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Measuring fish population responses to climate change requires timely ecological
information, warranting innovative approaches to data collection in fisheries research
and management. Fourier transform near-infrared (FT-NIR) spectroscopy is a promising
tool to efficiently and cost-effectively obtain multiple types of fisheries data including
fish physiological health and energetics that can provide indicators of stock status
and environmental change. We tested the applicability of FT-NIR spectroscopy to
determine fish physiological state and condition by developing calibration models for
morphometric indices of body condition [Fulton’s K and hepatosomatic index (HSI)],
biochemical measurements of tissue composition (lipid content and energy density), and
a nucleic acid-based index of recent growth (RNA:DNA) of juvenile Pacific cod (Gadus
macrocephalus). Calibration models had the best predictive ability for lipid content
followed by HSI and energy density, whereas spectral data had weak relationships with
Fulton’s K and RNA:DNA. For lipid content, energy density, and HSI, informative spectral
regions were primarily associated with carbon-hydrogen bonds in lipid molecules.
Additionally, FT-NIR spectroscopy calibration models better predicted lipid content than
morphometric measurements that are often used as proxies for measuring energy
reserves, indicating that FT-NIR spectroscopy might serve as a more informative index
of body condition and energy stores than other rapid methods. Efficient sample analysis
by FT-NIR spectroscopy can supplement traditional metrics of body condition and be
especially useful for ensuring the availability of monitoring data in support of fisheries
research and management.

Keywords: energetics, fish body condition, fisheries management, Fourier transform near-infrared spectroscopy,
lipid, Pacific cod
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INTRODUCTION

Recent developments in fisheries research and management
include the incorporation of ecological information to assess the
impacts of environmental and climate change on fish populations
and ecosystems. For example, essential fish habitat considerations
have expanded to include growth, reproduction, and survival
(Simpson et al., 2017), and there are efforts to incorporate fish
responses to environmental fluctuations in ecosystem approaches
to management (Townsend et al., 2019). Measuring complex
ecological process and incorporating them into management
presents practical challenges to develop, implement, and
maintain fish population and ecosystem monitoring efforts.
For instance, fisheries management, and the biological and
physiological data informing it, often follow annual cycles. Thus,
environmental and biological data must provide informative
indices that are available at least annually to be effectively
incorporated into decision making (Zador et al., 2017).

Fish energetics and physiological health are impacted by
environmental conditions, and can therefore provide useful
indicators of ecosystem change as well as insight into survival
likelihood and reproductive potential (Marteinsdottir and Begg,
2002). Multiple indices of energetics, health, and condition
(henceforth jointly referred to as condition) are utilized in
fisheries research and management and present compromises
between time investment, required expertise, equipment, and
accuracy (Wuenschel et al., 2018) that impact their feasibility
and utility for long-term monitoring. Traditional morphometric
proxies for body condition such as length-weight relationships
(e.g., Fulton’s condition factor or Fulton’s K) and hepatosomatic
index (HSI; the ratio of liver weight to body weight) are
frequently used for field-based research due to their speed and
simplicity, despite potential inaccuracies or weak relationships
with biochemical measurements of condition (Wuenschel et al.,
2018). Energy density and body proximate composition provide
analytical chemistry-based condition indices that are often more
informative than rapid methods, but they can be costly, time
consuming, and often require the use of hazardous chemicals.
Other biochemical metrics such as the ratio of RNA to DNA
(RNA:DNA) are appropriate for assessing recent impacts of
environmental change or nutritional condition on growth, and
may be particularly suitable for young life stages when a large
proportion of energy is devoted to growth (Chícharo and
Chícharo, 2008). The choice of index depends upon the specific
aspects of condition that are measured by each metric, but
researchers are often constrained by practicality or resources.

New applications of technologies such as Fourier transform
near-infrared (FT-NIR) spectroscopy provide a promising
approach to consolidate research tools, and to develop and
operationalize informative and timely data collection methods
for fisheries researchers and managers. FT-NIR spectroscopy
measurements primarily hinge upon the relationship between
reference data (ex: index of condition) and the measured spectra
of a material. Specifically, by directing electromagnetic radiation
(light of wavelengths ∼780–2,500 nm) at a substance, FT-NIR
spectroscopy excites molecular vibrations primarily from C-H,
O-H, and N-H chemical bonds. Measurements are based on

non-fundamental absorption bands from overtones that are
resonant frequencies above the fundamental frequency, and
combination modes due to interactions between fundamental
vibrations (Beć and Huck, 2019). This method can be used to
infer the composition of unknown materials using calibration
models developed from spectral and reference datasets (Beć and
Huck, 2019). Accordingly, calibration models can potentially
be developed for the numerous approaches that are used to
quantify fish condition, as well as other life-history traits and
physiological measurements. FT-NIR spectroscopy has seen
limited use in fisheries research (Wedding et al., 2014; Helser
et al., 2019) despite similarities between applications in other
industries including food science and aquaculture and data
needs associated with fish population dynamics such as lipid
content (Wold and Isaksson, 1997; Azizian and Kramer, 2005;
Liu et al., 2013), ovarian development (Lu et al., 2010), and
egg development (Ishigaki et al., 2016). The potential for
broad applications, portable instrumentation without the need
for hazardous chemicals, and the non-destructive and rapid
measurement process could enable diverse data collection in a
field or lab setting, permit subsequent analysis with the same
material or live specimen, and reduce resource requirements for
fisheries monitoring.

To test the feasibility of using FT-NIR spectroscopy to
measure indices of fish condition, we developed calibration
models relating spectral data with traditionally-measured
condition metrics for the juvenile stages of an important fisheries
species in Alaskan waters (Gadus macrocephalus: Pacific cod)
that recently experienced drastic population declines due to
environmental change (Barbeaux et al., 2020). We focused on
five metrics that assess differing aspects of condition and that
range in required effort and resources for data collection: (1)
Fulton’s K, (2) HSI, (3) energy density, (4) lipid content, and
(5) RNA:DNA. We then discuss the limitations and merits of
FT-NIR spectroscopy for fisheries data collection and suggest
additional applications of spectroscopic tools in ecological and
fisheries research.

MATERIALS AND METHODS

Fish Collection and Laboratory
Treatments
Juvenile Pacific cod were collected in Frederick Sound, Southeast
Alaska, during September 2018 and June 2019 and subsequently
reared in a laboratory for a concurrent experiment under varying
temperature and food quality regimes to ensure variability in
body condition among specimens. Fish were held for a month-
long quarantine period at ambient seawater temperature and
then reared at 9, 12, and 15◦C for 35 days during 2018, and 6,
8, 10, and 12◦C for 74 days during 2019. Fish were fed pellets
consisting of Pacific herring (Clupea pallasii), squid (unknown
species), euphausiids (Euphausia superba and E. pacifica), and
multi-vitamins throughout the experimental period. Canola oil
was added to high-lipid pellets to create high- and low-lipid
rations [2018: 2.4 ± 0.41 and 4.0 ± 0.44 % lipid; 2019: 1.5 ± 0.28
and 6.0± 0.64 % lipid± 1 standard deviation (SD)]. Fish sampled
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for analyses were fasted for 1 day before euthanizing in a solution
of tricaine methanesulfonate (MS-222; 0.025 g/L) to avoid biases
in condition indices from ingested food.

In preparation for biochemical analysis, individual whole fish
were homogenized in a Bullet Blender. One aliquot was frozen
for spectroscopy analysis, and a second (< 7 g) was dried to
constant mass at 135 ◦C in a Thermogravimetric Analyzer (TGA)
701 (Leco, St. Joseph, MI, United States). Quality control samples
analyzed with each batch included Meat 1546 (National Institute
Standards and Technology: NIST; accuracy of < 4% deviation
from a known value), and a replicate aliquot of one sample
(precision of ≤ 1.4 g SD). Dried aliquots were then pulverized
to a fine homogenized powder using a bead mill (Next Advance,
Troy, NY, United States) in preparation for energy density and
lipid determination.

Morphometric Indices
Wet mass and total lengths were measured for all fish to derive
morphometric indices of condition. For the HSI calculation,
livers were dissected, weighed and returned to the body cavity.
Fulton’s K (Equation 1) and HSI (Equation 2) were then
calculated as follows:

K =
(

102W
L3

)
× 100 (1)

HSI =
(

Wliver

W

)
× 100 (2)

where W is the whole body weight of the fish (g), L is fish
total length (mm), and Wliver is the weight (g) of the liver. HSI
assumes that higher condition fish have a greater ratio of liver
weight to body weight because livers are an important energy
store (Copeman et al., 2017). Similarly, Fulton’s K assumes that
weight to length ratio is positively correlated with body condition.

Biochemical Indices
Energy density (kJ/g dry mass) was measured by bomb
calorimetry. An aliquot of dried fish homogenate was compressed
into a pellet for combustion in a Parr 1425 micro-bomb
calorimeter (Parr, Moline, IL, United States) to obtain energy
content following standard protocols outlined in the instrument
manual. Quality control samples included with each analytical
run were benzoic acid standards for accuracy (SD < 0.14 kJ/g),
a sample replicate (SD < 0.6 kJ/g between replicates), and an
in-house reference of walleye pollock (Gadus chalcogrammus)
(< 2.5% error from known value).

Lipid content was measured using a modified version of the
sulfo-phospho-vanillin (SPV) method (Van Handel, 1985). An
aliquot of dried fish homogenate was placed into a glass vial to
which 2 mL of a chloroform-methanol solution was added (2:1
v:v). Samples were sonicated in a water bath for 30 min, diluted
to 1:10, and then added to a glass 96-well plate in triplicate.
Solvent was evaporated using a temperature-controlled block at
100◦C for 10 min. Twenty µL of concentrated sulfuric acid was
added to each well and samples were incubated at 100◦C for
10 min. Two-hundred and eighty µL of a vanillin-phosphoric

acid reagent (6.8 mM vanillin, 2.6 M phosphoric acid) was
added and the samples were incubated at room temperature
for 30 min. The absorbance at 490 nm was recorded using a
Victor3 1420 Multilabel Counter (Perkin-Elmer, Wellesley, MA,
United States). Total lipid was calculated by comparison of the
absorbance values to a calibration curve generated using NIST-
certified menhaden (Brevoortia tyrannus) oil. Quality control
samples included with each analytical run were a sample replicate
(< 0.55 SD between replicates) and an in-house reference of
walleye pollock (≤ 2% error from known value). Lipid content
(% lipid) was calculated on both a wet mass and dry mass basis to
assess the impacts of lipid content calculations on relationships
between reference data and FT-NIR spectra.

RNA:DNA was measured as an index of recent growth
and condition with the assumption that RNA that is involved
in protein synthesis will increase in comparison to DNA
when an organism is in good condition or nutritional state
(Chícharo and Chícharo, 2008). RNA:DNA was measured by a
one dye-two enzyme (RNase and DNase) fluorometric protocol
developed by Caldarone et al. (2001) and modified by Sreenivasan
(2011). Muscle tissue plugs (10 mg) were placed in individual
microcentrifuge vials with 300 mL 2 % N-lauroylsarcosil Tris-
EDTA buffer and sonicated using a Branson Sonifier 250
(VWR Scientific, Radnor, PA, United States). Samples were then
vortexed for 60 min, diluted with 1,200 mL Tris-EDTA buffer,
and centrifuged for 15 min at 14,000 g. Supernatants were
treated with 75 mL ethidium bromide (5 mg/mL). A Wallac
1420 microplate spectrophotometer (Perkin Elmer, Waltham,
MA, United States) measured total fluorescence at excitation
and emission wavelengths of 355 nm and 600 nm, respectively.
Samples were sequentially treated with RNase and DNase,
and the resulting reduced fluorescence measured to obtain
RNA and DNA fluorescence, respectively. Standard curves were
constructed using serial dilutions of 18S-28S rRNA (Sigma
R-0889) and calf thymus DNA (Sigma D-4764) standards.
Supernatants for RNA/DNA were read on Corning NBS 96-well
black flat-bottom microplates (75 mL samples).

FT-NIR Spectroscopy
Fourier transform near-infrared spectroscopy data were collected
from thawed homogenized fish tissue using a Bruker TANGO-R
FT-NIR single-channel spectrometer (Bruker Optics, Ettlingen,
German) with diffuse reflectance and a spectral range of
11,500–4,000 cm−1 to develop calibration models for reference
morphometric (Fulton’s K and HSI) and biochemical (lipid
content, energy density, and RNA:DNA) indices of fish condition.
For each sample, 0.50 g (±0.01 g SD) of thawed tissue
homogenate was scooped into a 22 mm diameter quartz vial
and scanned on a quartz sample window (22 mm diameter)
configured to reduce stray light using an auxiliary stainless steel
ring with a 22 mm diameter inset for the vial. A stainless
steel transflection stamp with a 2 mm path length and 22 mm
diameter surface was nested in the vial over the sample. Tradeoffs
in accuracy vs. processing speed with different instrumentation
settings yielded similar spectra (Supplementary Figure 1).
Therefore, analyses were performed using the setting with the
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fastest scan time of ∼40 s per sample using a scanner velocity
of 7.5 kHz, 32 cm−1 resolution, and 64 replicate scans.

Statistical Analyses
Pearson’s correlation coefficients were calculated between
all indices of condition to determine whether there was
agreement regarding overall fish condition. Linear regression
relationships were also calculated to determine the ability
to predict biochemical indices (% lipid and energy density)
from morphometric indices (Fulton’s K and HSI), with the
assumption that morphometric measurements that provide
estimates of energy storage reflect underlying biochemistry (e.g.,
body and liver weights increase due to increased lipid stores;
Wuenschel et al., 2018).

Spectroscopy data analysis followed established chemometric
procedures to compare reference datasets to spectra (Figure 1)
because statistical analyses typically use absorbance values at
each measured wavenumber as variables, resulting in a large
number of collinear variables for modeling (Beć and Huck,
2019). Broadly, peaks and troughs in the FT-NIR absorbance
spectra provide information about the molecular composition
of a material. However, spectral data can be challenging to
interpret without multivariate modeling techniques due to
bond vibrations that obscure molecular “fingerprints” such as
overlapping regions of absorption among functional groups,
multiple vibrational overtones, and combinations of fundamental
absorptions (Beć and Huck, 2019). Principal component (PC)
analysis was used to determine unusual or outlier spectra for
subsequent modeling and to qualitatively visualize spectra in
relation to reference data. Quantitative calibration models were
developed using partial least squares regression (PLSR) which
is a multivariate latent variable modeling approach. PLSR is
a decomposition technique that creates a linear regression
model by simultaneously decomposing explanatory and response
matrices (if there are multiple response variables). The method
reduces variables into components similar to PCs and maximizes
the relationship between the explanatory and response variables
by projecting them both into new space for the regression analysis
(Haenlein and Kaplan, 2004).

For PLSR and PC analyses, wavenumber values >10,800 cm−1

were removed from the dataset based on minimal spectral
information (i.e., no peaks; Supplementary Figure 2) and data
pre-processing steps were employed to remove the influence
of undesired light scatter effects due to irregularities in the
samples and to correct baseline shifts in the data such as those
that resulted from instrument maintenance (Supplementary
Figures 2, 3; Rinnan et al., 2009). A PC analysis that incorporated
all specimens was used to identify outlier spectra. Varying
polynomial order and window size for pre-preprocessing for the
PC analysis did not alter the identification of outlier points.
Six irregular spectra were considered outliers based on visual
inspection of spectra and PC1 or PC2 scores > 0.25, and were
excluded from subsequent metric-specific PC analyses and PLSR
modeling (Figure 2 and Supplementary Figure 2). Notably,
the energy density dataset was deficient in small individuals,
and HSI did not incorporate many large high condition fish
(Figures 2, 3 diagonal).

Following outlier exclusion, PLSR calibration models were
developed for each index of condition (Figure 1) using randomly
divided calibration and test datasets for indices with greater
than 40 data points (Table 1). In order to maximize signal to
noise ratios, several pre-processing methods were tested for each
index: Savitzky-Golay (SG) first derivative, SG second derivative,
and multiplicative scatter correction (MSC; Rinnan et al., 2009).
Iterations of SG filters with varying polynomial orders and
window size were employed for each metric to determine optimal
values (details in Supplementary Text 1 using % lipid as an
example). Additionally, SG filters were applied to data with and
without prior MSC pre-processing for the % lipid models (Baykal
et al., 2010). The application of MSC prior to SG filtering did not
further improve model performance (Supplementary Table 1)
and was therefore not included in model comparisons for other
indices of condition.

Principal component analyses and PLSR calibration models
were developed using index-specific pre-processing to examine
qualitative and quantitative relationships between indices and
spectra. Calibration models were developed using the following
process (Figure 1): (1) Full models incorporated mean-centered
data for each pre-processing method and candidate models were
compared using Root Mean Square Error with leave one out
cross-validation (RMSECV) to determine the optimal number
of components. (2) The potential to reduce model RMSECV
and to develop a more parsimonious model was tested through
several variable selection procedures for the top two models
with the highest RPDCV (Residual Predictive Deviation from
cross-validation), where >1.5 suggests acceptable predictive
performance but >2 denotes good predictive ability (Cohen et al.,
2007; D’Acqui et al., 2010). Wavenumber variables were excluded
if the variable importance in projection (VIP) was <1. Variable
inclusion was also explored using two selectivity ratio thresholds
(SR; > 0.25 and > 0.05) based on the lack of clear guidelines
regarding cut-off points for SR (Farrés et al., 2015). Removal of
wavenumbers with non-significant regression coefficients based
on jack-knifed p-values (α = 0.05) was also tested. PLSR models
were also tested using wavenumber regions that resulted from
combinations of the variable selection methods. (3) All models,
including before and after variable selection, were compared,
and the final model was selected based on the lowest RMSECV,
highest r2

CV, and highest RPDCV. For the resulting best-
fit models, performance was further evaluated using the test
dataset. If the best-fit model approached the acceptable RPD
criteria (≥ 1.5), predicted values and those measured using
traditional metrics were compared (Piñeiro et al., 2008). If the
sample size exceeded 40 specimens, then model sensitivity to
calibration and test dataset designations was evaluated using 100
randomly partitioned datasets to compare variability in RPD, r2,
and RMSE for calibration data, test data, and through cross-
validation. Model configuration was constrained to match the
best-fit model (i.e., pre-processing, variables after selection, and
components) for sensitivity tests. Data analysis was performed
using R statistical software (R Core Team, 2020; version 3.6.1)
with the vegan, PLSR, and MDAtools packages for multivariate
analyses and modeling (Mevik and Wehrens, 2007; Oksanen
et al., 2016; Kucheryavskiy, 2020).
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FIGURE 1 | Calibration model development starting with the acquisition of Fourier transform near-infrared (FT-NIR) spectroscopy data, followed by the development
of calibration models using a single spectral dataset for all condition indices. Model selection and validation encompassed the evaluation of cross-validated results
and test datasets. The end product is a calibration model for each index of condition that can be used to estimate condition measures for unknown samples.

FIGURE 2 | Principal component (PC) analysis scores (A–E) and loadings (F) of Fourier transform near-infrared (FT-NIR) spectroscopy data from thawed
homogenized Pacific cod tissue showing (A) Fulton’s K, (B) hepatosomatic index (HSI), (C) energy density (kJ/g dry mass), (D) % lipid (% wet mass), and (E) ratio of
RNA to DNA (RNA:DNA). Points are individual samples and the color scales indicate the value of each condition metric, where gray indicates no data. Symbol size
shows the body weight (g) of individual fish and shape indicates the scan session (1 is before instrument maintenance, and 2 is after). Spectra are pre-processed
with a Savitzky–Golay first derivative filter with polynomial order = 5 and window size = 15.

RESULTS

Most condition indices were positively, but not always
significantly, correlated. The two biochemical methods,
energy density and % lipid had the strongest correlation, whereas
morphometric methods were not significantly correlated with
each other (Figure 3). Additionally, HSI and RNA:DNA were
negatively correlated, indicating that these two metrics differed in
substantially in their representation of physiological health and

condition (Figure 3). Linear regressions between morphometric
proxies for condition and biochemical methods indicated a
significant relationship between HSI and % lipid (% lipid = 0.76
∗ HSI + 1.56, p < 0.001, r2 = 0.38, RMSE = 1.28) and a weak but
significant relationship between Fulton’s K and energy density
(energy density = 8.10 ∗Fulton’s K + 15.06, p < 0.01, r2 = 0.15,
RMSE = 0.97). The RMSE associated with predicting % lipid
from HSI was approximately ± 18% of the range of % lipid in
the dataset (minimum minus maximum % lipid in fish tissue
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FIGURE 3 | Comparisons among Pacific cod condition indices: Fulton’s K, hepatosomatic index (HSI), energy density (kJ/g dry mass), lipid (% wet mass), and the
ratio of RNA to DNA (RNA:DNA). The matrix diagonal shows the distribution of the specimen values (probability density) for each index, and the lower left portion of
the matrix shows the pairwise linear regression relationships (gray shading = standard error) among metrics. Corr = Pearson correlation coefficient. Statistical
significance: * p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001.

TABLE 1 | Comparison of the best-fit calibration models among condition metrics [% lipid (% wet mass), energy density (kJ/g), hepatosomatic index (HSI), Fulton’s K,
and RNA:DNA] as determine by leave-one-out cross-validation (CV) and using the test dataset (test).

Model
Reference value range
Sample size

Pre-processing Variable
selection

Comp RMSECV,

RMSEtest

r2
CV,

r2
test

SlopeCV,

Slopetest

BiasCV,

Biastest

RPDCV,

RPDtest

% lipid
1.33–8.31
ncalibration = 75, ntest = 19

SG 1st derivative;
polynomial = 7;
window = 19

VIP > 1 7 0.94,
0.87

0.68,
0.53

0.76,
0.62

0.02,
−0.13

1.77,
1.51

HSI
1.28–6.71
ncalibration = 37, ntest = NA

SG 2nd derivative;
polynomial = 10;
window = 15

VIP > 1; 5 0.92 0.46 0.51 0.01 1.38

Energy density
20.43–24.20
ncalibration = 52, ntest = 12

SG 1st derivative;
polynomial = 2;
window = 13

p ≤ 0.05 4 0.74,
0.67

0.43,
0.59

0.52,
0.72

0.01,
−0.35

1.34,
1.93

Fulton’s K
0.80–1.06
ncalibration = 74, ntest = 20

SG 1st derivative;
polynomial = 2;
window = 15

VIP > 1;
p ≤ 0.05;
sr > 0.25

2 0.05,
0.06

0.19,
−0.02

0.23,
0.09

0.00,
0.02

1.12,
1.06

RNA:DNA
5.29–16.97
ncalibration = 74, ntest = 20

MSC - 1 2.35,
1.82

−0.02,
−0.23

0.00,
0.05

0.01,
−0.87

1.00,
1.06

Pre-processing refers to the method employed for each model: Savitzky-Golay (SG) filter with descriptions of the derivative, polynomial order, and window size, or
multiplicative scatter correction (MSC). For variable selection, p ≤ 0.05 refers to retaining wavenumber variables with model coefficient p-values that were ≤ 0.05, VIP > 1
for inclusion of variables with variable importance in projection values > 1, and sr > 0.25 for inclusion of variables with selectivity ratios (sr) > 0.25. Columns are the
number of components (Comp), Root Mean Squared Error (RMSE), coefficient of determination (r2), slope, bias, and RPD (the ratio of standard deviation of response
values to the standard error of prediction).

inclusive of specimens with outlier spectra spanned 7.04%),
compared to approximately ± 22% for predictions of energy
density (4.33 kJ/g range in data inclusive of specimens with
outlier spectra) from Fulton’s K.

Qualitative relationships between spectra and indices of fish
condition using both generalized and index-specific spectral data

pre-processing showed some divergence along the first two PC
axes for Fulton’s K, HSI, and % lipid but minimal separation
for energy density and RNA:DNA (Figure 2 and Supplementary
Figures 4–9). Regardless of the pre-processing method, which
impacted the amount of variation and noise in the spectra, the
first two PC axes explained a large majority of the variability
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in the spectra obtained from homogenized tissue (Figure 2 and
Supplementary Figures 4–9). Wavenumber regions surrounding
∼5,300 cm−1 and ∼7,300 cm−1 contributed substantially to
spectra separation along both PCs (Figure 2 and Supplementary
Figures 4–9) indicating that most variability in the spectra among
specimens was associated with these regions.

For most metrics of condition, SG pre-processing resulted in
the best-fit PLSR calibration models (Table 1 and Supplementary
Tables 1–6). Selecting variables for inclusion in the models
based on VIP, SR, or coefficient p-values also generally improved
correlations (Table 1 and Supplementary Tables 1–6). FT-NIR
spectroscopy data were negligibly correlated with RNA:DNA and
Fulton’s K compared to HSI and the two biochemical metrics
of condition (Table 1). RNA:DNA had the weakest relationship
with FT-NIR spectroscopy data, and a negative r2

CV indicated
that the variability in model residuals was greater than residuals
using mean observations as predictors (Table 1; Möckel et al.,
2016). Additionally, PLSR models developed using lipid content
standardized to dry body weight (lipiddry: % dry mass) had
slightly greater error compared to models developed from %
lipid standardized to wet weight using the same calibration
dataset (Supplementary Tables 1, 2). Water can be detected
using FT-NIR spectroscopy and is inversely correlated with lipids
in fish tissue (Vollenweider et al., 2011), potentially leading to
this small difference in model performance when reference data
calculations exclude water (i.e., standardized to dry mass) but
FT-NIR spectroscopy data is measured using specimens that
contain moisture.

Calibration models for % lipid had the highest predictive
ability, followed by HSI and energy density (Table 1). Iterations
of calibration and test data partitioning for % lipid and
energy density models confirmed that RMSE and r2 from
cross validation, the calibration datasets, and test datasets were
generally robust to changes in sample partitioning (Figure 4).
RPD varied to a greater degree than the other model diagnostic
metrics, but primarily remained >1.5 for % lipid and just below
<1.5 for energy density. The r2 from test datasets for energy
density generally remained near ∼0.5, but did vary to a greater
degree than for % lipid, and even resulted in negative values for
some iterations. This variability is potentially a result of small
sample sizes for both calibration and test datasets compared to
% lipid models. The best-fit HSI calibration model indicated
model performance nearing acceptable thresholds, but sample
sizes were insufficient to divide the dataset for calibration and
testing. With the exception of the best-fit model for HSI, most
model configurations and variable selection procedures resulted
in very poor model fits (Supplementary Table 4). This is in
contrast to % lipid and energy density models, where variable
selection and pre-processing generally did not result in marked
differences in model performance (Supplementary Tables 1, 4,
5). This discrepancy may be due to small sample sizes as well
as a large degree of noise and variability in spectra after pre-
processing for the best fit HSI model (evident in PC loadings;
Supplementary Figure 7). This combination likely resulted in
high model sensitivity to variable inclusion or exclusion, as well
as the potential for model overfitting and cautious interpretation
of the best-fit model diagnostics. Based on commonly employed

FIGURE 4 | Comparisons of (A) % lipid (% wet mass), (B) energy density
(kJ/g), and (C) hepatosomatic index (HSI) measured from reference data
(measured) and predicted values based on Fourier transform near-infrared
spectroscopy from the best fit models for each metric (see Table 1). The
dotted line is the 1:1 measurement and prediction line, and the solid line is the
linear fit between predictions and measured data. The boxplot insets (A,B)
show the median, first and third quartile (IQR), and 1.5 times the IQR for r2,
RMSE, and RPD from 100 iterations of randomly partitioned calibration and
test datasets.

thresholds for RPD where >2.0–2.5 is generally considered good
model performance and 1.5 is acceptable (Cohen et al., 2007;
D’Acqui et al., 2010), only % lipid was sufficiently correlated
with the spectral data to produce an acceptable calibration model
(Table 1 and Figure 4).
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The model-based % lipid predictions were accurate within
<1% range of lipid values (RMSECV of 0.94 %), where the error
encompasses ∼±13 % of the variability (range of 1.33–8.31 %)
in the biochemically measured % lipid data. Comparisons of
measured and PLSR predicted values for % lipid, energy density,
and HSI indicated that specimens with low body condition
reference values were limited and generally poorly predicted by
the models (Figures 4, 5). Large residual deviations for % lipid
were associated with small fish (Figure 5A) and this pattern was
supported through outlier detection plots where a few small fish
were far from the center scores of the model (higher Hotelling T2,
or sum of the normalized squared scores, which is a multivariate
extension of a Student’s t-test; Figure 5B). Large model residuals
at high % lipid values were primarily associated with large, likely
older, fish (Figure 5A); however, there was no clear pattern
in body size in association with the magnitude of variation
(distance) between the actual sample and the model predictions
in projected space (Q residuals) (Figure 5B; Legendre and
Legendre, 2012). Despite these patterns, excluding the notable
small fish in low condition that was poorly predicted by the
model (Figure 5A) did not improve PLSR model performance
for % lipid (RMSEcv = 0.96 %, r2

cv = 0.64 using for SG first
derivative filter, polynomial = 7, window = 19, and VIP variable
selection). For energy density and HSI, underprediction for
several of the highest condition specimens (measured energy
density of ∼24 kJ/g and HSI of ∼6) and overprediction for
the lowest condition specimens contributed to reducing model
performance (Figure 4).

Based on the ability to detect lipid content with FT-
NIR spectroscopy, detailed inspection of % lipid calibration
models and comparisons with energy density and HSI that also
neared acceptable thresholds revealed wavenumber regions that
were most informative for predictions. Variable selection for
the % lipid model (Table 1) excluded much of the spectral
data (Figure 6). Wavenumbers that were maintained showed
visual separation between high and low % lipid (ex: ∼7,500–
7,000 cm−1 and ∼5,950–5,700 cm−1; Figure 6). A combination
of regression coefficients and component loadings (primarily
component 1) from the best-fit PLSR models highlighted
particularly informative wavenumber regions at values near

4,500–4,100 cm−1, 5,450–5,000 cm−1, 5,950–5,750 cm−1,
∼7,300–7,050 cm−1 (Figure 7). These regions were similar
to the informative wavenumbers for energy density as well
as HSI (Figure 7). For HSI, the region from ∼5,400–5,000
was prominent with respect to regression coefficients and
components (Figures 7A,B). Informative regions for energy
density included additional wavenumbers in the ∼6,500–
6,000 cm−1 range. Regression coefficient and loading patterns
were less strongly associated with prominent wavenumbers
in comparison to % lipid and HSI (Figure 7), potentially
as a result of low polynomial order in SG pre-processing
for the best-fit model that smoothed variability in the
spectra (Table 1).

DISCUSSION

Fourier transform near-infrared spectroscopy provides a new
tool for ecological research and fisheries management to rapidly
measure fish condition, a key physiological parameter that
influences survival and a potential early warning indicator of
ecosystem change (Levin and Mollmann, 2014). In contrast to
morphometric methods that can be influenced by individual
variation in allometry, FT-NIR spectroscopy measures molecular
composition of a material that is more comparable to
analytical chemistry-based metrics of condition. Indeed, FT-NIR
absorbance data were most strongly correlated with lipid content
measured from proximate composition, followed by HSI that is
also highly correlated with % lipid, and energy density derived
from biochemical measurements. Biochemical indices are more
informative than morphometrics (Wuenschel et al., 2018), and
the reduced error associated with predictions of lipid content
from spectral data compared to Fulton’s K and HSI indicates
that FT-NIR spectroscopy provides a valuable alternative rapid
method to measure condition.

The ability to measure tissue composition using FT-NIR
spectroscopy relies on molecular bond vibrations, stretching, and
bending to identify signature peaks in the spectra that are most
informative for identifying molecules such as lipids (Azizian and
Kramer, 2005). Without a priori knowledge of wavenumbers

FIGURE 5 | Prediction residuals (A) and outlier detection for explanatory variable projections (B) from the best fit % lipid (% wet mass) calibration model.
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FIGURE 6 | Spectral data from Pacific cod thawed tissue homogenate samples in relation to lipid (% wet mass) showing (A) model calibration data before
pre-processing, (B) the calibration dataset, and (C) the test dataset for the best fit calibration model. The calibration and test datasets show absorbance units (a.u.)
after applying a Savitzky-Golay filter (first derivative, window size = 19, polynomial order = 7), and the gray regions show variables that were excluded based on
variable selection. Color scale indicates lipid (% wet mass) for each specimen.

associated with lipids or other molecules that are correlated
with body condition in juvenile Pacific cod tissue, calibration
model development relied on variable selection to capture regions
that are most correlated with the condition indices (Zhao et al.,
2015). Spectral regions that were most informative in predicting
% lipid, HSI, and energy density in fish corresponded with
wavenumbers that have been identified from other materials and
non-aquatic organisms to differentiate lipids from non-lipids, as
well as details among lipid molecules. For example, spectral peaks
from ∼4,372 to 4,236 cm−1 that were prominent for % lipid,
HSI, and energy density to a lesser degree and are indicative of
C-H stretching and bending modes of lipids (Bik et al., 2020).
Similarly, ∼7,375 to 7,150 cm−1 is a second overtone region
for C-H bonds and exhibits combination bands for lipids and
carbohydrates (Beć et al., 2020). Wavenumbers between 6,000

and 5,600 cm−1 that were informative for calibration models
for all three indices are a first overtone region for CH3 and
CH = CH found in lipids (Hourant et al., 2000). This region
can also be useful for differentiating triacylglycerols (TAGs;
Azizian and Kramer, 2005); storage lipids that provide energy
during costly life history processes such as life-stage transitions,
overwintering, or reproduction (Fraser, 1989; Copeman et al.,
2008). Agreement between informative regions for estimating
juvenile Pacific cod lipid content and wavenumbers associated
with lipids from disparate biological and non-biological materials
suggests that FT-NIR methodologies should be successful in
measuring lipid content for other fish species and marine
organisms, and that further development of the methodology in
fisheries has the potential to differentiate between biologically
important lipid classes.
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FIGURE 7 | Regression coefficients (A) and component loadings for the first (B) and second (C) components of the best-fit percent (%) lipid (% wet mass), energy
density (ED; kJ/g), and hepatosomatic index (HSI) partial least squares regression models. Points show the regression coefficient and loadings, and lines are
included to facilitate interpretation. Values of 0 refer to variables that were not included in the models. Index-specific percentage values (%) indicate the percentage of
the variability explained by each component.

Differentiation and similarities among informative spectral
regions for calibration models suggest that FT-NIR spectroscopy
approaches measured aspects of tissue composition related to
biochemical reference data. Wavenumbers between ∼5,400 and
5,000 cm−1 that were prominent in PC analyses as regions of
high spectra variability were also informative for % lipid and
HSI. These wavenumbers encompass signals from carbohydrates
(Beć et al., 2020) and often strong signals from water (Bik et al.,
2020). Values between∼6,500 and 6,000 cm−1 that were retained
for only energy density are associated with carbohydrates and
lipids (∼6,200–5,800 cm−1), as well as proteins (∼6,400 cm−1;
Beć et al., 2020; Bik et al., 2020). These discrepancies concur
with differences in tissue components measured by each method.
Energy density included energy derived from protein, lipid, and
scant carbohydrates in fish tissues. Lipid content (% wet mass)

reference data were measures of extracted lipids, and HSI is a
measure of lipid rich liver tissue compared to body mass (also
wet weight) that was strongly correlated with % lipid reference
values. Correspondingly, wavenumbers that were informative for
% lipid and HSI primarily reflected lipid-associated regions of
the spectra with potential additional information obtained from
inverse correlations between lipid and water content in fish tissue
(Vollenweider et al., 2011).

In contrast to the other biochemical metrics that are
influenced by the amount of lipid in tissue, RNA:DNA
reflects recent protein synthesis (Buckley et al., 1999) and was
inadequately measured by FT-NIR spectroscopy. Although FT-
NIR spectroscopy has been used for DNA detection, DNA
extraction steps may be necessary (Ku et al., 2015). Additionally,
RNA:DNA is a ratio of nucleic acids and thus may be difficult
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to resolve with spectral data. Model performance differences
among indices and comparisons of molecular signatures retained
in the best-fit models indicate that FT-NIR methodologies were
most successful at measuring lipid-based indices, suggesting
that focusing on a precise group of molecules may improve
the efficacy of FT-NIR spectroscopy for physiological and
biochemical measurements.

Body condition was correlated with spectral data, but the
fish with the highest and lowest condition measurements were
often poorly predicted by the calibration models. For % lipid
this pattern was evident for a small individual with low lipid
content. For energy density a large degree of prediction error
was also due to large body size, high condition specimens.
This pattern suggests that physiological changes associated
with growth and body size may impact relationships among
spectra and tissue composition. Total lipid content and lipid
allocation among tissue types (liver and muscle) are affected by
temperature and potentially by ontogenetic changes in energy
storage in Pacific cod and other gadid species (Copeman
et al., 2017). Such variability in lipid allocation among tissues
could impact calibration models that were developed using
homogenized tissues, particularly as fish grow and the ratio
of tissue types and energy allocation may both change. For
example, if muscle comprises a greater proportion of body tissue
and sample volume than liver, this could potentially lead to
an underrepresentation of lipids that are stored in the liver
when obtaining spectral data. Ontogenetic changes in energy
allocation, or the allocation or density of specific lipid classes
(ex: TAG, phospholipid, and sterols) that are more readily
measured by FT-NIR spectroscopy (Azizian and Kramer, 2005),
could also amplify or alter relationships. While homogenized
samples were sufficient for developing indices of % lipid in
fish tissue, future steps could help to augment the information
obtained from spectral data: (1) Measurements from muscle
and liver tissue rather than homogenized samples could provide
information regarding energy storage while simultaneously
improving predictive relationships. (2) Reference data lacked an
equitable representation of the smallest and largest specimens
that were also poorly predicted by calibration models. A more
comprehensive and balanced reference dataset could be used
to develop more robust models, or help to identify whether
unique calibration models for size or age groups (ex: larval,
juvenile, adult), piecewise regressions, or non-linear modeling
methods could improve calibration models. Thus, reference data
methodology and breadth as well as specimen presentation
for scanning are important considerations for maximizing the
information from spectral data for new applications of FT-
NIR spectroscopy.

Conclusion
Estimates of lipid content in fish tissue from FT-NIR
spectroscopy were comparable to analytical chemistry-based
metrics and can thus provide rapid, informative data for research,
ecosystem-based management, and fisheries stock assessments.
Applications of FT-NIR spectroscopy require the development
of models for designated measurements. However, this tool
has been applied in aquaculture, food quality, medicine, and

commercial applications (Liu et al., 2013; Sakudo, 2016; Miller
et al., 2019) and is ideally suited for time-series and large
scale research efforts for select ecologically or economically
important species. Spectroscopy-derived lipid information
could provide early warning signs of ecosystem change almost
immediately upon disembarking from a vessel, and timely
information regarding prey quality, juvenile condition, spawning
condition, and other factors that can potentially influence
year-class strength and abundance. Promising results with
mininimally processed samples and improvements in condition
measurements compared to other rapid methods that are
often utilized for fisheries monitoring suggest that FT-NIR
spectroscopy could complement existing indices of condition to
improve the quality and currency of data available to fisheries
researchers and managers.

Building from this study, future research should explore the
specificity of calibration models among fish species and life
stages, the potential to collect data from intact fish or live
specimens (Tsai and Wang, 2001; Simon et al., 2016), and further
exploration of wavenumber regions associated with lipid classes
and fatty acids (Azizian and Kramer, 2005; Liu et al., 2015) that
are linked with survival (Copeman et al., 2008). Model accuracy,
predictive performance, and the potential for model overfitting
can be improved through efforts to reduce noise in the spectral
data such as comprehensive reference datasets and refined sample
preparation (Helser et al., 2019; Passerotti et al., 2020). Future
impactful developments of FT-NIR spectroscopy for ecological
and fisheries research can range from biological questions related
to material composition (Kleinebecker et al., 2009; Ishigaki et al.,
2016), age composition (Helser et al., 2019), or broader ecosystem
indices that are affected by changing environmental conditions.
The ability to rapidly measure fish lipid content using FT-NIR
spectroscopy demonstrates a valuable physiological application
for fisheries research and management that will increase data
availability and quality, and facilitate long-term monitoring of
informative biochemical measurements of body condition.
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