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Species distributional estimates are an essential tool to improve and implement
effective conservation and management measures. Nevertheless, obtaining accurate
distributional estimates remains a challenge in many cases, especially when looking
at the marine environment, mainly due to the species mobility and habitat dynamism.
Ecosystems surrounding oceanic islands are highly dynamic and constitute a key actor
on pelagic habitats, congregating biodiversity in their vicinity. The main objective of
this study was to obtain accurate fine-scale spatio-temporal distributional estimates
of cetaceans in oceanic islands, such as the Madeira archipelago, using a long-term
opportunistically collected dataset. Ecological Niche Models (ENM) were built using
cetacean occurrence data collected on-board commercial whale watching activities
and environmental data from 2003 to 2018 for 10 species with a diverse range of
habitat associations. Models were built using two different datasets of environmental
variables with different temporal and spatial resolutions for comparison purposes.
State-of-the-art techniques were used to iterate, build and evaluate the MAXENT
models constructed. Models built using the long-term opportunistic dataset successfully
described distribution patterns throughout the study area for the species considered.
Final models were used to produce spatial grids of species average and standard
deviation suitability monthly estimates. Results provide the first fine-scale (both in
the temporal and spatial dimension) cetacean distributional estimates for the Madeira
archipelago and reveal seasonal/annual distributional patterns, thus providing novel
insights on species ecology and quantitative data to implement better dynamic
management actions.
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INTRODUCTION

While the construction of species distributional estimates is
a crucial topic to conserve, protect, manage and monitor
biodiversity (Rodríguez et al., 2007), it stills remains a challenge
to obtain accurate and reliable products to ensure practical
management actions (Araújo et al., 2019). One of the main
tools used for these purposes are ecological miche models
(ENMs). A class of methods that use occurrence data together
with environmental data to make a correlative model of
the environmental conditions that meet a species’ ecological
requirements and predict the relative suitability of habitat
(Warren and Seifert, 2011). Challenges are even more significant
when estimating species distributions in the marine environment,
where there are many factors to take into account, such as the
species mobility and habitat dynamism (Redfern et al., 2006;
Fernandez et al., 2017), or the difficulties of sampling at oceanic
environments, primarily when referring to cetacean populations
(Tyne et al., 2016).

Lately, several studies found that non-traditional data sources
(such as opportunistic or citizen science data; e.g., Catlin-
Groves, 2012; Embling et al., 2015) can be a cost-effective
solution to overcome some of the challenges mentioned,
allowing to produce relatively accurate cetacean abundance and
distributional estimates (e.g., Fernandez et al., 2018; Robbins
et al., 2019). When studying species in dynamic habitats,
opportunistic surveys (and citizen science) can have many
advantages over traditional methods. Formal and dedicated
surveys provide poor coverage in time because of financial and
logistic constraints, meaning that they cannot capture long-term
variation in species distributions and occurrence.

Oceanic islands are a key actor on pelagic habitats,
congregating biodiversity in their vicinity, primarily due to the
“island-mass effect” (Doty and Oguri, 1956) or “island stirring”
(Mann and Lazier, 1991), which is the topographic disturbance of
oceanic flow by an island and its effects on the marine ecosystem.
Several oceanographic features, such as wakes and eddies or
vortices (e.g., Aristegui et al., 1994; Caldeira et al., 2002), are
originated due to the presence of islands and have a direct effect
on the local and regional productivity (Barton et al., 2000). Due
to their dynamic nature, their effects on marine species are not
well understood.

Cetaceans are marine mammals in the order Cetacea, which
includes whales, dolphins, and porpoises. They have a strong
influence on the marine ecosystems: as consumers of fish
and invertebrates, as prey to other predators, as reservoirs
of carbon, as vertical and horizontal vectors for nutrients
and as detrital sources of energy and habitat in the deep-
sea (Roman et al., 2014). Whales and dolphins are essential
to ensure the correct functioning of the marine ecosystems
worldwide, with a vital role in the biogeochemical cycles at
biome and Earth system scale (Albouy et al., 2020; Norris et al.,
2020). A high diversity of cetaceans (∼30 species) has been
recorded in the Madeira Archipelago (NE Atlantic), including
species featured in the Red List of the International Union for
Conservation of Nature as Endangered, Vulnerable, and Data
Deficient (Freitas et al., 2012; Alves et al., 2018). These waters

host populations with some degree of residency, such as the
short-finned pilot whale (Globicephala macrorhynchus) or the
bottlenose dolphin (Tursiops truncatus) (Alves et al., 2013b;
Dinis et al., 2016a). Other deep-diving cetacean species, such
as the sperm whale (Physeter macrocephalus) and Blainville’s
beaked whale (Mesoplodon densirostris), are among the most
sighted species by commercial whale watching companies with
some periodicity.

Moreover, baleen whales occur frequently in the archipelago,
especially the Bryde’s whale (Balaenoptera edeni), with a
relatively high occurrence rate but with a very high interannual
variation (Alves et al., 2018). Recent studies revealed cetacean
interconnectivity among neighboring archipelagos, such as the
Canaries and the Azores, with re-sightings of individuals
from several species among the three archipelagos (e.g.,
Alves et al., 2019; Dinis et al., 2021). Additionally, Madeira
constitutes an area of interest for several (at least ten) cetacean
species due to being used for traveling, feeding, resting,
socializing and calving (Alves et al., 2018). However, despite its
ecological importance, up to date, there are no reliable spatio-
temporal distributional estimates for any of the cetacean species
present in the area.

In this study, we provide, for the first time, a fine-scale
spatio-temporal approach to obtain distributional estimates of
cetaceans around the Madeira archipelago. Having a better
knowledge of the species suitability throughout the year
is critical for their conservation through maritime spatial
planning and management of human activities. We built
niche models for the ten most sighted cetacean species
in Madeira, using two different datasets of environmental
variables with different temporal and spatial resolutions.
Models were iterated and selected using several state-of-the-art
evaluation techniques.

MATERIALS AND METHODS

Study Area and Data Collection
The Madeira archipelago is in the NE Atlantic (33◦N, 17◦W)
and is mainly influenced by a branch of the Gulf Stream, the
Azores Current system. Caldeira et al. (2002) suggested that the
archipelago’s latitude might be the subtropical front, where cold-
temperate waters from the north meet warm tropical waters from
the south. The island mass effect of the archipelago is easily
noticeable from satellite imagery, with wakes being formed on
leeward areas and lee eddies spinning of both flanks of Madeira
Island. Moreover, upwelling was detected near the island’s coasts,
with the region between Madeira and Desertas Islands being
particularly dynamic (Caldeira et al., 2002).

Cetacean occurrences were collected in an opportunistically
way on-board commercial whale-watching vessels departing
from two harbors (Calheta and Funchal) separated over 30 km
on the South Coast of Madeira Island (Figure 1). The
occurrences were collected by three operators (see section
“Acknowledgments”) during their regular touristic trips from
January 2003 until December 2018, with a total of 3,138 days
sampled. Experienced observers from the companies collected
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FIGURE 1 | Cetacean sightings for 23 species (n = 8,607) pooled together, collected by the commercial whale watching companies departing from Funchal and
Calheta in Madeira Island (Portugal) from 2003 until 2018.

TABLE 1 | Number of sightings for the 10 most sighted species (out of 23) by
commercial whale watching companies from 2003 until 2018 used in
the present study (n = 8,607).

Species N

Atlantic Spotted dolphin (Stenella frontalis) 3040

Bottlenose dolphin (Tursiops truncatus) 2733

Short-beaked common dolphin (Delphinus delphis) 1936

Short-finned pilot whale (Globicephala macrorhynchus) 1503

Bryde’s whale (Balaenoptera edeni) 931

Sperm whale (Physeter macrocephalus) 554

Striped dolphin (Stenella coeruleoalba) 292

Blainville’s beaked whale (Mesoplodon densitrostris) 144

Fin whale (Balaenoptera physalus) 130

Rough-toothed dolphin (Steno bredanensis) 81

location and species identification of each encounter. We applied
a database filtering and cleaning to remove duplicate observations
and incorrect GPS points clearly outside of the study area
(or on land). A total of 8,607 sightings from 23 different
species were selected during this period, from which the ten
most sighted species were used in the present study (Table 1).
Detailed methodological procedures on the data collection on-
board commercial whale-watching vessels are given in Alves et al.
(2018).

Occurrences and Background Data
All occurrences records were projected onto 2 and 8 km grids
to match the resolution of the two environmental datasets.
Observations data collected on whale-watching operations might
have a different source of biases due to the nature of the touristic
activity. For example, it is not unusual that the same group of
animals is visited more than once in a very similar location, both

in space and time, which creates autocorrelation problems in
contiguous grids. Therefore, a filtering approach was applied to
remove potentially related sightings. A spatial thinning procedure
was applied to all the sightings for both temporal groupings (1-
and 8-days), using the spThin R package (Aiello-Lammens et al.,
2015). Different sizes of the exclusion radius were tested (2, 4,
and 6 km), selecting at the end a value of 2 km, which was
the best compromise to reduce related sightings and still keep
a good amount of observations. This agrees with the relatively
small size of the sampled area (around 2,100 km2) by the whale-
watching boats. Furthermore, during the modeling analysis,
occurrences were also resampled to one occurrence per pixel for
each temporal grouping.

Due to the sampling effort’s opportunistic nature, we applied
a Minimum Sampled Area (MSA) approach, as Fernandez et al.
(2017) used. All the sightings for each specific temporal scale
were pooled together using a Minimum Convex Polygon, adding
a 2 km buffer. Grids intersecting the polygon were taken as
potentially sampled areas, therefore classified as background.
The amount of effort per temporal unit (day or 8-days) was
considered using the number of sea trips performed on a
specific period. For each analysis, random background datasets
(n = 10,000) were created, using the effort as a weighting factor.

Environmental Variables
A set of 19 environmental variables were used to calibrate
the models (Table 2). Six terrain variables (depth, slope, and
distance to the 1,000 m bathymetric lines, valley depth, distance
to canyon-like features, and distance to major canyons) were
derived from a digital elevation model (DEM) using the
bathymetric dataset from the Instituto Hidrográfico of Portugal
and interpolated using QGIS 3.1 at a resolution of 1 km.
Physical features, such as the depth and the slope, can directly
influence the distribution of cetaceans (e.g., Moore et al., 2000;
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Azzellino et al., 2008). Depth was directly read from the
DEM; slope and distances to the 1,000 m bathymetric lines
were calculated using QGIS 3.1. Moreover, other morphological
features, such as canyons, can play an essential role in cetacean
distributions. Canyons and other similar features can affect
cetacean abundance patterns due to a series of physical features
that enhance primary productivity and convert it to potential
prey biomass (Moors-Murphy, 2014). These effects are even
more noticeable when dealing with deep-diving cetacean species,
which might directly rely on these areas for feeding purposes
(Breen et al., 2020).

We calculated a series of morphological variables to include
the effects of morphological features as prey aggregation areas
into the models. The valley depth refers to the vertical distance
to a channel network base level; it was calculated using the
QGIS module “Relative Heights and Slope Positions” based
on Boehner and Selige (2006). The canyon-like features were
calculated using the topographic position index (TPI), which
measures where a point is in the overall landscape/seascape to
identify features such as ridges, canyons, or midslopes (Wright
and Heyman, 2008). We computed the TPI with the SAGA GIS1

implementation (based on Guisan et al., 1999; Weiss, 2001),
using a radius of 3,000 m. We selected features corresponding
to V-shape river valleys and deep narrow canyons (Weiss, 2001).
We applied a spatial filter (<3km) to eliminate artifacts and
minor features. Another layer focusing only on the major canyon-
like features was identified, selecting features with an extension
larger than 25 squared km. Distance to the edge of these
structures was calculated.

Nine of the surface and deep waters oceanographic variables
used for model building were obtained through the Copernicus
Marine system, with a daily, 8-day, and monthly temporal
resolution; through the IBI (Iberian Biscay Irish) Ocean
Reanalysis system (see Table 2). The IBI model numerical core
is based on the NEMO v3.6 ocean general circulation model
run at 1/12◦ horizontal resolution, assimilating altimeter data,
in situ temperature, vertical salinity profiles, and satellite sea
surface temperature. The surface chlorophyll (Chl-a) data was
obtained from the ESA Ocean Color CCI Remote Sensing
Reflectance data (by merging layers from SeaWiFS, MODIS-
Aqua, MERIS, and VIIRS sensors and realigning the spectra
to that of the SeaWiFS sensor) using the regional OC5CCI
chlorophyll algorithm. Moreover, the Sea Surface Temperature
(SST) was obtained from the Group for High-Resolution Sea
Surface Temperature (GHRSST), a global, gap-free, gridded, daily
1 km dataset created by merging multiple Level-2 satellite SST
datasets. Depending on the analysis performed, layers were scaled
to the desired temporal and spatial resolution.

We applied a variance inflation factor (VIF) approach as
implemented in the R package usdm (Naimi, 2015) to test for
collinearity. Two of the environmental layers had collinearity
issues, the distance to 1,000 m bathymetric line and the distance
to major canyons. Due to the potential ecological importance of
canyons, we excluded the distance to 1,000 m bathymetric isoline,

1www.saga-gis.org/

keeping all the canyon-related variables (see the final variables
selected for the analysis in Table 2).

Two different sets of environmental layers were constructed.
The first assemblage (the daily set) aimed to detect the
effect of dynamic variables at a coarse spatial resolution
(7.8 km) and included a set of nine oceanographic variables
at different depths with a daily resolution. The cumulative
effect of variables (temperature and Chl-a) was measured as
the mean values for the 30 days previous to the sightings.
The second group of layers (the 8-day set) aimed to
detect the influence of topographic features on a fine-
scale resolution (2 km), including a set of 4 oceanographic
variables with an 8-day (Table 2). The 30-day mean values of
temperature and Chl-a were included to test for those variables’
cumulative effects.

Modeling Building and Evaluation
Due to the opportunistic nature of the data used in this study,
without real absences, we used a presence-background algorithm
MAXENT (Phillips et al., 2006) to infer the ecological niche
model of the selected species.

The kuenm package (Cobos et al., 2019a) in R was used
to select the most important variables, build and evaluate the
MAXENT models. Data was introduced using the sightings
with data (SWD) formatting, adding the temporality factor.
Models were built with 75% occurrences for training purposes.
For each species or family, we created thousands of candidate
models (more than 10,000 for each group) by combining all
the potential different sets of environmental predictors, three
values of regularization multiplier (1, 1.5, 2), and five possible
combinations (“l,” “lq,” “lqp,” “lqpt,” and “lqpth”) of the feature
classes (linear = l, quadratic = q, product = p, threshold = t,
and hinge = h). The regularization parameter allows MAXENT
to limit the model complexity (protecting it against overfitting),
adding a penalty for each term included in the model and higher
weights given to a term (Phillips et al., 2006). Overfitted models
excel in predicting non-independent evaluation data, leading to
an inappropriate automatic selection of low regularization values;
better model performance is generally achieved at slightly (or
substantially) higher regularization parameters (Radosavljevic
and Anderson, 2014). Feature classes are used in MAXENT to
build the responses curves. Depending on the feature classes
selected, different response curves can be obtained, from very
simple to highly complex non-linear curves (Merow et al., 2013).

Model evaluation was carried out following the
implementation of kuenm based on statistical significance,
through partial ROC (Receiver Operator Curve), with 500
iterations and 50% of data for bootstrapping (Peterson et al.,
2008), omission rates with a threshold of E = 5% (Anderson
et al., 2003) and model complexity based on the findings of
Warren and Seifert (2011) on the AICc index (indicates how well
models fit the data while penalizing complexity to favor simple
models). Best models were selected according to (1) significant
models with (2) omission rates ≤5%. Then, from among this
model set, models with delta AICc values of ≤2 were chosen as
final models. The exhaustive method implemented in kuenm
ensures better performance of the models selected and reduces
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TABLE 2 | Variables used to construct the two different assemblages of layers for the present analysis: the (1) “D” set with a spatial resolution of 7.8 km and a temporal
resolution of 1 day, and the (2) “8-D” set, with a spatial resolution of 2 km and a temporal resolution of 8-days and 1 month.

ACR Variables D set 8-D set UNITS Product source/ID

DEPTH Depth
√ √

m Resampled from Instituto Hidrográfico

SLOPE Bottom slope
√ √

◦ Calculated and resampled from Instituto Hidrográfico

VALLEY_DEPTH Vertical distance to a channel network
base level

√
m Calculated and resampled from Instituto Hidrográfico

D_M_CANYONS Distance to major canyon like features
√

Km Calculated and resampled from Instituto Hidrográfico

D_CANYONS Distance to canyon like features
√

Km Calculated and resampled from Instituto Hidrográfico

SST Sea surface temperature
√

◦C GHRSST Level 4 MUR Global Foundation Sea Surface
Temperature Analysis (v4.1)

TEMP_0.5 Sea water potential temperature at
0.5 m

√
◦C Atlantic-Iberian Biscay Irish-Ocean Physic Reanalysis

product: IBI_REANALYSIS_PHYS_005_001

TEMP_100 Sea water potential temperature at
108 m

√
◦C Atlantic-Iberian Biscay Irish-Ocean Physic Reanalysis

product: IBI_REANALYSIS_PHYS_005_001

TEMP_700 Sea water potential temperature at
773 m

√
◦C Atlantic-Iberian Biscay Irish-Ocean Physic Reanalysis

product: IBI_REANALYSIS_PHYS_005_001

TEMP_PR_0.5 Sea water potential temperature at
0.5 m of the previous month

√
◦C Atlantic-Iberian Biscay Irish-Ocean Physic Reanalysis

product: IBI_REANALYSIS_PHYS_005_001

TEMP_PR_100 Sea water potential temperature at
108 m of the previous month

√
◦C Atlantic-Iberian Biscay Irish-Ocean Physic Reanalysis

product: IBI_REANALYSIS_PHYS_005_001

TEMP_PR_700 Sea water potential temperature at
773 m of the previous month

√
◦C Atlantic-Iberian Biscay Irish-Ocean Physic Reanalysis

product: IBI_REANALYSIS_PHYS_005_001

SAL_S Sea water salinity at 0.5 m
√

ppt Atlantic-Iberian Biscay Irish-Ocean Physic Reanalysis
product: IBI_REANALYSIS_PHYS_005_001

MIXED_LAYER Mix layer depth
√

m Atlantic-Iberian Biscay Irish-Ocean Physic Reanalysis
product: IBI_REANALYSIS_PHYS_005_001

SSH Sea surface height
√

Cm Atlantic-Iberian Biscay Irish-Ocean Physic Reanalysis
product: IBI_REANALYSIS_PHYS_005_001

CHL Chlorophyll-a concentration in sea
water

√ √
mg·m−3 North Atlantic Chlorophyll Concentration from Satellite

observations reprocessed L4 (ESA-CCI) product:
OCEANCOLOUR_ATL_CHL_L4_REP_OBSERVATIONS_
009_098

LUNAR_IL Lunar illumination
√ √

Lux R “lunar” package

CHL_PR Chlorophyll-a concentration in sea
water of the previous month

√ √
mg·m−3 North Atlantic Chlorophyll Concentration from Satellite

observations reprocessed L4 (ESA-CCI) product:
OCEANCOLOUR_ATL_CHL_L4_REP_OBSERVATIONS_
009_091

SST_PR Sea surface temperature of the
previous month

√
◦C GHRSST Level 4 MUR Global Foundation Sea Surface

Temperature Analysis (v4.1)

both overfitting and underfitting when comparing it to a classical
heuristic method (Cobos et al., 2019b).

The best models were selected by the kuenm process, only
in one case (fin whales on the daily scenario); we did not select
the best option given by kuenm, but one of the other potential
candidates selected during the process. In this case, the best
model was slightly overfitted to coastal areas due to the relatively
low number of observations for the species and the bias associated
with the whale-wacthing activity. Therefore, we selected a model
with no restrictions on the Depth variable, as we know that fin
whales are also frequently sighted offshore.

To select between the two different environmental datasets
tested (with different temporal and spatial resolution), we used
an expert-based omission criterion (areas/time being classified as
unsuitable when they are not). Experts evaluation and knowledge
were based on empirical observations of the target species around
the archipelago in different periods outside the study area.
However, as these datasets were not available at the moment of

the evaluation, we used the expert-based omission criterion as a
complementary validation method.

Projections of the models were made for each combination
of year/month from 2003 to 2018 using a clamping approach to
avoid extrapolations to areas outside of the range of the training
conditions (Merow et al., 2013). Finally, the mean suitability
values and standard deviation for all months through all years
were calculated.

RESULTS

Model Performance
A total of 87,300 model solutions were generated for the 8-
day dataset, and 300,300 were generated for the daily data. The
best results were selected according to their relative predictive
and explanatory capabilities. According to expert knowledge
criteria, models built using the 8-day dataset, with a higher
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TABLE 3 | Eight-days models regularization multiplier (REG.), feature classes (linear = l, quadratic = q, product = p, threshold = t, and hinge = h), omission rate at 5%
(OR 5%), area under the curve (AUC), and variables selected (with its contribution) for each species.

Species REG. FEAT. OR 5% AUC Vars selected

Globicephala macrorhynchus* 1.5 lqpt 0.048 0.75 Depth (62.5%).
SST previous month (17%).
SST week (7.4%).
Slope (7.3%).
Chl-a previous month (3.9%).
Distance to major canyons (2%).

Physeter macrocephalus* 1.5 lqpt 0.045 0.73 Depth (59.3%).
SST week (12.4%).
Valley depth (11.1%).
Slope (6.3%).
Distance to canyons (5.9%).
Distance to major canyons (4.9%).

Mesoplodon densirostris* 1.5 lqp 0.032 0.73 Distance to major canyons (36.3%).
Slope (31.8%).
SST week (20.5%).
Chl-a previous month (7%).
SST previous month (4.5%).

Stenella frontalis* 2 lqpth 0.044 0.7 Depth (46.4%).
SST previous month (23.3%).
Chl-a week (17.9%).
SST week (10.5%).
Chl-a previous month (2%).

Tursiops truncatus* 1.5 lqpt 0.046 0.73 Depth (73.4%).
Slope (19.6%).
Distance to major Canyons (5%).
Chl-a previous month (1%).
Chl-a week (1%).

Delphinus delphis* 1 lqpt 0.048 0.81 SST week (30.9%).
Chl-a previous month (20.8%).
Depth (17%).
SST previous month (14.3%).
Slope (12.2%).
Distance to major canyons (4.8%).

Stenella coeruleoalba* 1.5 lqpt 0.048 0.80 Depth (59.5%).
SST previous month (19.4%).
Slope (15.5%).
SST week (5.6%).

Steno bredanensis* 1 lqpt 0 0.90 SST week (57.1%).
Slope (23.5%).
Lunar illumination (13.9%).
Distance to major canyons (5.4%).

Balaenoptera physalus 1.5 lqpt 0.038 0.88 Chl-a week (41.4%).
SST previous month (38.1%).
Lunar illumination (12.2%).
Depth (8.3%).

Balaenoptera edeni 1 lq 0.044 0.75 SST week (50.5%).
Depth (43.2%).
Chl-a week (6.3%).

Variables are sorted by percent contribution to the final model. Models marked with an asterisk are the ones selected as “Best.”

spatial resolution and more topographic-based variables, had a
better predictive performance. For 8 of the 10 species considered
in the present study (G. macrorhyncus, P. macrocephalus, M.
densirostris, S. frontalis, T. truncatus, D. delphis, S. coeruleoalba,
and S. bredanensis), the 8-day scenario produced better results
(Table 3). Only two species (B. edeni and B. physalus) produced
better estimates when using the daily dataset. The results are
presented per functional ecological groups: (i) deep-divers (short-
finned pilot whales, sperm whales and Blainville’s beaked whale),

(ii) delphinids (bottlenose dolphins, rough-toothed dolphins,
Atlantic spotted dolphins, short-beaked common dolphins and
striped dolphins), and (iii) balaenopterids (fin whales and
Bryde’s whales).

Deep-Divers
All the deep-diving species higher suitability values were
related to the bathymetry or other topographic variables.
The short-finned pilot whales (G. macrorhynchus) suitable
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areas were related with depths between 1,000 and 2,000 m
with intermediate slope values and a slight preference for
regions closer to major canyons (Figure 2). The SST played
a relevant role in the species niche, with a preference for
warm waters (18–24◦C) and low Chl-a values. The daily
analysis results showed an influence of the shallow mixed
layer in the suitability. Models projections suggest a patched
temporal and spatial distribution of the species, with highly
suitable areas found at the South-east and North of Madeira.
Seasonal variability was found, with lower suitability values
from March to July. However, high standard deviation values
were found in March and April (Supplementary Figure 1).
Lastly, the daily models showed a subtle influence of the lunar
illumination on the species, with higher suitability indexes
with lower values.

Sperm whales (P. macrocephalus) habitat was related with
waters deeper than 1 km, with an intermediate slope and closer to
any type of canyons (Figure 3). The analysis suggested a relation
with areas with low valley depths and close to canyons on mid-
slope areas. Only one oceanographic variable was found relevant
for the model selected (the SST), denoting a slight preference
of the species for warmer waters. Low standard deviation values
of suitability were found (Supplementary Figure 2) for all the
months.

Blainville’s beaked whales (M. densirostris) models showed a
significant contribution of the major canyons, slope, and SST,
with a total contribution of 88.6% on the model construction
(Table 3). The species was related to areas with major
canyons, with high slope values and a positive correlation with
warm waters (Figure 4). Moreover, a marginal effect of the
Chl-a and SST on the previous month was also observed.
This species showed a patchy distribution primarily in the
vicinity of canyons and a temporal preference for summer
and early autumn. Nonetheless, the standard deviation maps
(Supplementary Figure 3) show relatively high values from
January to April.

Delphinids
The suitability for bottlenose dolphins (T. truncatus) was found
to be primarily related to the bathymetry, slope, and distance
to the major canyons, contributing up to 98% to the selected
model (Table 3). The species suitability was positively linked to
relatively shallow waters with high slope values and somehow
close to major canyons. Even if marginal, there is also a
preference for waters with high Chl-a values (Figure 5). These
outcomes produced a generalist distribution of the species on
Madeira’s coastal areas with almost no temporal variability,
also reflected on the low values of standard deviation maps
(Supplementary Figure 4).

The weekly SST was found to be the most influential
factor (Figure 6) determining the rough-toothed dolphins
(S. bredanensis) niche, being linked to warmer waters (above
20◦C). The daily scenario models also showed a relation between
warm waters and shallow mixed layer depth. Topographically,
the niche was linked with mid and high slope values in the
proximity of major canyons. The results revealed a relation
between rough-toothed dolphin niche and low lunar illumination

values. Relatively high suitability values for the species were
found from July to October, with high standard deviation values
in June and November (Supplementary Figure 5).

In both of the modeling approaches used in this study,
only one topographic variable was identified as an important
predictor for the Atlantic spotted dolphins (S. frontalis), the
bathymetry (Tables 3, 4). The species showed a preference for
relatively deep-waters around the 1,000 m isoline. Moreover, both
during the 8-day and in the previous month, the temperature
was selected as the models’ relevant variables. Atlantic spotted
dolphins niche was related with temperate/warm waters (over
18◦C) with very low productivity values (Figure 7), leading to
higher suitability values from June until October. However, high
standard deviation values are found between February and May
(Supplementary Figure 6), which denotes the high variability of
the suitability indexes in those months.

In contrast, the short-beaked common dolphins (D. delphis)
presented a strong relation with lower values of SST (both in
the weekly and previous month) along with high values of Chl-
a during the previous month (Figure 8). This delphinid niche
was also related to relatively shallow waters, moderate to high
slope regions, and areas closer to major canyons. Moreover, the
daily model showed an influence of the mixed layer depth on
the species niche. Common dolphins had higher suitability values
in winter and spring (from December to June), with moderate
standard deviation values in June (Supplementary Figure 7).
The striped dolphins (S. coeruleoalba) were predominantly
related to deep waters regions (over 1,000 m) and moderate
slope values (Figure 9), alongside a preference for temperate
waters (around 19–20◦C). While the suitability values obtained
indicate a year-round presence of these delphinids in the
archipelago, higher suitability values were found from spring
to early summer, with very low standard deviation values
(Supplementary Figure 8).

Balaenopterids
Oceanographic variables were constantly selected as the most
influential variables for the baleen whales’ ecological niche
in the present study. The fin whales suitability (B. physalus)
was influenced mainly by moderate values of Chl-a in the
previous month, together with high daily Chl-a values and low
daily values of temperature in 100 m depth. Topographically,
the species niche was related to intermediate bathymetry
(with a peak at 2,000 m) and mid-slope values (Figure 10).
Suitability maps exhibited elevated values from February to May,
with high standard deviation values from February to August
(Supplementary Figure 9).

Conversely, very low values of Chl-a during the previous
month were more related to the Bryde’s whales (B. edeni) niche,
together with sea surface temperatures in the previous month
between 20 and 24◦C (Figure 11). This species’ results also
indicated a relation with waters around 1,000 m depth and
a positive correlation with the warmer daily temperature at
100 m. Suitability values for Bryde’s whales were relatively low,
with a slight increase from June to January; however, high
standard deviation values were found from June to November
(Supplementary Figure 10).
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FIGURE 2 | Mean monthly suitability maps (above) and smoothed response curves with standard deviation (below) in the Madeira archipelago for Globicephala
macrorhynchus for the “8-days” models. In the maps, red represents more suitable and blue less suitable. Responses curves are ordered by percent contribution of
the environmental variables.

DISCUSSION

The long-term opportunistic dataset used in this study provided
an excellent opportunity to build reliable ecological niche models
with various environmental conditions. Even if the AUC values
alone might not be the best model performance indicator
(Lobo et al., 2008), all selected models ranged between 0.7
and 0.9, which, together with the low omission rate values,

indicates good overall predictive performance. This reinforces
the potential of opportunistically collected datasets to produce
reliable estimates of habitat suitability, as Henckel et al.
(2020) found recently.

While a series of techniques to reduce overfitting and select
the best models were applied (e.g., AICc index for model
selection), few coincidental relationships between suitability
predictions and environmental variables might still be present.

Frontiers in Marine Science | www.frontiersin.org 8 July 2021 | Volume 8 | Article 688248

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-688248 July 7, 2021 Time: 12:53 # 9

Fernandez et al. Cetaceans’ Distributions in Oceanic Islands

FIGURE 3 | Mean monthly suitability maps (above) and smoothed response curves with standard deviation (below) in the Madeira archipelago for Physeter
macrocephalus for the “8-days” models. In the maps, red represents more suitable and blue less suitable. Responses curves are ordered by percent contribution of
the environmental variables.

Some of the relations found in the response curves (such
as the high suitability predictions on low slope values found
for the common dolphins; Figure 8) might look odd and
spurious, affecting the explanatory power. Explanatory power
and predictive accuracy are different qualities; a model will
possess some level of each (Shmueli, 2010). Therefore, even if
few coincidental relationships might be present, the validation

techniques implemented assure good predictive performance for
the models built.

Despite the small area where data was collected (limited
mainly to the South coast of Madeira and West of Desertas
islands), experts confirmed that extrapolated areas agree with
their experience. However, using a reduced area to collect
training data might result in a truncated response curve
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FIGURE 4 | Mean monthly suitability maps (above) and smoothed response curves with standard deviation (below) in the Madeira archipelago for Mesoplodon
densirostris for the “8-days” models. In the maps, red represents more suitable and blue less suitable. Responses curves are ordered by percent contribution of the
environmental variables.

for some variables, missing fundamental environmental
values to fully describe the niche (Thuiller et al., 2004;
Williams and Jackson, 2007). This could be the case,
especially for those more bottom-related species (such

as the sperm whale, the short-finned pilot whale, or the
bottlenose dolphin). The Maxent clamping implementation
mitigates this issue (Phillips et al., 2006; Anderson and
Raza, 2010); however, preferably, a wider sampling area with
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FIGURE 5 | Mean monthly suitability maps (above) and smoothed response curves with standard deviation (below) in the Madeira archipelago for Tursiops
truncatus for the “8-days” models. In the maps, red represents more suitable and blue less suitable. Responses curves are ordered by percent contribution of the
environmental variables.

different topographic characteristics would be the best way to
overcome this concern.

The daily models added some relevant information on species
niches, as it considers a broader range of oceanographic variables

in the three dimensions. However, its informative potential was
primarily reduced due to the dataset’s coarse spatial resolution
and the use of a broad-scale circulation oceanographic algorithm.
Using models with a finer spatial resolution and including
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FIGURE 6 | Mean monthly suitability maps (above) and smoothed response curves with standard deviation (below) in the Madeira archipelago for Steno
bredanensis for the “8-days” models. In the maps, red represents more suitable and blue less suitable. Responses curves are ordered by percent contribution of the
environmental variables.

atmosphere-ocean interactions could improve the results, giving
more insights on fine-scale features that can influence cetacean
distributions. This fact is especially relevant when considering
the fine-scale structures generated by the island in the archipelago
(Caldeira et al., 2002).

Species Ecological Findings
Deep-Divers
The three deep-diving species (G. macrorhynchus,
P. macrocephalus, and M. densirostris) showed differentiated
niches, both in the spatial and temporal dimensions. The

Frontiers in Marine Science | www.frontiersin.org 12 July 2021 | Volume 8 | Article 688248

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-688248 July 7, 2021 Time: 12:53 # 13

Fernandez et al. Cetaceans’ Distributions in Oceanic Islands

TABLE 4 | Daily models regularization multiplier (REG.), feature classes (linear = l, quadratic = q, product = p, threshold = t, and hinge = h), omission rate at 5% (OR 5%),
area under the curve (AUC), and variables selected (with its contribution) for each species.

Species REG. FEAT. OR 5% AUC Vars selected

Globicephala macrorhynchus 1 lqpt 0.044 0.74 Depth (62.7%).
Slope (19.4%).
Mixed layer depth (7.8%).
SSH (7.5%).
Lunar illumination (2.5%).

Physeter macrocephalus 1.5 lqp 0.047 0.65 Depth (40%).
Slope (34.8%).
Temp. at 0.5 m previous month (22%).
Temp. at 700 m daily (3.2%).

Mesoplodon densirostris 1.5 lqpth 0.034 0.73 Slope (55.5%).
Temp. at 0.5 m daily (30%).
Temp. at 0.5 m previous month (8%).
Chl-a previous month (6.4%).

Stenella frontalis 1.5 lqpth 0.047 0.74 Depth (48.9%).
Temp. at 0.5 m daily (20.6%).
Temp. at 0.5 m previous month (19.1%).
Temp. at 100 m previous month (9.7%).
Temp. at 100 m daily (1.8%).

Tursiops truncatus 1 lqpt 0.05 0.68 Slope (60.3%).
Depth (25.7%).
Temp. at 100 m previous month (9.7%).
Temp. at 0.5 m previous month (6.7%).

Delphinus delphis 1.5 lqpt 0.047 0.77 Temp. at 0.5 m previous month (43.2%).
Chl-a previous month (24.6%).
Slope (23.4%).
Mixed layer depth (6.4%).
Depth (2.5%).

Stenella coeruleoalba 2 lqpth 0.032 0.76 Depth (52.7%).
Temp. at 0.5 m previous month (23.6%).
Slope (10.3%).
Mixed layer depth (9.6%).
SSH (3.8%).

Steno bredanensis 2 lqpth 0 0.86 Temp. at 0.5 m previous month (48%).
Mixed layer depth (31.2%).
Slope (19.3%).
Temp. at 100 m previous month (1.5%).

Balaenoptera physalus* 2 lqpt 0.038 0.85 Chl-a previous month (52%).
Depth (20.5%).
Chl-a daily (14.2%).
Temp. at 100 m daily (9.4%).
Slope (3.9%).

Balaenoptera edeni* 1 lqpt 0.049 0.85 Temp. at 0.5 m previous month (33.5%).
Chl-a previous month (25.6%).
Depth (19.7%).
Temp. at 100 m daily (11%).
SSH (10.2%).

Variables are sorted by percent contribution to the final model. Models marked with an asterisk are the ones selected as “Best.”

short-finned pilot whales’ ecological niche was clearly described
by a preference for warmer waters (over 18◦C) and low/moderate
chlorophyll values. The species was found to be related to waters
slightly deeper than 1,000 m, which agrees with the findings
on the diving behavior for the species by Soto et al. (2008) in
the Canary Islands and Alves et al. (2013a) in Madeira, with
dives between 500 and 1,000 m. While major canyons played a
role in the distribution of pilot whales, higher suitability values
were found mostly related to moderate slopes. This agrees with
Thorne et al. (2017) findings, where canyons and the shelf-break
zones were found to be suitable habitat for tracked animals. The

temporal occurrence pattern for the species in the archipelago
seems to be shaped by the SST and Chl-a, with resultant higher
suitability values in late-summer/autumn and winter (Figure 2).

These findings are in accordance with the known species’
temporal occurrence and might be related to some of the inter-
archipelagic movements registered by Alves et al. (2019). Some
animals might travel to other areas (such as the Azores or the
Canary Islands) using oceanographic features, like the long-lived
eddies in the Macaronesian region described by Sangrà et al.
(2009) and Caldeira (2019), a behavior already observed for
this species by Thorne et al. (2017) when following the Gulf
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FIGURE 7 | Mean monthly suitability maps (above) and smoothed response curves with standard deviation (below) in the Madeira archipelago for Stenella frontalis
for the “8-days” models. In the maps, red represents more suitable and blue less suitable. Responses curves are ordered by percent contribution of the
environmental variables.

stream meanders off the Atlantic Coast of the United States.
Furthermore, Owen et al. (2019) recently found an influence
of the lunar moon on the behavior and distribution of pilot
whales in Hawaii, with a displacement toward offshore waters,
together with deeper and longer dives during the full moon.

These findings might be related to the subtle influence of the
lunar illumination we found in the daily models (Table 3); results
indicated that suitability around the island was lower with higher
lunar illumination. Nevertheless, other approaches would be
needed to understand this potential effect better.
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FIGURE 8 | Mean monthly suitability maps (above) and smoothed response curves with standard deviation (below) in the Madeira archipelago for Delphinus
delphis for the “8-days” models. In the maps, red represents more suitable and blue less suitable. Responses curves are ordered by percent contribution of the
environmental variables.

Sperm whales are known to be a cosmopolitan species
(Jefferson et al., 2011). Even if mostly feeding on cephalopods,
they can be considered generalist foragers, consuming a wide
variety of prey (e.g., Clarke, 1980; Evans and Hindell, 2004).
Our results showed a broader niche of the species on the spatial
dimension than the short-finned pilot whales, with a preference

for waters deeper than 1 km (but not restricted to a specific range)
in the proximity of submarine canyons areas. While the species
seems to be present in the archipelago throughout the year, there
is an apparent increase in suitability from June to November,
linked to SST, with a peak around 23◦C, similar to other areas,
such as the Azores (Fernandez et al., 2018). In Madeiran waters,
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FIGURE 9 | Mean monthly suitability maps (above) and smoothed response curves with standard deviation (below) in the Madeira archipelago for Stenella
coeruleoalba for the “8-days” models. In the maps, red represents more suitable and blue less suitable. Responses curves are ordered by percent contribution of the
environmental variables.

the group size for the species ranges between 1 and 30 animals,
with calves present in 25% of the groups (Alves et al., 2018).
Pirotta et al. (2020), found that solitary animals and groups
used areas with different characteristics in the Balearic Islands,
with groups preferring warmer waters. Therefore, the presence of

groups with offspring in the archipelago might be related with the
increase of suitability observed from June to December.

Finally, the Blainville beaked whale shows the most restricted
ecological niche of the deep-diving species, mainly being linked
to steep relief areas in the vicinity of major canyons (Table 3).
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FIGURE 10 | Mean monthly suitability maps (above) and smoothed response curves with standard deviation (below) in the Madeira archipelago for Balaenoptera
physalus for the “daily” models. In the maps, red represents more suitable and blue less suitable. Responses curves are ordered by percent contribution of the
environmental variables.

This results in a very spatially constrained niche in some areas
close to the island’s shoreline, which agrees with the findings in
other regions, such as the Canary Islands (Ritter and Brederlau,
1999) and Hawaii (Schorr et al., 2009). The strong relation found
with steep areas is probably related to the prey aggregation on
these specific habitats, representing a reliable food resource for

the species (Arranz et al., 2011). Finally, the explicit contribution
of the SST to the models suggests a preference for warm waters,
as suggested by Macleod (2000). All these results lead to relatively
good suitability values almost all year round, peaking in summer
and early autumn months, which explains the high site fidelity
patterns previously found by Dinis et al. (2017) around Madeira.
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FIGURE 11 | Mean monthly suitability maps (above) and smoothed response curves with standard deviation (below) in the Madeira archipelago for Balaenoptera
edeni for the “daily” models. In the maps, red represents more suitable and blue less suitable. Responses curves are ordered by percent contribution of the
environmental variables.

Delphinids
Distinct habitat preferences characterized the two medium-sized
delphinids (T. truncatus and S. bredanensis) distributions
analyzed; nevertheless, both niches were linked to the
island-induced features, reflected in the preference for mid-
high slope values. The bottlenose dolphin niche was almost
solely influenced by topographic variables (Table 3) with a

clear preference for shallow coastal waters (<1,000 m), which
agrees with the findings of Dinis et al. (2016b), with almost
no temporal variation. This relation was also found in other
oceanic archipelagos, such as the Azores (Fernandez et al., 2018).
Previous studies found that this species might be present in the
Madeira archipelago all year round, with no significant difference
in the monthly encounter rate (Dinis et al., 2016a), reflected
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in the low variability of the suitability values during the year
(Supplementary Figure 4). Interestingly, we found a marginal
effect of the surface chlorophyll on their distribution, which
could be related to fine-scale effects of primary productivity on
the species distribution, as found for the species in shallow seas
(Scott et al., 2010).

While the rough-toothed dolphin was also linked to areas
with medium or high bottom inclination (usually associated with
islands or seamounts), the temporal distribution for this species
mainly was limited due to a preference for warm waters (over
21–22◦C), such as those on the warm wake present mostly on
summer months on the South Coast of Madeira (Caldeira et al.,
2002; Alves et al., 2021).

When looking at the small delphinids an interesting pattern
was found, with two species (D. delphis and S. frontalis) with
differentiated ecological niches. Both species have a similar
spatial distribution, with a widespread distribution around the
islands, clearly demonstrated by the influence of depth. However,
differences arise when looking at their temporal distribution;
the common dolphin was closely related to lower SST values
and high chlorophyll concentrations, while the Atlantic spotted
dolphin preferred warm waters and low chlorophyll values
(Figures 7, 8). As a result, higher suitability values were found in
winter/spring for the former species and summer/autumn for the
later species. Au and Perryman (1985) found that in the Eastern
Tropical Pacific, common dolphins were found to be associated
with upwelling modified waters, while tropical spotted dolphins
(Stenella attenuata) were associated with tropical waters. In
the present study, instead of S. attenuata, we have S. frontalis;
however, a similar pattern seems to occur, with common dolphins
preferring “cold” waters rich in nutrients and Atlantic spotted
dolphins more associated with warm, and therefore, stratified
areas. This is in agreement with the seasonal regimes found in
the waters surrounding Madeira, reflected by the ocean static
stability, with a much better mixed upper ocean in winter and
a more stratified structure present in summer (Alves et al., 2021).

Our findings agree with the observations made by Freitas
et al. (2004) for Madeira and are in harmony with the niche
segregation hypothesis made by Silva et al. (2014) for the Azores.
Nevertheless, it is true that when environmental conditions are
suitable for both species, they might occupy the same areas.
Furthermore, if we also add the high standard deviation values
found in the suitability for the Atlantic spotted dolphins, it
is possible that in some years both species might have high
suitability values during some months, especially in spring and
early summer. Finally, the striped dolphin was found to be an
offshore species primarily occurring in deeper waters with a
slight preference for lower temperatures and related to mid-
slope areas, agreeing with the findings of Fernandez et al.
(2018) for the Azores.

Balaenopterids
The two balaenopterids considered herein proved to have very
differentiated niches. The fin whale mainly was related to high
chlorophyll concentrations during the previous month and
on the same day (Figure 10). The niche was shaped by the
low water temperature preference at 100 m (<18◦C), which

might be related to the deep-diving foraging behavior previously
documented in the Azores (Silva et al., 2013). The 8-day analysis
also showed an influence of the previous month SST, peaking
around 18–20◦C, which agrees with findings by Fernandez et al.
(2018) from the Azores. Conversely, in the present study, the
chlorophyll levels were also relevant (with a preference of values
higher than 0.5 mgm−3), which might be a limiting factor for the
species in Madeira. As a result, higher suitability values (and high
standard deviation) are found mostly during the spring months,
compared to the Azores, where the species has been recorded
during winter, spring, and summer (Silva et al., 2014). In the
Azores, the combination of the complex topography with the
highly energetic eddy field creates a confluence zone between
the west and the east North Atlantic (Caldeira and Reis, 2017).
Additionally, Caldeira (2019) found that the number of long-
lived eddies (lifetime greater than 60 days) generated by the
interaction of the oceanic flow with the islands is much larger
in the Azores (n = 202) than in Madeira (n = 50). Considering
that mesoscale eddies can modulate oceanic productivity in many
ways (Dufois et al., 2016), together with the existence of a
confluence area, might support the extended temporal presence
of fin whales in the Azores compared to Madeira.

While not much is known, the results presented here agree
with the Bryde’s whales described literature. The species is known
to move through tropical and warm-temperate waters, with a
specific preferred thermal range (Kato and Perrin, 2018). We
found that higher suitability values mainly were related to warm
surface waters and low surface chlorophyll concentrations during
the previous months (Figure 11). This agrees with the higher
number of sightings for this species in summer/autumn in the
archipelago (Alves et al., 2018). The relatively low suitability
values and the high standard deviation we detected could be
caused by the high variability of interannual occurrence rates.
In the present study, the species was related to a specific SST
(between 20 and 24◦C). Nevertheless, in California, no significant
effect of the temperature occurrence pattern was found, with
observations of animals in waters as cold as 15◦C (Kerosky et al.,
2012). The same authors hypothesize that interannual climate
oscillations and oceanographic indexes (such as the ENSO) could
explain some of the variability observed, recognizing that other
environmental variables rather than the SST might influence the
whales’ movements. Therefore, depending on general circulation
patterns, the animals might move to Madeira, to northern
latitudes, up to the Azores (Steiner et al., 2008), or could remain
in southern latitudes.

CONCLUSION

The distributional estimates presented here are the first attempt
to better understand spatial-temporal patterns of cetaceans in
the Madeira archipelago. Except for the fin whale, all the
other nine species analyzed in the present study showed a
clear relation with specific topographic features, which might
be related to the island-mass effect and associated eddies.
To better understand how the specific fine-scale island-related
oceanographic features might affect cetaceans’ populations, we
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recommend using coupled atmospheric-ocean models in future
studies. The use of fine-scale accurate data (both in the temporal
and spatial dimension) is crucial to improve dynamic ocean
management actions in cetaceans, as demonstrated recently by
Hausner et al. (2021).

Moreover, we acknowledge that some models might greatly
benefit from more data, especially from unsampled areas. Ideally,
the next steps to obtain better distributional estimates will include
data from different sources (such as dedicated surveys, telemetry
data, or other platforms of opportunity like fishing boats, ferries,
or cargo ships) to cover as much as possible the potential factors
influencing the species distribution. However, different datasets
might have different biases, and therefore data merging from
different sources should be analyzed carefully (Fletcher et al.,
2019).

DATA AVAILABILITY STATEMENT

The original contributions generated for this study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

MF, AD, and FA conceived the study design. FA, AD, RF, PT, and
J-CF supported the data collection and organized the databases.
MF analyzed the data and wrote the first draft of the manuscript.
All authors actively contributed on the writing and editing
of the manuscript.

FUNDING

This study was supported by: (i) INTERTAGUA, MAC2/1.1.a/385
funded by MAC INTERREG 2014-2020, (ii) Oceanic
Observatory of Madeira throughout the project M1420-
01-0145-FEDER-000001-OOM, and (iii) Fundação para a
Ciência e Tecnologia (FCT), Portugal, through the strategic
project UID/MAR/04292/2020 granted to MARE UI&I. AD
and FA have grants funded by ARDITI—Madeira’s Regional
Agency for the Development of Research, Technology and
Innovation, throughout the project M1420-09-5369-FSE-
000002. RF was partially supported by a FCT doctoral grant
(SFRH/BD/147225/2019).

ACKNOWLEDGMENTS

We wish to thank to all the people and organizations involved
in the collection of data over the years. We thank the whale-
watching operators Ventura | Nature Emotions, Lobosonda and
Seaborn (especially to Miguel Fernandes).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmars.
2021.688248/full#supplementary-material

REFERENCES
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., and Anderson,

R. P. (2015). spThin: an R package for spatial thinning of species occurrence
records for use in ecological niche models. Ecography 38, 541–545. doi: 10.1111/
ecog.01132

Albouy, C., Delattre, V., Donati, G., Frölicher, T. L., Albouy-Boyer, S., Rufino, M.,
et al. (2020). Global vulnerability of marine mammals to global warming. Sci.
Rep. 10, 1–12.

Alves, F., Alessandrini, A., Servidio, A., Mendonça, A. S., Hartman, K.
L., Prieto, R., et al. (2019). Complex biogeographical patterns support
an ecological connectivity network of a large marine predator in the
north-east Atlantic. Divers. Distrib. 25, 269–284. doi: 10.1111/ddi.
12848

Alves, F., Dinis, A., Ribeiro, C., Nicolau, C., Kaufmann, M., Fortuna, C. M.,
et al. (2013b). Daytime dive characteristics from six short-finned pilot whales
Globicephala macrorhynchus off Madeira Island. Arquipélago Life Mar. Sci. 31,
1–8.

Alves, F., Quérouil, S., Dinis, A., Nicolau, C., Ribeiro, C., Freitas, L., et al. (2013a).
Population structure of short-finned pilot whales in the oceanic archipelago of
Madeira based on photo-identification and genetic analyses: implications for
conservation. Aquat. Conserv. 23, 758–776. doi: doi:10.1002/aqc.2332

Alves, F., Ferreira, R., Fernandes, M., Halicka, Z., Dias, L., and Dinis, A. (2018).
Analysis of occurrence patterns and biological factors of cetaceans based on
long-term and fine-scale data from platforms of opportunity: Madeira Island as
a case study. Mar. Ecol. 39:e12499. doi: 10.1111/maec.12499

Alves, J., Tomé, R., Caldeira, R., and Miranda, P. (2021). Asymmetric ocean
response to atmospheric forcing in an island wake: a 35-year high-resolution
Study. Front. Mar. Sci. 8:624392. doi: 10.3389/fmars.2021.624392

Anderson, R. P., Lew, D., and Peterson, A. T. (2003). Evaluating predictive models
of species distributions: criteria for selecting optimal models. Ecol. Model. 162,
211–232. doi: 10.1016/s0304-3800(02)00349-6

Anderson, R. P., and Raza, A. (2010). The effect of the extent of the study
region on GIS models of species geographic distributions and estimates of
niche evolution: preliminary tests with montane rodents (genus Nephelomys)
in Venezuela. J. Biogeogr. 37, 1378–1393. doi: 10.1111/j.1365-2699.2010.02
290.x

Araújo, M. B., Anderson, R. P., Barbosa, A. M., Beale, C. M., Dormann, C. F., Early,
R., et al. (2019). Standards for distribution models in biodiversity assessments.
Sci. Adv. 5:eaat4858. doi: 10.1126/sciadv.aat4858

Aristegui, J., Sangra, P., Hernandez-Leon, S., Canton, M., Hernandez- Guerra, A.,
and Kerling, J. L. (1994). Island-induced eddies in the Canary Islands. Deep Sea
Res. 41, 1509–1525. doi: 10.1016/0967-0637(94)90058-2

Arranz, P., De Soto, N. A., Madsen, P. T., Brito, A., Bordes, F., and Johnson, M. P.
(2011). Following a foraging fish-finder: diel habitat use of Blainville’s beaked
whales revealed by echolocation. PLoS One 6:e28353. doi: 10.1371/journal.pone.
0028353

Au, D. W., and Perryman, W. L. (1985). Dolphin habitats in the eastern tropical
Pacific. Fish. Bull. 83, 623–644.

Azzellino, A., Gaspari, S., Airoldi, S., and Nani, B. (2008). Habitat use and
preferences of cetaceans along the continental slope and the adjacent pelagic
waters in the western Ligurian Sea. Deep Sea Res. I 55, 296–323. doi: 10.1016/j.
dsr.2007.11.006

Barton, E. D., Basterretxea, G., Flament, P., Mitchelson-Jacob, E. G., Jone, B.,
Aristegui, J., et al. (2000). Lee region of gran canaria. J. Geophys. Res. 105,
17173–17193. doi: 10.1029/2000jc900010

Boehner, J., and Selige, T. (2006). “Spatial prediction of soil attributes using
terrain analysis and climate regionalisation,” in SAGA - Analysis and Modelling

Frontiers in Marine Science | www.frontiersin.org 20 July 2021 | Volume 8 | Article 688248

https://www.frontiersin.org/articles/10.3389/fmars.2021.688248/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2021.688248/full#supplementary-material
https://doi.org/10.1111/ecog.01132
https://doi.org/10.1111/ecog.01132
https://doi.org/10.1111/ddi.12848
https://doi.org/10.1111/ddi.12848
https://doi.org/doi: 10.1002/aqc.2332
https://doi.org/10.1111/maec.12499
https://doi.org/10.3389/fmars.2021.624392
https://doi.org/10.1016/s0304-3800(02)00349-6
https://doi.org/10.1111/j.1365-2699.2010.02290.x
https://doi.org/10.1111/j.1365-2699.2010.02290.x
https://doi.org/10.1126/sciadv.aat4858
https://doi.org/10.1016/0967-0637(94)90058-2
https://doi.org/10.1371/journal.pone.0028353
https://doi.org/10.1371/journal.pone.0028353
https://doi.org/10.1016/j.dsr.2007.11.006
https://doi.org/10.1016/j.dsr.2007.11.006
https://doi.org/10.1029/2000jc900010
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-688248 July 7, 2021 Time: 12:53 # 21

Fernandez et al. Cetaceans’ Distributions in Oceanic Islands

Applications, eds J. Boehner, K. R. McCloy, and J. Strobl (Goettingen: Göttinger
Geographische Abhandlungen), 13–28.

Breen, P., Pirotta, E., Allcock, L., Bennison, A., Boisseau, O., Bouch, P., et al. (2020).
Insights into the habitat of deep diving odontocetes around a canyon system in
the northeast Atlantic ocean from a short multidisciplinary survey. Deep Sea
Res. Part I 159:103236. doi: 10.1016/j.dsr.2020.103236

Caldeira, R. (2019). “Island wakes,” in Encyclopedia of Ocean Sciences, 3rd Edn, Vol.
3, eds J. K. Cochran, J. H. Bokuniewicz, and L. P. Yager (Amsterdam: Elsevier),
83–91. doi: 10.1016/b978-0-12-409548-9.11614-8

Caldeira, R., Groom, S., Miller, P., Pilgrim, D., and Nezlin, N. P. (2002). Sea-
surface signatures of the island mass effect phenomena around Madeira Island,
Northeast Atlantic. Remote Sens. Environ. 80, 336–360. doi: 10.1016/s0034-
4257(01)00316-9

Caldeira, R., and Reis, J. C. (2017). The Azores confluence zone. Front. Mar. Sci.
4:37. doi: 10.3389/fmars.2017.00037

Catlin-Groves, C. L. (2012). The citizen science landscape: from volunteers to
citizen sensors and beyond. Int. J. Zool. 2012, 1687-8477. doi: 10.1155/2012/
349630

Clarke, M. R. (1980). Cephalopods in the diet of sperm whales of the Southern
Hemisphere and their bearing on sperm whale biology. Discov. Rep. 37,
1–324.

Cobos, M. E., Peterson, A. T., Barve, N., and Osorio-Olvera, L. (2019a). kuenm: an
R package for detailed development of ecological niche models using Maxent.
PeerJ 7:e6281. doi: 10.7717/peerj.6281

Cobos, M. E., Peterson, A. T., Osorio-Olvera, L., and Jiménez-García, D. (2019b).
An exhaustive analysis of heuristic methods for variable selection in ecological
niche modeling and species distribution modeling. Ecol. Informatics 53:100983.
doi: 10.1016/j.ecoinf.2019.100983

Dinis, A., Alves, F., Nicolau, C., Ribeiro, C., Kaufmann, M., Cañadas, A., et al.
(2016a). Bottlenose dolphin Tursiops truncatus group dynamics, site fidelity,
residency and movement patterns in the Madeira Archipelago (North-East
Atlantic). Afr. J. Mar. Sci. 38, 151–160. doi: 10.2989/1814232x.2016.1167780

Dinis, A., Carvalho, A., Alves, F., Nicolau, C., Ribeiro, C., Kaufmann, M., et al.
(2016b). Spatial and temporal distribution of bottlenose dolphins, Tursiops
truncatus, in the Madeira archipelago, NE Atlantic. Arquipélago. Life Mar. Sci.
33, 45–54.

Dinis, A., Marques, R., Dias, L., Sousa, D., Gomes, C., Abreu, N., et al. (2017). Site
fidelity of Blainville’s beaked whale (Mesoplodon densirostris) off Madeira Island
(Northeast Atlantic). Aquat. Mamm. 43:387. doi: 10.1578/am.43.4.2017.387

Dinis, A., Molina, C., Tobeña, M., Sambolino, A., Hartman, K., Fernandez, M., et al.
(2021). Large-scale movements of common bottlenose dolphins in the Atlantic:
dolphins with an international courtyard. PeerJ 9:e11069. doi: 10.7717/peerj.
11069

Doty, M. S., and Oguri, M. (1956). The island mass effect. ICES J. Mar. Sci. 22,
33–37.

Dufois, F., Hardman-Mountford, N. J., Greenwood, J., Richardson, A. J., Feng, M.,
and Matear, R. J. (2016). Anticyclonic eddies are more productive than cyclonic
eddies in subtropical gyres because of winter mixing. Sci. Adv. 2:e1600282.
doi: 10.1126/sciadv.1600282

Embling, C. B., Walters, A. E. M., and Dolman, S. J. (2015). How much effort is
enough? The power of citizen science to monitor trends in coastal cetacean
species. Glob. Ecol. Conserv. 3, 867–877. doi: 10.1016/j.gecco.2015.04.003

Evans, K., and Hindell, M. A. (2004). The diet of sperm whales (Physeter
macrocephalus) in southern Australian waters. ICES J. Mar. Sci. 61, 1313–1329.
doi: 10.1016/j.icesjms.2004.07.026

Fernandez, M., Yesson, C., Gannier, A., Miller, P. I., and Azevedo, J. M. N. (2017).
The importance of temporal resolution for niche modelling in dynamic marine
environments. J. Biogeogr. 44, 2816–2827. doi: 10.1111/jbi.13080

Fernandez, M., Yesson, C., Gannier, A., Miller, P. I., and Azevedo, J. M. N. (2018).
A matter of timing: how temporal scale selection influences cetacean ecological
niche modelling. Mar. Ecol. Prog. Ser. 595, 217–231. doi: 10.3354/meps12551

Fletcher, R. J. Jr., Hefley, T. J., Robertson, E. P., Zuckerberg, B., McCleery, R. A., and
Dorazio, R. M. (2019). A practical guide for combining data to model species
distributions. Ecology 100:e02710. doi: 10.1002/ecy.2710

Freitas, L., Dinis, A., Alves, F., and Nobrega, F. (2004). Relatório dos Resultados
Científicos do Projecto Para a Conservação dos Cetáceos no Arquipélago da
Madeira. Report to the European Commission. Madeira: Museu da Baleia da
Madeira.

Freitas, L., Dinis, A., Nicolau, C., Ribeiro, C., and Alves, F. (2012). New records of
cetacean species for Madeira Archipelago with an updated checklist. Bol. Mus.
Mun. Funchal. 62, 25–43.

Guisan, A., Weiss, S. B., and Weiss, A. D. (1999). GLM versus CCA spatial
modeling of plant species distribution. Plant Ecol. 143, 107–122.

Hausner, A., Samhouri, J. F., Hazen, E. L., Delgerjargal, D., and Abrahms, B.
(2021). Dynamic strategies offer potential to reduce lethal ship collisions with
large whales under changing climate conditions. Mar. Policy 130:104565. doi:
10.1016/j.marpol.2021.104565

Henckel, L., Bradter, U., Jönsson, M., Isaac, N. J., and Snäll, T. (2020). Assessing the
usefulness of citizen science data for habitat suitability modelling: opportunistic
reporting versus sampling based on a systematic protocol. Divers. Distrib. 26,
1276–1290. doi: 10.1111/ddi.13128

Jefferson, T. A., Webber, M. A., and Pitman, R. L. (2011). Marine Mammals of the
World: A Comprehensive Guide to Their Identification. Amsterdam: Elsevier.

Kato, H., and Perrin, W. F. (2018). “Bryde’s whales Balaenoptera edeni,” in
Encyclopedia of Marine Mammals, 3rd Edn, eds B. Würsig, J. G. M. Thewissen,
and K. Kovacs (London: Academic Press), 143–145.
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