the cost function

C (x) = nVar(x) (13)

where n is the number of data points in the segmented data
series, x, and Var is the variance. This process is then repeated,
further splitting up the segments to find the optimal location
of an increasing number of changepoints. Next, in order to
statistically determine the best number of changepoints of the
various groupings tested, a modified BIC is calculated for each
model, following

BIC = log
(
SSR
n
+ α2

)
+

Klog n
n

(14)

where the α term is used as a threshold on the mean residual,
driven by the target accuracy of the sensor. In SOCCOM
processing operations, α = 0.5 and α = 0.005 are used for nitrate
and pH data, respectively. If α is omitted, equivalent to assuming
the sensor has no inherent noise, the changepoint algorithm
will often find an excessive number of change points, which
is inconsistent with known sensor behavior. The location and

number of changepoints from the model with the lowest BIC
value is then used to derive offsets and drifts as described in
section “Adjustment of Nitrate and pH Data.” Note that the
presence of NaNs (missing data) along the BGC data series
prohibits the auto-calculation of change-points, so any missing
values are first linearly interpolated. In an attempt to encourage
the operator to more carefully scrutinize a data series with large
amounts of missing data (in the case of a poorly performing
sensor or shoaling float), a warning message will pop-up if more
than 50% of the BGC data series is missing. However, this is
only a safeguard and does not necessarily mean that the auto-
changepoint detection method is not applicable.

A key concern in the move from a manually assigned
to an automated definition of breakpoints in the sensor
QC-adjustment process was the potential for degradation
in accuracy of the adjusted SOCCOM dataset. Thus, prior
to operational implementation of the automated method,
a quality assessment was performed using two adjusted
datasets, one done manually by a trained biogeochemical
float QC operator and the other performed automatically
using the changepoint detection method described above.
Figures 9A–D show that the use of automated changepoint
detection in the SOCCOM QC process results in a fewer
number of change-points, on average, and an overall better
model of the anomaly time series, in a statistical sense
(lower BIC value), than the previously employed manual
correction method.

However, the absolute difference in BIC between models
is small in most cases (mean differences of 0.658 and 1.165
for nitrate and pH, respectively) with the automated method
showing progressively better performance as model complexity
increases (Figures 9E,F). It is generally accepted that when
comparing candidate models, a difference in computed BIC less
than 2 is relatively inconsequential, meaning that the two models
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FIGURE 9 | (A,B) Histograms showing differences in number of changepoints identified by the manual (NMAN ) versus automated (NAUTO) method for nitrate and pH
sensor QC. (C,D) Comparison of computed Bayesian Information Criterion (BIC) for manual (red circles) and automated (blue squares) changepoint identification in
nitrate and pH QC. Dashed lines represent mean BIC values for each method. (E,F) Difference in computed BIC (manual versus auto) against mean BIC value for
each float, for nitrate and pH. Solid and dashed lines represent mean difference ±1 SD, respectively. A total of 120 SOCCOM floats were used in each analysis.

are statistically similar and minimal (if any) improvement can
be attained by choosing one over the other (Kass and Raferty,
1995; Fabozzi et al., 2014). When taken in this context, results
from this comparison suggest that the initial manual method
of change-point detection for QC across the SOCCOM fleet
was not of poor quality, and that the move to automated
changepoint detection sustains such quality while concurrently
reducing the time required to perform an objective fleet-
wide assessment.

RESULTS

Nitrate and pH Adjustments Applied to
SOCCOM Float Data
The magnitude of a required sensor adjustment, as derived
from the methods described in the previous sections, represents
the degree to which sensor performance has changed since
laboratory calibration. A summary of the adjustments required
over time across a full array of sensors can unveil any systematic
biases and subsequently help identify key areas for which to
focus future development efforts. While the adjustment methods
described in this article improve data accuracy, reducing the

magnitude of required adjustments to a sensor (through ongoing
improvements to sensor design) is the optimal goal. As described
in section “Adjustment of Nitrate and pH Data,” the coefficients
to the linear fits of each segmented anomaly series are included
within a single float-specific correction matrix that is used in
the data adjustment process. The offset associated with the
first segment exemplifies sensor performance upon deployment.
As each segment is treated independently, the value of any
subsequent offset can provide information on sensor health over
time when viewed relative to the first offset.

The distributions of the first and second offsets required
for nitrate and pH data in the SOCCOM array are shown in
Figure 10. The positive skew of the nitrate first offset distribution
demonstrates that the majority of SOCCOM nitrate sensors
are biased high upon deployment while the opposite is true
for pH sensors within the array. The magnitude of the bias
is 0.91 µmol kg−1 for nitrate, and −0.032 for pH (Table 1).
Distributions of the second offsets (relative to the first) show
reduced spread across both sensor types and an elimination of
bias in pH sensor data. This behavior is not surprising; oftentimes
the largest anomaly is observed on the first cycle as the sensor
re-conditions to an aqueous environment. Continued exposure
to seawater at 1500 m helps to stabilize the sensors, particularly
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FIGURE 10 | Histograms of first and second offsets (top), and first-year and second-year drift rates (bottom) for nitrate (A) and pH (B) data. Offsets were computed
as float data minus reference data at a nominal calibration depth of 1500 m; the second offset is relative to the first. Drift rates were computed using a Model I
regression on the anomaly time series.

TABLE 1 | Data adjustment summary statistics for nitrate (a) and pH (b).

(a) Nitrate 1st offset
(µ mol kg−1)

Nitrate 2nd offset
(µ mol kg−1)

Nitrate 1st-year drift (µ
mol kg−1 year−1)

Nitrate 2nd-year drift (µ
mol kg−1 year−1)

Median 0.72 −0.95 −0.17 0.08

Mean 0.91 −0.95 −0.51 −0.09

SD 3.12 1.75 1.52 0.96

(b) pH 1st offset pH 2nd offset pH 1st-year drift (year−1) pH 2nd-year drift (year−1)

Median −0.020 0.002 0.000 −0.002

Mean −0.032 0.001 −0.017 −0.005

SD 0.059 0.040 0.060 0.032

the pH sensor. The optics of the nitrate sensor are more sensitive
to transient perturbations induced by biofouling so jumps in the
data series are more often observed. This is exemplified by the
fact that a small bias (negative) remains in the distribution of
second nitrate offset, showing that a second offset is almost always
required to bring nitrate data in line with climatology.

Also notable in the distributions is that there is a small
subset of floats receiving relatively large first offset corrections
for nitrate and pH sensor data. Currently there is no operational

threshold in place for maximum allowable adjustment. Floats
requiring larger than normal nitrate or pH adjustments are
analyzed on a case-by-case basis and may be gray-listed as bad
or questionable by the delayed-mode operator upon review of
laboratory calibration and sensor diagnostics. These large offsets
may be the result of changes in optical alignment or sensor
contamination during transport.

First year and second year sensor drifts for nitrate and pH
are also shown in Figure 10 (lower histograms). These were
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computed as the slope of a Model I regression over the first
and second year of data for each float. This ensured a uniform
time frame for drift comparison across the array (as the length
of each segment within a float’s adjustment matrix can vary).
While drift in the second year is not completely eliminated,
there is an 80% (70%) reduction in mean drift rate across
the array for nitrate (pH) sensors from year 1 to year 2. The
reduction in sensor drift from year 1 to year 2 is not a uniform
rate of change. By the second year, around 25% of nitrate
anomalies have drifted beyond 2 µmol kg−1 of their initial
value with the majority of sensors drifting negative (measuring
low relative to reference fields) and the largest proportion
of drift occurring within the first five cycles. pH sensors see
both positive and negative drift rates, with close to 50% of
the data drifting beyond 0.03 pH units of their initial value.
However, similar to nitrate sensors, pH sensors are also relatively
stable beyond the first few cycles. Because both nitrate and pH
sensors exhibit the largest rates of in situ drift within the first
2 months since deployment, it is recommended that initial QC
assessment be performed only after the first five cycles have been
returned from a float.

While we see sensor stability improving with time since
deployment for individual sensors, it is also important to
understand if adjustment requirements across the array are
improving over each subsequent deployment year. Figure 11
shows box plots of the first offsets required for nitrate (left) and
pH (right) data grouped by deployment year. Median offsets for
nitrate seem to be more or less randomly distributed around zero,
indicating that the mechanisms responsible for post-deployment
shifts in calibration are somewhat poorly constrained. For pH,
this is not the case. Median values remain negative over all
deployment years which suggests a systematic negative bias for
this sensor. pH sensor offset statistics also show a more dramatic
change over time, in both the location of central tendency and
degree of dispersion. These shifts in offset statistics are likely
linked to changes in sensor design or laboratory calibration
procedure. For example, significant improvements were seen
in 2016 due to the implementation of improved pH sensor
conditioning protocols in the lab (as described in Johnson et al.,
2017) and the move to a thicker ISFET covering. Beginning in
2016 the offset distributions are centered closer to zero than
in previous years. Further improvement can be seen in 2018
in conjunction with the switch from silver to platinum wire
connections on the ISFET electrode. The 2018 distribution has
a much tighter interquartile range, indicating more consistent
sensor behavior.

Validating SOCCOM Nitrate and pH
Adjustments
In this section, we discuss a system for validating our calibration
methods. This involves comparison of post-corrected float data
to data from both high-quality shipboard bottle casts taken
alongside each SOCCOM float at the time of deployment, and
nearby stations within the GLODAPv2 dataset (Olsen et al.,
2020). While shipboard data can also be useful for assessing initial
offsets along a profile, it is not essential to float calibration and

FIGURE 11 | Boxplot summaries of first nitrate (left) and first pH (right)
offsets, grouped by deployment year. Red lines represent the median, box
boundaries represent the interquartile range (Q3–Q1), whiskers are the outer
range of data, excluding outliers (red +) which are defined as data points that
are larger than Q3 + 1.5 × (Q3 – Q1) or smaller than Q1 – 1.5 × (Q3 – Q1).

is almost always reserved as an independent validation of the
employed correction methods.

The Use of Shipboard Bottle Data
With the exception of oxygen calibration on Navis floats, the
methods described in the previous sections for adjusting chemical
data from a float do not depend on the existence of shipboard
reference data collected alongside a float’s deployment. This is
advantageous in that any shipboard data taken at the time of
deployment can be used to validate the applied in situ calibration
methods. The SOCCOM program has required shipboard data
collection alongside float deployment wherever possible to
support the building of a robust validation dataset. However,
because it is not essential to sensor QC, shipboard data collection
may be reduced to select cruises in the future.

Comparisons of SOCCOM quality-controlled float data
against shipboard data taken near the time of deployment are
shown in Figures 12, 13. All float data have been interpolated
onto the pressure axis of the hydrocast data. A portion of
the error in the differences can be attributed to spatial and
temporal changes in hydrography between the float profile and
bottle samples. Float deployments typically occur as the ship
begins heading away from a sampling station after the CTD
rosette cast has been performed. This is done to reduce the
chances of the ship running into the float. An additional lag
time exists between deployment and when the float completes
its first profile. Float-to-bottle matchups in the SOCCOM array
are on average 23 h and 8 km apart in time and space because
of this. Nonetheless, the float to bottle matchups show very
good agreement. The slope of the Model II regression for each
parameter is indistinguishable from the 1:1 line. The median
bottle-minus-float difference for adjusted oxygen, nitrate, and
pH data are 0.35 ± 6.8 µmol kg−1, −0.12 ± 0.99 µmol kg−1,
and 0.002 ± 0.015 (1 SD) total pH units, respectively. If half
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FIGURE 12 | Scatterplots of adjusted float oxygen (A), nitrate (B), and pH (C) data versus shipboard bottle data (all depths). The solid and dashed lines represent
the 1:1 and Model II least squares fit, respectively. Bottle-minus-float statistics [number of observations (n), mean (µ), median (M), and standard deviation (σ)] are
included in the plots.

FIGURE 13 | Scatterplots of bottle minus float matchups for adjusted (A) oxygen, (B) nitrate, and (C) pH data, plotted in depth space. Blue lines represent the mean
of data within depth bins.

of the SD is due to ocean variability between the time of bottle
sampling and the float profile, then the float data would have
uncertainties (1 SD) of about 3 µmol kg−1, 0.5 µmol kg−1,

and 0.007 total pH, respectively. These values are very close
to the accuracies reported in Johnson et al. (2017). Oxygen
shows the largest improvement; this may partially be attributed
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to the implementation of the optode drift correction which
was not yet accounted for at the time of the Johnson et al.
(2017) publication.

Additionally, an independent triple collocation analysis by
Mignot et al. (2019) of quality controlled BGC-Argo float data
in the Mediterranean Sea shows similar results, stating accuracies
for oxygen and nitrate data of 2.9(5.1) and 0.46(0.25) µmol kg−1,
respectively [additive bias (rmse)]. Note that the triple collocation
analysis involved float, model, and shipboard data, with the
assumption that the shipboard data was perfectly calibrated (as
described in the Mignot et al., 2019 supplemental). Maximum
depths reached by floats in the Mignot et al. (2019) analysis was
1000 m, as opposed to 2000 m on SOCCOM floats. The upper
water column, therefore, made up a larger relative proportion
of their float-to-bottle dataset; spatio-temporal mismatch due to
greater oceanic variability at these depths likely accounts for the
slightly larger biases observed.

Float-to-bottle matchups in pressure space provide a
validation of the assumption that sensor offsets are constant with
depth (Johnson et al., 2013, 2016, 2017). Figure 13 shows the
bottle-minus-float differences for all oxygen, pH, and nitrate
matchups, plotted against pressure. The blue lines represent
binned averages. There are no large trends in the oxygen or
nitrate values with depth, confirming the assumptions in our
calibration method. It is also apparent that the slow response of
the oxygen sensor (Bittig et al., 2014) does not cause excessive
offsets in the oxycline of the Southern Ocean, although this issue
may be more serious in regions with steeper oxygen gradients.
For pH, the pressure-binned distribution of mean differences
show a negative bias of 5 millipH at depth. This bias changes sign
toward the surface. Johnson et al. (2016) show a similar trend
in comparison to discrete data (figure 6 in their publication,
although note that the trend is reversed as their plot represents
float-minus-discrete) which they attribute to an incomplete
understanding of carbonate-system thermodynamics at high
pressures. While the magnitude of this bias is within the limits
of stated uncertainty in the pH correction method (see section
“Nitrate and pH Adjustments Applied to SOCCOM Float Data”),
the depth-dependent nature of the pH bias, as evident in the
data, should be researched further.

Comparisons to GLODAPv2
As described in the previous section, SOCCOM data quality
validation is performed primarily in reference to shipboard
hydrographic data taken at the time of deployment. This method
of validation is limited in scope to the initial profile returned
from each float. Since in situ drift is often observed in nitrate and
pH (and to a lesser degree, oxygen) sensors onboard SOCCOM
floats, a logical question is whether or not the quality of the
applied adjustments remains stable throughout the duration of
a float’s life. For nitrate and pH, degradation in the quality
of the adjustment over time could come from a few specific
sources. Possible examples include a reduction in accuracy in
one of the input parameters to the reference models (namely,
temperature, salinity, or oxygen), or a reduction in the accuracy
of the reference algorithm itself due to gradual changes in deep
ocean conditions that challenge the validity of the empirical

relationships over long time scales. The first possibility poses less
of a threat, as temperature and salinity data on Argo floats are
quite stable and require minimal adjustment. And, although drift
is observed in some oxygen optodes onboard SOCCOM floats
(see section “Drift in Optode Gain”), comparison to a stable
atmospheric reference provides a robust means for correction.
And, ensuring the validity of reference algorithms over time will
require periodic updates to the model derivations in years to
come. Other possible causes for degradation in data adjustment
quality through time are potential changes in the pressure
or temperature coefficients of the sensor. If such changes in
calibration occurred, then corrections derived at depth as the
sensor aged would not be accurate near the surface.

The impacts from the issues described in the preceding
paragraph can be assessed for the current SOCCOM dataset
through an independent comparison of SOCCOM quality-
controlled data at different stages of a float’s life with
hydrographic data from nearby stations in the GLODAPv2
dataset (Olsen et al., 2020). Figure 14 shows histograms of
GLODAPv2 minus float data for oxygen, nitrate, and pH
crossovers within 20 km distance of GLODAPv2 station data
with no temporal restrictions. Because we chose to not constrain
the matchup data temporally (doing so greatly reduces the
number of matchups), only data below 300 dbar were used
to minimize discrepancies due to seasonal variability in the
upper water column. These matchup criteria are consistent
with validation analysis performed in Johnson et al. (2017).
The upper panels in the figure include comparisons from
floats between 6 months and 2 years of age, and the lower
panel includes data from floats greater than 2 years of age.
A 3.59 µmol kg−1 and 0.027 pH bias between float and
GLODAPv2 data can be observed for oxygen and pH data,
respectively for the young (6 months < age < 2 years) floats.
Similar biases are observed for the old (age > 2 years) floats
(3.82 µmol kg−1 and 0.020 for oxygen and pH, respectively).
If the quality of the adjusted float data were degrading over
time, we would expect the biases to increase with comparisons
using the older cohort of float data. The consistency of the
biases for young and old floats are thus more likely a result
of temporal differences between mean GLODAPv2 data used
in the analysis and the corrected SOCCOM dataset. The mean
age difference between the two datasets is 18.6 years. Both the
oxygen and pH biases increase linearly as the age difference
between the GLODAPv2 station time and the profiling float
measurement time increases (Johnson et al., 2017; Swart et al.,
2018). The observed rate of change in the pH bias across this
time frame (0.001 pH year) is consistent with expected and
observed rates of ocean pH decrease (Ríos et al., 2015; Williams
et al., 2018) due to increasing atmospheric CO2, which creates
ocean acidification. A linear change in the oxygen bias over
nearly two decades (0.2 µmol kg year) with Southern Ocean
oxygen decreasing by 4 µmol kg is consistent with reported
rates of oxygen change in the Southern Ocean that are based
on shipboard data (Helm et al., 2011). These consistent rates
of change lend support to our hypothesis that the biases for
oxygen and pH seen in Figure 14 are the result of dynamic ocean
change in the Southern Ocean in response to global climatic shifts
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FIGURE 14 | Histograms of GLODAPv2 minus quality-controlled oxygen (left), nitrate (center), and pH (right) float data. Upper panels include data from floats
between 6 months and 2 years of age; lower panels include data from floats older than 2 years of age. Matchups were restricted to data that was within 20 km of
GLODAPv2 reference stations.

(Bronselaer et al., 2020) and not due to instrument biases. This
provides strong evidence that the QC methods continue to be
accurate over the lifetime of the float.

DISCUSSION

In this article, we presented a coherent framework for applying
delayed-mode adjustment procedures to oxygen, nitrate, and
pH data from SOCCOM biogeochemical profiling floats. The
software presented, SAGE (SOCCOM Assessment and Graphical
Evaluation) and SAGE-O2, provide a robust way to visualize and
assess the quality of these data. These software are open source
and available through GitHub.1 The tools are intended to be
used periodically throughout a float’s life to reexamine sensor
performance in delayed-mode. Adjustments derived using the
software can then be applied to existing data and propagated
forward in real-time until the next delayed-mode assessment
is completed. A notable aspect of the procedure is in the
relationship between the oxygen adjustment and that of nitrate
and pH. The collective use of both SAGE-O2 and SAGE offers a
clear pathway to adjusted data for oxygen optodes, nitrate, and
pH sensors, all of which commonly coexist on biogeochemical
profiling float platforms.

The successful expansion of the BGC-Argo program on a
global scale, as described by Roemmich et al. (2019), will partially
depend on the implementation of standardized data adjustment
methods across float platforms. The methods and software tools
presented here have already been adopted for use by other
Argo data centers and are helping to increase the level of high-
quality biogeochemical profiling float data available to users
around the world. Although these software were developed

1https://github.com/SOCCOM-BGCArgo/ARGO_PROCESSING

specifically for Ocean Data View – compatible ascii files used
in the SOCCOM program (which also contain derived carbon
parameters not found in Argo data files), data adjustments
derived within the software can easily be integrated into Argo
NetCDF data processing pathways. Structuring the tools in this
way has allowed for flexibility in adaptation across data centers.
Additionally, this flexibility means that applications are not
limited to Argo float data. The SAGE tools have the potential
for use in post-deployment calibration of nitrate and pH data
from other platforms such as gliders as well (Takeshita et al.,
2020). As Bushinsky et al. (2019b) describe, sustaining multiple
types of observational platforms in the ocean can increase our
ability to resolve key processes at different spatial and temporal
scales and in regions particularly susceptible to the effects of
global change such as coral reef habitats and coastal upwelling
zones. Ensuring that biogeochemical data are comparable across
platforms is therefore essential.

Furthermore, along with performing repeated, standardized
QC procedures it is important to run validation analysis, as
described in section “Validating SOCCOM Nitrate and pH
Adjustments” with regularity. This provides a metric for tracking
improvements to sensor accuracy over time and testing the
effects of processing upgrades or changes in QC methodology
on the quality of the dataset. While data from biogeochemical
sensors onboard profiling floats are revolutionizing capabilities
in global ocean carbon research and modeling (Ford, 2021), the
operational limitations of the sensors and the measurements
they provide cannot be overlooked. It is our hope that the
calibration methods applied within the SOCCOM program,
as outlined above, will serve as a global model for profiling
float QC, but also that the validation that follows will help
to constrain the scientific questions that can be asked and
provide inspiration for future research in both chemical sensor
development and QC.
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