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South Korea

We measured the total, truly dissolved (<10 kDa), colloidal (10 kDa–0.2 µm), and
particulate phases (>0.2 µm) of 210Pb and 210Po in the East China Sea (ECS) shelf
water and the East Sea (Japan Sea). In order to examine the behaviors of 210Pb and
210Po in different marine environments, we compiled our results with previously reported
data in the same region and in the northwestern Pacific Ocean (NWPO). The proportions
of the truly dissolved, colloidal, and particulate phases in the shelf water were 32, 27,
and 41% for 210Pb and 49, 32, and 19% for 210Po, respectively. Based on a steady-
state scavenging model, 210Pb and 210Po showed higher (3.0 ± 0.6 year−1) and lower
(0.3 ± 0.2 year−1) scavenging rates, respectively, in the shelf water than those in the
NWPO and the East Sea. A non-steady-state model, accounting for the residence time
of the shelf water, also showed twice more efficient removal rate of 210Pb in the shelf
water than that in the NWPO and the East Sea. In contrast, there was the net input of
210Po in the shelf water relative to the large removal in the NWPO and the East Sea.
The large proportions of total dissolved (truly dissolved + colloidal) 210Po (>80%) in
the shelf water indicate active regeneration of 210Po from the sinking particles and the
surface sediments. Our results suggest that the ECS shelf is the source for Po in the
northwestern Pacific marginal seas, a proxy for sulfur group elements (S, Se, and Te),
whereas it is the efficient sink for Pb, together with other particle-reactive trace elements.

Keywords: 210Pb, 210Po, shelf water, scavenging, colloid

INTRODUCTION

Naturally occurring 210Pb (half-life = 22.3 years) is produced from 222Rn (half-life = 3.8 days),
belonging to the 238U decay series, and it produces 210Po (half-life = 138.4 days). In oceanic
environments, 210Pb originates mainly from the atmospheric deposition in the upper ocean and
in situ production from 226Ra (half-life = 1,600 years) decay, via 222Rn, in the deep ocean. Since the
production of 210Po from 210Pb is negligible in the atmosphere, most 210Po in the ocean is assumed
to be produced from 210Pb decay. Both 210Pb and 210Po are known to be particle reactive in aqueous
systems, but 210Po tends to be preferentially assimilated by marine biota (Fisher et al., 1983; Wei
and Murray, 1994; Hung and Chung, 1998; Stewart and Fisher, 2003; Carvalho, 2011). This efficient
biological removal of 210Po results in disequilibria between 210Pb and 210Po in the upper ocean,
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and this principle has been used to determine particulate organic
carbon export (Bacon et al., 1976; Friedrich and van der Loeff,
2002; Stewart et al., 2007; Tang and Stewart, 2019).

Although the removal of 210Po is known to be related to
marine productivity, previous studies have reported a large
deficiency of 210Po in oligotrophic oceans (Nozaki et al., 1990a;
Kim, 2001; Chung and Wu, 2005). Nozaki et al. (1990a) attributed
such a distinct deficiency to the significant atmospheric input
of 210Pb. However, Kim (2001) suggested that an unusually
large deficiency in the oligotrophic ocean could be due to the
efficient uptake of 210Po by cyanobacteria and then transfer
to higher trophic levels along marine food chains rather than
downward settling. On the contrary, in the eutrophic ocean,
210Po may reside for a much longer time in the non-settling
organic pool as it is taken up by free-living bacteria (Kim, 2001).
This hypothesis was further supported by Chung and Wu (2005)
in the South China Sea.

The East China Sea (ECS) shelf, including the Yellow Sea and
the southern sea of Korea, is one of the largest continental shelves
in the world. It has a total area of 3.6 × 105 km2 with a mean
depth of 70 m (Fang et al., 2009; Dong et al., 2011). This sea
receives great amounts of nutrients from the Changjiang (e.g.,
1.1× 1011 mol year−1 for dissolved inorganic nitrogen; Dai et al.,
2011) and also shows high primary productivity (510–580 mg C
m−2 day−1), which is 2.7 times higher than that in the adjacent
Kuroshio water (Hama et al., 1997; Gong et al., 2000). As very
oligotrophic Kuroshio water in the northwestern Pacific Ocean
(NWPO) flows into the East Sea (Japan Sea) through this ECS
shelf, significant biogeochemical alterations occur in the shelf
water (Kim et al., 2018; Cho et al., 2019). The East Sea is a semi-
enclosed marginal sea that has a total area of 1.0 × 106 km2 with
a maximum depth of over 3,500 m. This interconnected system
(the NWPO–the ECS shelf water–the East Sea) may provide
an ideal opportunity to study how chemical species behave in
different biogeochemical conditions. However, only a few studies
have examined the behaviors of 210Pb and 210Po according to
the change in environmental conditions in this region. Thus,
in this study, we aim to (1) investigate the behaviors of 210Pb
and 210Po in different oceanic settings (productive shelf water
versus oligotrophic water) and (2) understand the scavenging
mechanisms of both radionuclides in association with colloids.

MATERIALS AND METHODS

Sampling
Sampling was conducted over two periods in the southern sea
of Korea and the East Sea: from May 8 to 22, 2005, on the R/V
Tamgu (Stn. C-1, C-2, C-3, and C-4), and from January 26 to
February 2, 2018, on the R/V ISABU (Stn. S1, S4, E1, E5, and
E8; Figure 1). Seawater samples for total (∼10–20 L) and size
fractionation (∼40 L) were collected directly from Niskin bottles.
To collect the size-fractionated samples, seawater was filtered
through the 0.2-µm cartridge filter using a peristaltic pump. The
pre-filtered (<0.2 µm) samples were separated into the truly
dissolved (<10 kDa) and colloidal phases (10 kDa–0.2 µm) using
a tangential flow filtration system (PLCGC, Pellicon, Millipore,

Burlington, MA, United States), which was pre-cleaned with 1 M
HCl, 10 L deionized water, and 0.5 M NaOH (Guéguen et al.,
2002; Baskaran et al., 2003; Kim and Kim, 2012, 2014). This
filtration procedure was completed within 10 h after collection to
avoid adsorption of particles onto the bottles. The filtered samples
were acidified with 8 M nitric acid (pH ∼1) and transferred into
40-L plastic buckets.

210Pb and 210Po Analysis
The analytical methods for 210Pb and 210Po were adapted from
Kim and Kim (2012). Briefly, the 209Po spike (1 dpm), Pb2+

carrier (20 mg), and Fe3+ carrier (50 mg) were added to the
seawater samples. After the equilibration, the pH was raised to
8 using NH4OH to precipitate Fe(OH)3, together with 210Pb
and 210Po. The precipitates were allowed to settle for 4 h. After
the supernatants were siphoned off, the precipitates were filtered
using Whatman 41 grade paper. The precipitates and any organic
matters in the sample were fully digested with the mixed solution
of concentrated HNO3, HCl, and HF and then converted to 0.5 M
HCl. The samples were heated to 80◦C after adding ascorbic acid
(0.5 g) to reduce Fe3+ to Fe2+. Po from the heated samples
was simultaneously plated onto a silver disk while rotating the
disk for 3 h using a magnetic stirrer. The 210Po sources were
counted using alpha spectrometry with a passivated implanted
planar silicon detector (Alpha Analyst, Canberra, Australia).
The remaining solution was further purified for 210Pb analysis.
Concentrated HNO3 was added to the solution and heated to
oxidize the ascorbic acid. After the solution was converted to
9 M HCl, it was loaded onto the pre-conditioned anion exchange
column (AG 1 × 8 resin, Bio-Rad Laboratories, Hercules, CA,
United States) to separate Pb. The eluents (Pb) were stored
for more than 6 months for the ingrowth of 210Po. The 210Pb
activity was determined via the ingrown 210Po activity using the
same Po plating and alpha counting procedures. The recovery of
210Pb was obtained by measuring stable Pb in 210Pb solutions
using a magnetic sector field inductively coupled plasma mass
spectrometer (ICP-MS; Element 2, Thermo Scientific, Waltham,
MA, United States).

RESULTS

In order to examine the behaviors of 210Pb and 210Po in different
oceanic settings, our results are compared with previously
published data in the northwestern Pacific seas. The data are
sorted into three regions: the NWPO (Tsunogai and Nozaki,
1971; Nozaki and Tsunogai, 1976; Nozaki et al., 1990a), the ECS
shelf water (Lee et al., 1996; Hong et al., 1999; Su et al., 2017;
this study), and the East Sea (Kim and Kim, 2012; this study;
Figure 1). Data on the truly dissolved and colloidal phases of
210Pb and 210Po are only available in this study (ECS shelf water)
and in Kim and Kim (2012; East Sea). Although the stations of Lee
et al. (1996) and stations E1, S1, and S4 in this study are located
in the southwestern part of the East Sea, they are included in the
ECS shelf water data because they are located downstream of the
ECS shelf water flows (Morimoto and Yanagi, 2001; Chang et al.,
2004, 2016). Some data near the Changjiang (Hong et al., 1999;
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FIGURE 1 | Locations of the sampling stations in this study and previous studies in the northwestern Pacific Ocean (NWPO) and its adjacent marginal seas.

FIGURE 2 | Vertical distributions of 210Pb (A), 210Po (B), and 210Po deficiency (C; 210Pb-210Po) in the northwestern Pacific Ocean (NWPO; Tsunogai and Nozaki,
1971; Nozaki and Tsunogai, 1976; Nozaki et al., 1990a), the East China Sea (ECS) shelf water (Lee et al., 1996; Hong et al., 1999; Su et al., 2017; this study), and
the East Sea (Kim and Kim, 2012; this study).
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FIGURE 3 | Proportions of 210Pb (A) and 210Po (B) in truly dissolved (<10 kDa), colloidal (10 kDa–0.2 µm), and particulate (>0.2 µm) phases in the East China Sea
(ECS) shelf water and the East Sea.

Su et al., 2017) and the southern Yellow Sea (Hong et al., 1999),
which show unusually high activities (210Po/210Pb ratios > 1), are
excluded since they are considered to be significantly influenced
by terrestrial sources. All the analytical results of our experiments
are given in Supplementary Table 1.

In the surface layer (0–25 m), the activities of total 210Pb were
lower in the ECS shelf water (14 ± 3 dpm 100 L−1) relative to
the NWPO (20 ± 6 dpm 100 L−1) and the East Sea (17 ± 4 dpm
100 L−1; Figure 2A). The distributions of total 210Pb generally
showed maximum values in the surface layer and decreased with
depth in the three regions, as observed in other major oceans
(e.g., Nozaki et al., 1980; Kim, 2001; Rigaud et al., 2015; Horowitz
et al., 2020). For example, the activities of total 210Pb decreased by
approximately 50, 20, and 50% from 0 to 150 m in the ECS shelf
water, the NWPO, and the East Sea, respectively. In the ECS shelf
water, several stations showed maximum 210Pb activities near the
bottom sediments, which were 1.5–2.0 times higher than those in
the surface layer. Of the total activities, the proportions of truly
dissolved, colloidal, and particulate 210Pb in the ECS shelf water
were about 32 ± 13%, 27 ± 14%, and 41 ± 24%, whereas those
in the East Sea were about 34 ± 7%, 51 ± 8%, and 16 ± 6%,
respectively (Figure 3A). There was no significant difference in
the activities of truly dissolved and colloidal phases between the
ECS shelf water and the East Sea. However, the activities of
particulate 210Pb in the ECS shelf water were about four times
higher than those in the East Sea (Supplementary Table 1).

For total 210Po activities, there was no distinct difference in the
surface layer (0–25 m) among the ECS shelf water (11 ± 3 dpm
100 L−1), the NWPO (11 ± 5 dpm 100 L−1), and the East Sea
(10 ± 2 dpm 100 L−1; Figure 2B). As such, there was no clear
trend with depth. However, there was a significant difference
in the deficiency of 210Po (210Pb-210Po) in the three regions
(Figure 2C). The most oligotrophic NWPO showed a relatively
larger deficiency (9 ± 4 dpm 100 L−1) in the upper ocean (0–
25 m) compared with those in the East Sea (7 ± 3 dpm 100 L−1)
and the ECS shelf water (3 ± 3 dpm 100 L−1). The largest
deficiency of 210Po in the NWPO was observed at 200 m, while
it was observed in the surface layer and decreased with depth in

the ECS shelf water and the East Sea. Of the total activities, the
proportions of truly dissolved, colloidal, and particulate 210Po in
the ECS shelf water were about 48± 19%, 31± 8%, and 24± 21%,
whereas those in the East Sea were about 21 ± 7%, 36 ± 6%, and
47 ± 8%, respectively (Figure 3B). The activities of 210Po in the
ECS shelf water were approximately 3.8, 1.7, and 1.8 times higher
than those in the East Sea for the truly dissolved, colloidal, and
particulate phases, respectively (Supplementary Table 1).

DISCUSSION

Steady-State and Non-steady-State
Scavenging Models for 210Pb and 210Po
A steady-state (SS) scavenging model is used to estimate the
scavenging rates of 210Pb and 210Po in this study, as utilized by
previous studies in open ocean (e.g., Bacon et al., 1976; Obata
et al., 2004; Murray et al., 2005). At steady state (∂A/∂t = 0),
if advection and diffusion are neglected, the scavenging rate
constants of 210Pb and 210Po can be calculated using the following
equations:
For 210Pb:

∂At
Pb

∂t
= λPb ×

(
ARa − At

Pb
)
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Pbk
t
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(
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)
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where λ, A, FAtm, and k are the decay constant (day−1), inventory
of element (dpm m−2), atmospheric depositional flux of 210Pb
(55 dpm m−2 day−1; Nozaki et al., 1973; Turekian et al.,
1977), and the scavenging rate constant (year−1), respectively.
t, td, c, and p represent the total, truly dissolved, colloidal,
and particulate phases, respectively. To obtain the activities
of 226Ra in the ECS shelf water, the empirical relationship
with salinity is used for the southern sea of Korea (Stn.
C-1, C-2, C-3, and C-4; Yang et al., 1992, 1996), and the
data from Wang et al. (2018c) are used for the other ECS
shelf regions. The activities of 226Ra in the NWPO and the
East Sea are from previously published results (Nozaki and
Tsunogai, 1976; Chung and Craig, 1980; Harada and Tsunogai,
1986; Nozaki et al., 1990b). The riverine inputs are neglected
because 210Pb is almost completely trapped in the Changjiang
estuary (Wang et al., 2018b). The atmospheric input of 210Po
is also neglected since the 210Po/210Pb ratios in precipitation
in this study region are lower than 0.2 (Kim et al., 2005a;
Yan et al., 2012).

The hydrological conditions and biogeochemical processes in
the ECS shelf water are significantly affected by the intrusion
of the NWPO (Wang et al., 2018a; Zuo et al., 2019; Liu et al.,
2021). The chemical properties of the intruded water undergo
rapid changes during the water residence times in the ECS shelf.
Therefore, the removal fluxes of 210Pb and 210Po in the ECS shelf
water can be calculated using the non-steady-state (NSS) model,
accounting for the residence times of the shelf water. The removal
fluxes of 210Pb and 210Po in the ECS shelf water are expressed by
the following equations:

∂AECS
Pb

∂t
= λPb ×

(
AECS

Ra − AECS
Pb

)
+ FAtm − RECS

Pb + Flateral, Pb

(9)

∂AECS
Po

∂t
= λPo ×

(
AECS

Pb − AECS
Po

)
− RECS

Po + Flateral, Po (10)

where R and Flateral are the removal flux (in disintegrations per
minute per square meter per day) and the lateral transport of
the radionuclide by current, respectively. Assuming that ARa,
FAtm, R, and Flateral are constant during a given time interval, the
solutions for Eqs 9, 10 are expressed as follows (based on the work
by Friedrich and van der Loeff, 2002):

RECS
Pb = Fatm + Flateral, Pb + λPbAECS

Ra +

λPb

1− e−λPb1t (APb,t1e−λPb1t
− APb,t2) (11)

RECS
Po = Flateral, Po +

λPo
1−e−λPo1t

[
λPbAECS

Ra +Fatm+Flateral, Pb−RECS
Pb

λPb{
λPo

λPo−λPb

(
e−λPo1t

− e−λPb1t)
+ (1− e−λPo1t)

}
+APb,t1

λPo
λPo−λPb

(
e−λPb1t

− e−λPo1t)
+ APo,t1e−λPo1t

− APo,t2

]
(12)

In this calculation, we assume that the water of the NWPO enters
the ECS shelf at time t1 and stays for an amount of time 1t (t2–
t1). Therefore, 1t is the residence time of the ECS shelf water. At1

FIGURE 4 | Net removal flux of total 210Pb (in disintegrations per minute per
square meter per day; A) and net input flux of total 210Po (in disintegrations
per minute per square meter per day; B) from the upper 0–50 m in the East
China Sea (ECS) shelf water, calculated based on the steady-state and
non-steady-state models accounting for the advection of water. The dotted
lines represent the range of the previously reported residence times in the
ECS shelf water.
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and At2 are the activities of radionuclides in the NWPO and the
ECS shelf water, respectively. The lateral transport term (Flateral)
is calculated by multiplying the current velocity of ∼20 cm s−1

(Ichikawa and Beardsley, 2002; Lee et al., 2014) by the activity
gradient between the NWPO and the ECS shelf water along
the 400-km distance (Yangtze River mouth–Jeju Island). The
calculated results using Eqs 11, 12 according to the change in
residence times of the ECS shelf water are shown in Figure 4.
The SS model, which accounts for the advection of water, is
given for comparison.

Behaviors of 210Pb and 210Po
The scavenging rate constant of total 210Pb in the ECS shelf water
(3.0 ± 0.6 year−1) was relatively higher than that in the NWPO
(2.2 ± 0.4 year−1) and the East Sea (2.6 ± 0.4 year−1) based
on the SS model (Table 1). The corresponding values of truly
dissolved and colloidal 210Pb in the ECS shelf water were also
1.2–2.0 times higher than those in the East Sea. However, the
scavenging rate constant of particulate 210Pb in the ECS shelf
water was approximately 3.8 times lower than that in the East Sea,
perhaps associated with the higher activities of particulate 210Pb
in the ECS shelf water. Given that the maximum activities of
particulate 210Pb were observed in the surface layer at C3 and the

bottom layer at C4, respectively, such high activities of particulate
210Pb might be attributed to the lateral input from land or the
resuspension from the bottom sediments. This could occur due
to the shallow water depth and by episodic storm events (Choi
et al., 2004, 2010). In both cases, the SS model is not appropriate
for calculating the scavenging rate constant and removal flux in
the ECS shelf water.

Based on the NSS model, total 210Pb was more effectively
removed in the ECS shelf water (128–137 dpm m−2 day−1)
relative to the NWPO (55 dpm m−2 day−1) and the East Sea
(55 dpm m−2 day−1; Figure 5). The removal flux of total 210Pb
showed differences from 1 to 9% between the NSS and SS models
within the previously reported residence times of the ECS shelf
water (0.5–3.1 years; Figure 4A; Nozaki et al., 1989; Chen, 1996;
Tsunogai et al., 1997; Wang et al., 2018c). These high scavenging
rate and removal flux of 210Pb in the ECS shelf water might be due
to the higher concentrations of the suspended particulate matters
in the ECS shelf water (6.8–15.0 mg L−1; Bi et al., 2020) compared
with those in the NWPO (0.1–0.3 mg L−1; Hung and Chan, 1998)
and the East Sea (0.2–0.6 mg L−1; Chen et al., 1996; Hong et al.,
2008).

For 210Po, the scavenging rate constant of total 210Po in the
ECS shelf water (0.3 ± 0.2 year−1) was much lower than that in

TABLE 1 | Scavenging rate constants (per year) of total, truly dissolved (<10 kDa), colloidal (10 kDa–0.2 µm), and particulate (>0.2 µm) 210Pb and 210Po in the upper
0–50 m of the northwestern Pacific Ocean (NWPO), the East China Sea (ECS) shelf water, and the East Sea.

Location Total Truly dissolved (<10 kDa) Colloidal (10 kDa–0.2 or 0.45 µm) Particulate (>0.2 or 0.45 µm)

210Pb 210Po 210Pb 210Po 210Pb 210Po 210Pb 210Po

NWPO 2.2 ± 0.4 1.3 ± 0.5 – – – – – –

ECS shelf water 3.0 ± 0.6 0.3 ± 0.2 8.6 ± 0.3 0.2a 11.3 ± 1.7 0.3a 6.1 ± 0.2 4.5 ± 3

East Sea 2.6 ± 0.4 1.8 ± 0.3 7.4 ± 1.1 5.9 ± 3.2 5.8 ± 1.3 6.5 ± 2.1 23.6 ± 7.6 3.8 ± 1.1

aThe C4 station showed a negative scavenging constant due to the equilibrium state between 210Pb and 210Po.

FIGURE 5 | A schematic box model (non-steady-state) of total 210Pb and 210Po accounting for the lateral transport of water from the northwestern Pacific Ocean
(NWPO) to the East Sea through the East China Sea (ECS) shelf. The uncertainty of each source and sink term accounting for variations in the current velocity and
atmospheric input of 210Pb is below 15%, except for the net input of 210Po in the ECS shelf water (28%).
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the NWPO (1.3± 0.5 year−1) and the East Sea (1.8± 0.3 year−1),
which is opposite to the 210Pb trend (Table 1). Especially, the truly
dissolved and colloidal 210Po in the ECS shelf water approached
equilibrium with 210Pb. The calculated results of the NSS model
showed the net input of 210Po in the ECS shelf water (7–10 dpm
m−2 day−1), opposite to the net removal in the NWPO (20 dpm
m−2 day−1) and the East Sea (18 dpm m−2 day−1; Figure 5). The
net input flux of 210Po increased with the residence times of the
ECS shelf water and showed a difference from 13 to 35% between
the NSS and SS models (Figure 4B).

These distinctively low scavenging rate constant and net
input flux of 210Po have been reported in the ECS (Nozaki
et al., 1991), Gulf of Lion (Radakovitch et al., 1998), and
northwestern Mediterranean Sea (Masqué et al., 2002). Nozaki
et al. (1991) and Radakovitch et al. (1998) argued that this trend
might be due to the extensive inputs of suspended particulate
matters from river discharges with 210Po/210Pb ratios of ∼1.
On the other hand, Masqué et al. (2002) suggested that the
incorporation of 210Po into the organic matter following the
uptake by buoyant particles resulted in the low scavenging
rate constant of 210Po. In this study, we discount the riverine
sources as the main reason for the low scavenging rate constant
of 210Po because the influence of river discharge with high
210Po/210Pb ratios was excluded in the comparison. In addition,
the 210Po/210Pb ratios were∼0.5 for the particulate phase and∼1
for the total dissolved (truly dissolved + colloidal) phases in the
ECS shelf water.

In general, low contents of organic carbon (0.2–1.0%) were
observed in the sinking particles and the bottom sediments in the
ECS shelf, associated with rapid organic carbon remineralization
(Lin et al., 2000, 2002; Iseki et al., 2003). The results of
sediment core incubation also showed that the organic carbon
remineralization rate in the bottom sediments accounted for
12–24% of the primary productivity in this highly eutrophic
ECS shelf water (Song et al., 2016), indicating the efficient
regeneration of organic matter in the bottom sediments. In
addition, hypoxia occurred intermittently in the bottom of ECS
shelf water (dissolved oxygen concentrations <2–3 mg L−1; Chen
et al., 2007), which can also increase the net input flux of 210Po
as insoluble Po(IV) can be reduced to soluble Po(II) (Balistrieri
et al., 1995; Kim et al., 2005b; Kim and Kim, 2014). Considering
the relatively higher proportions of the total dissolved (truly
dissolved + colloidal) 210Po in the ECS shelf water (>80%),
the colloidal matter might be associated with the net input of
210Po due to regeneration from the sinking particles and in the
bottom sediments.

Thus, our results suggest that 210Po, a proxy for sulfur group
elements (S, Se, and Te), may reside longer in the water column
because of active regeneration, while 210Pb and other particle-
reactive elements would be removed in association with the large
population of the sinking particles in the shelf water.

CONCLUSION

The scavenging rate constant and removal flux of 210Pb and
210Po were estimated using a geochemical scavenging model

in the productive shelf system connected to the oligotrophic
NWPO. The scavenging rate constant of 210Pb was relatively
higher (3.0 ± 0.6 year−1) in the ECS shelf water, whereas
that of 210Po was lower (0.3 ± 0.2 year−1) than that in the
NWPO and the East Sea. In addition, a NSS model accounting
for the ocean currents showed the effective removal of 210Pb
in the ECS shelf water (128–137 dpm m−2 day−1), whereas
210Po showed the net input from the sinking particles and
the bottom sediments (7–10 dpm m−2 day−1). Given that the
largest proportions of 210Pb and 210Po were particulate and total
dissolved (truly dissolved + colloidal) phases, respectively, these
opposite behaviors could be due to the efficient scavenging of
210Pb versus the efficient regeneration of 210Po from organic
matter in the ECS shelf water. Thus, our results suggest that
particle-reactive elements would be effectively removed in the
shelf water, whereas sulfur group elements (S, Se, and Te) might
be supplied from the sinking particles and the bottom sediments
by efficient regeneration.
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