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Different doses of β-conglycinin produce different regulations on the intestinal health
of aquatic animals, affecting the absorption of nutrients, indirectly changing water
quality. Sodium butyrate (NaB) can effectively alleviate the negative effects caused
by high-dose β-conglycinin. We investigated the positive response to low-dose
(1.5%, bL) and negative response to high-dose (6.0%, bH) β-conglycinin and
supplementation with NaB (6.0% β-conglycinin + 0.13% NaB, bHNaB) in terms of water
pollutants, microbiota, transcriptome, and metabolome in hybrid grouper (Epinephelus
fuscoguttatus♀ × E. lanceolatus♂). The ammonia nitrogen, nitrite, total nitrogen, and
total phosphorus contents were significantly higher in the water from bH than from
FMb, bL, and bHNaB. Supplementing with NaB significantly reduced the ammonia
nitrogen, nitrite, total nitrogen, and total phosphorus contents. Low-dose β-conglycinin
increased the relative abundance of Pelagibacterium, Pediococcus, Staphylococcus,
and Lactobacillus and promoted the “ribosome,” “peroxisome proliferator-activated
receptor (PPAR) signaling” and “histidine metabolism.” High-dose β-conglycinin
increased the relative abundance of pathogenic bacteria Ralstonia and Photobacterium
and inhibited the “cell cycle” “PPAR signaling” and “starch and proline metabolism.” NaB
supplementation at high-dose β-conglycinin reduced the Ralstonia and Photobacterium
abundance and promoted the “cell cycle,” “linoleic acid metabolism,” and “ABC
transporters.” Overall, these results reveal differences in the effects of high- and low-
dose β-conglycinin, as well as NaB supplementation, on the utilization of proteins,
carbohydrates, and lipids and on substance transport and signaling among distal
intestinal cells of hybrid grouper. A total of 15 differential metabolite biomarkers were
identified: FMb vs. bL contained 10-methylimidazole acetic acid, N-acetyl histamine,
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urocanic acid, creatinine, glutathione, taurine, nervonic acid, stearic acid, docosanoic
acid, and D-serine; FMb vs. bH contained 4-L-fucose, sucrose, α,α-trehalose, and
quercetin; and bH vs. bHNaB contained 4-N-acetyl histamine, urocanic acid, creatinine,
and S-adenosylhomocysteine, respectively. Our study provides new insights into the
regulation of intestinal health by β-conglycinin in aquatic animals and the protective
mechanism of NaB.

Keywords: hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂), β-conglycinin, sodium butyrate,
intestinal microbiota, transcriptome, metabolome

INTRODUCTION

The hybrid grouper (Epinephelus fuscoguttatus♀
× E. lanceolatus♂) is an economically important fish along
the southern coast of China, with a fast growth rate and strong
environmental tolerance. In 2017, groupers were officially
included in the construction of China’s National Marine Fish
Industry Technology System. As a typical carnivorous fish, it
usually requires up to about 50% of protein in its feed (Jiang
et al., 2016). Fishmeal is a high quality protein source and it
has been traditionally used as the main protein source in the
aquafeed industry. However, due to the high demand for fishmeal
leading to a high price and lack of sources, the farming industry
had to find dietary alternative ingredients. The high nitrogen
and phosphorus content in the fishmeal feeds is not completely
absorbed by hybrid grouper and is most likely to be excreted
along with the feces, leading to serious contamination of the
farmed water. Currently, the use of soybean meal to replace fish
meal can relieve the pressure of fish meal shortage and greatly
promote the sustainable development of aquaculture industry
(Yang et al., 2011; Smith et al., 2017; Miao et al., 2018). However,
owing to low tolerance to soybean meal, excessive intake of
soybean meal can lead to varying degrees of intestinal injury
(Zhang et al., 2019).

The intestines of aquatic animals are responsible for the
dual functions of digestion and absorption. The mucosa of the
intestinal tract is the main interface between the internal and
external environments of the organism. The intestinal tract is
the main site of nutrient exchange and infection or initiation
of infection by many pathogens (Jiang et al., 2019) and is
highly susceptible to the effects of feed ingredients and living
environmental conditions (Duan et al., 2017). Thus, it is essential
to maintain the health and stability of the intestinal tracts of
aquatic animals. The presence of a large number of microbiota
in the intestinal tract is the result of long-term evolution, and
they are closely related to the immune function and nutritional
requirements of the organism (Yang et al., 2018). Intestinal
microbiota can participate in the mediation of multiple metabolic
pathways in the host, interacting with host metabolism and
signal transduction to form a physiologically connected gut-
immune-inflammation axis (Matsumoto et al., 2012). Similarly,
intestinal health status could also influence the composition of
microorganisms. Therefore, the relationship between intestinal
flora and metabolite associations and host intestinal health
requires further investigation.

It is accepted that β-conglycinin (7S) of soybean meal is a
major factor in the induction of intestinal injury. β-Conglycinin,
one of the major antigen proteins in soybean, often causes allergic
reactions in young animals, causing inflammatory damage to
intestinal epithelial cells accompanied by lipid peroxidation
of cell membranes, negatively affecting the function of tight
junction protein structures and increasing intestinal epithelial
permeability (Zhao et al., 2014). The unbalanced amino acid
in soybean meal may lead to increased excretion of nitrogen
and phosphorus by fish (Tantikitti et al., 2005), which is not
conducive to the healthy and sustainable development of the
aquaculture industry. As a widely used additive in livestock and
poultry animals, sodium butyrate (NaB) can not only act as a
food attractant, but also improve the tight junctions of intestinal
epithelium (Huang et al., 2015) and alleviate inflammation by
inhibiting nuclear factor kappa B (NF-kB) (Albino et al., 2012),
and it also has a positive regulatory effect on the host’s intestinal
microbiota (Zou et al., 2019). The active ingredient in NaB is
butyric acid, which is a short-chain, volatile fatty acid (O’Hara
et al., 2018). In aquatic animals, NaB can stimulate the growth and
proliferation of intestinal mucosa and inhibit the proliferation
of intestinal pathogenic microorganisms, thus, promoting the
growth of fish and enhancing intestinal digestion and antioxidant
capacity (Tian et al., 2017; Jesus et al., 2018; Fu et al., 2019).
Nevertheless, the physiological mechanisms of intestinal injury
and inflammation in hybrid grouper caused by β-conglycinin
and the protective effects of NaB on the intestinal tract are not
well understood.

In a previous study, we demonstrated that ingestion of high
levels of soybean meal by hybrid grouper resulted in intestinal
injury (Zhang et al., 2019). The inhibitory effects of β-conglycinin
on the growth of fish is usually thought to be due to intestinal
inflammation (Zhang et al., 2013); nevertheless, the reports of
whether β-conglycinin can negatively affect other physiological
functions in fish are rare. In this study, we investigated the
effects of β-conglycinin and the protective mechanism of NaB on
transcription, intestinal microbiota, and metabolites in the distal
intestine of hybrid grouper. Then, transcriptomic, intestinal
microbiota, and metabolomic means were combined to model
the associations among host metabolism, intestinal microbiota,
and aquaculture water pollutants at the system biology level. This
will help us understand the metabolic processes of the microflora
in the host and their effects on host transcription, as well as their
interactions with each other, and search for potential targets for
the treatment of soybean meal enteritis.
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MATERIALS AND METHODS

Fish and Rearing Conditions
Healthy juvenile hybrid groupers were purchased from
a fish hatchery in East Island (Zhanjiang, China). The
juveniles were housed in a concrete pond at the Biological
Research Base of Guangdong Ocean University and fed
commercial feed for 1 week to acclimatize them to the base
environment.

After 1 week, 480 robust and uniformly fit hybrid groupers
with an average body weight of 7.70 ± 0.05 g were randomly
selected. The experiment was divided into four treatment groups
with four replicates of 30 fish each and farmed for 8 weeks.
0.3 m3 fiberglass tanks were used for each replicate breeding
indoors. During the experimental period, apparent satiety feeding
was carried out twice daily (08:00 and 16:00) with a daily water
change of approximately 70% (water flow: 100 L/min). The water
temperature was 30.00 ± 1.30◦C, salinity was 32.00 ± 2.00,
dissolved oxygen was ≥7.00 mg/L, pH was 7.80–8.10, and
ammonia nitrogen was<0.09 mg/L.

Diet Formulations
Four different design approaches to experimental feeds were used
in this experiment. Based on the approximate amount of 7S
in soybean meal protein (30%) (Ogawa et al., 1991) and the
research of soybean meal substitution for fish meal in aquatic
animals (Shiu et al., 2015), we set 1.5% 7S as the low dose
(equivalent to supplementing 10% dehulled soybean meal to feed)
and 6.0% as the high dose group (equivalent to supplementing
40% dehulled soybean meal to feed). Optimum NaB addition
level was determined based on the results of studies on aquatic
animals (Mirghaed et al., 2019). We used the group with 0.00%
7S and 0.00% NaB as the control group, named FMb group.
To the control group, 1.5% of 7S was supplemented as a low-
dose 7S addition group, named bL group; to the control group,
6.0% of 7S was supplemented as a high-dose 7S addition group,
named bH group; to the control group, both 6.0% of 7S and
0.13% of NaB were supplemented as a repair group, named
bHNaB group. Fishmeal, casein, and gelatin were used as the
main protein sources for experimental feeds, while fish oil and
soy lecithin were used as the main lipid sources. Methionine and
lysine were added to the experimental diets at the FM diet level.
The diet formulations and amino acid profiles of the four diets are
shown in Supplementary Tables 1, 2. Purified 7S was purchased
from China Agricultural University (Patent No. 200410029589.4,
China). After all the ingredients were thoroughly blended, they
were passed through a 380 µm sieve. Then, 30% water (dissolved
choline chloride) was added and mixed thoroughly, and a
pelletizer was used to produce 2.5 mm diameter pellets. The
samples were air-dried at room temperature until the moisture
content was close to 10% and then stored at−20◦C until use.

Sample Collection and Determination
Six experimental fish were randomly selected from each
treatment at the end of the 8-week breeding experiment. The
fish were dissected in a sterile environment using sterile scissors

and forceps, and the distal intestine contents were removed
and placed in sterile cryopreservation tubes. Following this, the
intestines were immediately cleaned with pre-chilled phosphate
buffered saline and divided equally into two portions, one for the
transcriptomic sample and the other for the metabolomic sample,
which were placed in cryopreservation tubes. Each individual fish
served as a biological replicate of each microbiota, transcriptome,
and metabolome, and corresponded one to one.

The siphon method was used to obtain water samples
approximately 10–20 cm from the bottom of each tank for the
determination of ammonia nitrogen (AN), nitrite (NIT), total
nitrogen (TN), and total phosphorus (TP). One end of the
polyvinylchlorid pipe was placed below the water surface, 10–
20 cm from the bottom of the tank, and the other end was
connected to the sample bottle. Then the air inside the tube was
extracted so that the water enters the sample bottle through the
tube due to the air pressure difference. The water samples for
determining TN and TP were additionally filtered using a filter
extractor with a pore size of 0.45 µm. All water samples were
temporarily stored at −20◦C. According to the Specification for
Marine Monitoring-Part 4: Seawater analysis (GB 17378.4-2007)
(China, 2007), the hypobromite oxidation method and N-(1-
naphthyl)-ethylenediamine dihydrochloride spectrophotometric
method were used to determine the contents of NH4

+-N and
NO2-N, respectively, and the potassium persulfate oxidation
method was used to determine the contents of TN and TP.

Trizol (1 mL; TRI Reagent solution, Invitrogen, Carlsbad,
CA, United States) was used to extract total RNA from 100–
150 mg of the distal intestinal tissue. Electrophoresis of 1%
agarose gels and spectrophotometric analysis with a NanoDrop
2000 (260:280 nm) was used to determine the total RNA quality
and quantity. Total RNA was reverse-transcribed into cDNA
using the PrimerScriptTM RT-PCR kit (TaKaRa, Kusatsu, Japan).
SYBR R© Premix Ex TaqTM kit was used to perform real-time
PCR reactions using the Applied Biosystems 7500 Real-Time
PCR System (Life Technologies, Carlsbad, CA, United States).
Relative mRNA levels were analyzed using the 2−11CT method
(Livak and Schmittgen, 2001).

Distal Intestinal Microbiome Analysis
The hexad ecyltrimethyl ammonium bromide (CTAB)
method was used to extract the total genomic DNA from
the distal intestine samples (Griffith and Shaw, 1998). 20 uL
of lysozyme was added to 1000 uL of CTAB lysis solution
(0.1 M Tris HCl, pH 8.0, 1.4 M NaCl, 0.02 M EDTA, 2%
CTAB) and the mixed to be used for adequate lysis of the
samples. The lysed solution was centrifuged and 950 uL of
the supernatant was taken. The supernatant was again taken
and added to a mixture equal in volume to the supernatant
[V(phenol):V(chloroform):V(isoamyl alcohol) = 25:24:1],
mixed well, and centrifuged at 12,000 rpm for 10 min. The
supernatant was again taken and added to a mixture equal
in volume to the supernatant [V(chloroform):V(isoamyl
alcohol) = 24:1], then mixed and centrifuged at 12,000 rpm
for 10 min. The supernatant was then taken and three-fourths
of the supernatant volume of isopropanol was added and
precipitated at −20◦C. Centrifuged the above mixture at
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12,000 rpm for 10 min. After pouring out the supernatant,
the obtained precipitate was washed using 1 mL of 75%
ethanol and the washing was repeated twice. The DNA
was dried on the ultra clean bench and was dissolved in
51 uL of double distilled water. Finally, 1 uL of RNase
A was added and the RNA was removed by placing it at
37◦C for 15 min. The quality and quantity of extracted
DNA were examined using agarose gel electrophoresis
and Nanodrop 2000 spectrophotometer (Thermo Fisher
Scientific), respectively. The V3–V4 region of the bacterial
16S rDNA gene was amplified using a pair of barcoded fusion
primers, 341F (5′-CCTAYGGGRBGCASCAG-3′) and 806R
(5′-GGACTACNNGGGTATCTAAT-3′). All PCR reactions were
carried out with 15 µL of Phusion R© High-Fidelity PCR Master
Mix (New England Biolabs). PCR products were mixed in
equi-density ratios and purified using the Qiagen Gel Extraction
Kit (Qiagen, Germany). Library quality was assessed using
the Qubit@2.0 Fluorometer (Thermo Scientific) and Agilent
Bioanalyzer 2100 system. Finally, the library was sequenced on
an Illumina NovaSeq platform using TruSeq R© DNA PCR-Free
Sample Preparation Kit (Illumina, United States), and 250 bp
paired-end reads were generated. The UCHIME Algorithm1

(Edgar et al., 2011) was used to compare tags with the reference
database (Silva database2) to remove chimera sequences
(Haas et al., 2011).

The FLASH (v.1.2.73) analysis tool was used to merge
paired-end reads (Magoè and Salzberg, 2011). Quality filtering
on the raw tags was performed to obtain high-quality clean
tags (Bokulich et al., 2013) according to the QIIME (v.1.9.14)
(Caporaso et al., 2010) quality controlled process. Uparse
software (v7.0.10015) (Edgar, 2013) was used to perform sequence
analysis. Sequences with ≥97% similarity were assigned to
the same operational taxonomic unit (OTU). Alpha diversity
was applied to analyze the complexity of species diversity
for a sample through four indices, namely, observed-species,
Shannon, Simpson, and Good’s coverage, using the Mothur
method (Schloss et al., 2011). QIIME (v.1.7.0) and R software
(v.2.15.3) were used to calculate and display all indices in
the experimental samples, respectively. Shannon and Simpson
indices were used to identify the community diversity. Good’s
coverage was used to characterize the sequencing depth. β-
diversity analysis was used to determine differences of samples
in species complexity. QIIME software (v. 1.9.1) was used
to calculate β-diversity on both unweighted and weighted
unifrac. And Principal coordinate analysis (PCoA) was used
to perform principal coordinates and visualize from complex
multidimensional data. WGCNA package, stat packages and
ggplot2 package was used to display the PCoA analysis in R
software (v. 2.15.3). High-throughput sequencing data in this
study are deposited in the NCBI SRA repository, accession
number PRJNA733825.

1http://www.drive5.com/usearch/manual/uchime_algo.html
2http://www.arb-silva.de/
3http://ccb.jhu.edu/software/FLASH/
4http://qiime.org/scripts/split_libraries_fastq.html
5http://drive5.com/uparse/

Distal Intestinal Transcriptome Analysis
Total RNA from distal intestinal tissues was extracted using
the TRIzol Reagent (Life Technologies, United States). Agarose
gel electrophoresis, NanoDrop microspectrophotometer, and
Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA,
United States) were used to determine the quality and quantity
of the extracted total RNA. Total RNA was enriched using oligo
(dT). Sequencing libraries were constructed on high-quality RNA
samples using the NEB #7530 kit (New England Biolabs, #E7530)
on an Illumina HiSeqTM 2500 by Gene Denovo Biotechnology
Co. (Guangzhou, China). Clean reads were filtered using fastp
(Chen et al., 2018) (v. 0.18.0) to obtain high-quality reads.
The remaining reads were mapped to the reference genome
by TopHat2 (Kim et al., 2013) (v. 2.1.1) after rRNA was
removed using the short read alignment tool Bowtie2 (Langmead
and Salzberg, 2012) (v. 2.2.8). Differentially expressed genes
(DEGs) of FMb vs. bL, FMb vs. bH, and bH vs. bHNaB were
identified. Each transcript expression level was calculated using
the fragments per kilobase of transcript per million mapped
reads (FPKM) method. The edgeR package (v. 3.12.1)6 was
used for identifying DEGs between two groups. DEGs with a
fold change (FC) ≥ 2 and a P-value <0.05 were considered
significant. All DEGs were mapped to gene ontology (GO) terms
of the GO database7. Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis was performed using
OmicShare tools8. The GO and KEGG enrichment statistical
analyses were set at corrected P-values <0.05 as the threshold
for significance. Transcriptome sequencing data in this study
are deposited in the NCBI SRA repository, accession number
PRJNA735581.

Distal Intestinal Metabolomics Analysis
Six distal intestinal tissue sample replicates of hybrid grouper
from each treatment were used for metabolomic analysis. 100 mg
of intestinal tissue samples ground in liquid nitrogen were
placed in Eppendorf tubes and 500 µL of 80% formaldehyde
aqueous solution was added. The samples were subjected
to vortex shaking, allowed to stand in an ice bath for
5 min, and centrifuged at 15,000 × g at 4◦C for 20 min.
Mass spectrometry-grade water (liquid chromatograph-mass
spectrometer (LC-MS) Grade, Merck, Germany) was added to
dilute the formaldehyde content of the sample to a concentration
of 53%. The sample was then centrifuged at 15,000 × g
at 4◦C for another 20 min. The supernatant was collected
and detected by LC-MS (Vanquish UHPLC, Thermo Fisher,
Germany; Q ExactiveTM HF, Thermo Fisher, Germany). The
liquid chromatograph was equipped with a Hypersil Gold column
(100 × 2.1 mm, 1.9 µm). In the assay, an equal volume
of sample from each experimental sample was mixed as a
quality control (QC) sample, and an aqueous formaldehyde
solution at 53% concentration was used as a blank sample. Mass
spectrometry scans ranged from 100 to 1500 (mass to charge
ratio, m/z), and the electrospray ionization source was set up

6http://www.r-project.org/
7http://www.geneontology.org/
8http://www.omicshare.com/
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as follows: spray voltage, 3.2 kV; sheath gas flow rate, 40 arb;
auxiliary gas flow rate, 10 arb; and capillary temperature, 320◦C.
Polarity: positive, negative; MS/MS secondary scans were data-
dependent.

The offline data (raw) files were imported into Compound
Discoverer 3.1 (CD3.1, Thermo Fisher) to perform a simple
filtering of retention time, mass to charge ratio, etc. The different
samples were then peak-aligned according to a retention time
deviation of 0.2 min and a mass deviation of 5 ppm for more
accurate identification. Peaks were then extracted based on a set
mass deviation of 5 ppm, signal strength deviation of 30%, signal
to noise ratio of 3, and minimum signal intensity of 100,000.
The peak area was also quantified, and molecular formulae were
predicted by ion peaks and fragment ions and compared with
mzCloud9, mzVault, and Masslist databases to obtain accurate
qualitative and relative quantitative results. The softwares R (R
version R-3.4.3), Python (Python 2.7.3 version), and CentOS
(CentOS release 6.6) were used for statistical analyses. The
transformation was performed using area normalization when
the data were not normally distributed. QC and quality assurance
were used to determine all data. The KEGG10, HMDB11, and
LIPIDMaps12 databases were used to annotate the metabolites.
MetaX was used to perform principal component analysis
and partial least squares discriminant analysis (PLS-DA). The
univariate analysis (t-test) was used to calculate statistical
significance (P value). Metabolites with variable importance in
projection (VIP) > 1, P-value <0.05, and FC ≥ 2 or ≤ 0.5 were
considered to be differential metabolites (DMs). DMs of FMb
vs. bL, FMb vs. bH, and bH vs. bHNaB were identified. The
metabolites of interest were filtered using Volcano plots based
on log2(FC) and −log10(P-value) of metabolites. For clustering
heat maps, z-scores of the intensity areas of the DMs were used
to normalize the data. The Pheatmap package was used to plot
the data in R. The functions of these metabolites and metabolic
pathways were studied using the KEGG database13. Metabolic
pathway enrichment of the DMs was performed. The pathways
were considered to be enriched when ratios were satisfied by
x/n> y/N and significantly enriched when P < 0.05.

Correlation Analysis of Intestinal
Bacteria With Water Pollutants, DEGs,
and DMs
The correlation between distal intestinal bacteria and water
pollutants, distal intestinal DEGs, and DMs was revealed by
Spearman correlation analysis using the Cytoscape software
coNetplug-in. The P-value and correlation coefficient were not
set; ∗ indicated significant differences (P < 0.05), ∗∗ indicated
very significant differences (P < 0.01), and ∗∗∗ indicated
extremely significant differences (P < 0.001).

9http://www.mzcloud.org/
10http://www.genome.jp/kegg/pathway.html
11http://hmdb.ca/metabolites
12http://www.lipidmaps.org/
13www.metaboanalyst.ca

Statistical Analysis
Under the premise of variance homogeneity, statistical
evaluations of pollutants and RT-PCR data were subjected
to one-way analysis of variance followed by Tukey’s multiple
range tests to determine significant differences among the four
groups. SPSS (v. 22, SPSS Inc., Chicago, IL, United States) was
used as described previously (Guo et al., 2017). The results are
presented as mean± standard error.

RESULTS

Aquaculture Water Quality Determination
After 24 h of water exchange, water samples were collected
to determine the quality (Figure 1). bH showed a significantly
higher ammonia nitrogen concentration than FMb, while the
concentration in bL or bHNaB was not significantly different
from that in FMb. As for nitrite, significant increases occurred
in bH and bHNaB compared with that in FMb and bL, and no
significant difference was found between the FMb and bL. TN and
TP concentrations showed the same trend as that of ammonia
nitrogen, with the concentrations being significantly higher in bH
than in FMb, bL, and bHNaB.

Distal Intestinal Microbiota Changes in
Hybrid Grouper
Richness and Diversity
A total of 1,218,101 raw reads were observed in all 16
microbial samples (two samples were excluded from each
group). Average numbers of raw reads per treatment were
70,628.50 ± 4793.95, 80,868.00 ± 5197.54, 74,132.00 ± 4256.19,
and 78,896.75 ± 5944.74 for FMb, bL, bH, and bHNaB,
respectively. After clustering OTUs with 97% consistency,
we obtained a total of 11,707 OTUs. The average OTUs
in bL (916.75 ± 212.02), bH (561.75 ± 46.00), and
bHNaB (352.50 ± 17.59) were lower than those in FMb
(1095.75 ± 212.02). In addition, the rarefaction curves indicated
that the identification rate of new OTUs gradually decreased
as the number of reads per sample increased (Supplementary
Figure 1), while the Good’s coverage of all samples exceeded 99%.
This indicated that the sequencing results had good accuracy
and reproducibility. Compared with FMb and bL, in bH and
bHNaB, the Shannon and Simpson indices showed the same
significant differences and were decreased, but no difference was
found between bH and bHNaB (Supplementary Figure 2). The
number of unique OTUs in bL was increased, while that in bH
and bHNaB decreased (Figure 2A). Principal coordinate analysis
plots of unweighted and weighted UniFrac matrix distances
showed that FMb was separated from bL, bH, and bHNaB, while
bH and bHNaB were very close to each other (Figures 2B,C).

Distal Intestinal Microbial Composition
At the phylum level, the top 10 phyla in terms of overall
relative abundance included Proteobacteria, Cyanobacteria,
Firmicutes, Bacteroidetes, and Actinobacteria. The relative
abundance of Proteobacteria decreased in bL and increased
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FIGURE 1 | Detection of harmful substances in aquaculture water. The concentrations of (A) ammonia nitrogen, (B) nitrite, (C) total nitrogen concentration, and (D)
total phosphorus were determined by Specification for Marine Monitoring-Part 4: Seawater analysis (GB 17378.4-2007). *P < 0.05.

in bH and bHNaB compared with that in FMb. The relative
abundance of Cyanobacteria increased in bL, bH, and bHNaB
compared with that in bH. The relative abundance of Firmicutes,
Bacteroidetes, and Actinobacteria decreased in all three treatment
groups (Figure 2D). At the genus level, the dominant bacteria
in FMb included Pseudomonas, Prevotellaceae_UCG-001,
Prevotella, Bifidobacterium, and Moraxella. Pelagibacterium,
Vibrio, Pediococcus, Staphylococcus, and Lactobacillus showed
a higher abundance in bL than in the other three groups.
Classification of bacterial relative abundance showed a higher
abundance of Ralstonia and Photobacterium in bH than in
FMb, while the relative abundance of these genera in bL was
also lower than that in FMb. The unidentified_Mitochondria,
unidentified_Chloroplast, and Burkholderia-Caballeronia-
Paraburkholderia showed higher relative abundance in bHNaB
than in bH (Figure 2E).

Changes in the Distal Intestinal Bacterial Phylotypes
Previous studies have revealed differences in the composition
and structure of the bacterial taxa of the distal intestine
of hybrid groupers from different treatment groups. To
identify the key bacterial taxa with significant differences,

we used LEfSe to analyze the differences in the abundance
of taxa among the four groups. LEfSe analysis of all the
samples revealed that 34 taxa with significantly different
taxa information among the four groups were found at the
phylum, class, order, family, genus, and species levels. Among
them, the relative abundance of 31 bacterial taxa, including
Firmicutes, Clostridia, Bacteroidota, Bacteroidia, Bacteroidales,
Lachnospiraceae, Lachnospirales, Bacilli, Lactobacillales, and
Negativicutes, in FMb was significantly higher than that in the
other groups (P < 0.05). The relative abundance of one bacterial
taxon, Lactobacillaceae, in bL was significantly higher than that
in the other groups (P < 0.05). The relative abundance of two
bacterial taxa, Ralstonia and Ralstonia pickettii, in the bH group
was significantly higher than that in the other groups (P < 0.05).
No discriminant taxa were found in bHNaB (Supplementary
Figures 3A,B).

Distal Intestinal Transcriptome Analysis
Identification and Functional Annotation of DEGs
After transcriptome sequencing analysis of 16 distal intestine
samples from the four groups (two samples were excluded from
each group), a total of 527,803,196 raw reads and 79,170,479,400
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FIGURE 2 | Distal intestinal microbial diversity and composition of hybrid grouper. The numbers of unique and shared OTUs between different treatments indicated
by UPSET (A). The horizontal bars indicate the total OTUs for each treatment, the vertical bars indicate the specific OTUs for each treatment, and the rightmost
vertical bar indicates the shared OTUs of all treatments. PCoA plots based on unweighted UniFrac metrics (B) and weighted UniFrac metrics (C), and Amova
analysis was used to determine the significant differences in distance between two groups. Color code, FMb: #000000; bL: #31CB31; bH: #FF3131; bHNaB:
#319831; shared OUTs: 91E1BD. Circos graphs of dominant bacterial phyla (top 10) (D) and genera (top 10) (E) in the distal intestinal. The right semicircle
represents the phyla and genera composition of each treatment, and the left semicircle indicates the distribution of each phyla and genera in the different treatments.

raw bases were obtained, from which 526,786,184 clean reads and
78,684,777,954 clean bases were obtained after filtering and QC.

A total of 1878 DEGs (1231 upregulated and 647
downregulated) in FMb vs. bL, 1455 (702 upregulated and
753 downregulated) in FMb vs. bH, and 802 (570 upregulated
and 232 downregulated) in bH vs. bHNaB were identified
(Supplementary Figures 4, 5).

DEG Trend Analysis
After all the DEGs (P < 0.05) were annotated by GO
enrichment analysis, the dominant GO terms of the three
comparison groups were almost the same. The dominant sub-
categories in biological process were “single-organism process,”
“cellular process,” and “metabolic process” (Figures 3A,D–F); the
dominant sub-categories in molecular function were “binding”
and “catalytic activity” (Figures 3B,G–I); and the dominant
sub-categories in cellular components were “cell,” “cell part,”
and “organelle” (Figures 3C,J–L). After significant enrichment
analysis, in FMb vs. bL, DEGs were significantly enriched
in “cellular component disassembly,” “multi-organism process,”
and “protein complex subunit organization” for biological
process; “nucleic acid binding,” “protein binding,” and “binding”
for molecular function; and “organelle part,” “organelle,” and
“intracellular organelle” for cellular component. In FMb vs.
bH, DEGs were significantly enriched in “cell cycle,” “cell

cycle process,” and “immune system process” for biological
process; “tubulin binding,” “cytoskeletal protein binding,” and
“nucleoside-triphosphatase activity” for molecular function; and
“intrinsic component of membrane,” “membrane part,” and
“intracellular non-membrane-bounded organelle” for cellular
component. In bH vs. bHNaB, DEGs were significantly enriched
in “regulation of protein stability,” “organonitrogen compound
catabolic process,” and “cell cycle” for biological process; “protein
binding,” “oxidoreductase activity,” and “RNA binding” for
molecular function; and “organelle,” “intracellular organelle,” and
“intracellular part” for cellular component. According to the
KEGG enrichment analysis, DEGs were enriched in six KEGG
A classes: “organismal system,” “metabolism,” “human diseases,”
“cellular processes,” “genetic information processing,” and
“environmental information processing” (Figure 4). Nineteen
of 283 pathways were significantly enriched in FMb vs.
bL compared with those in FMb; the enriched pathways
of bL were “ribosome,” “protein digestion and absorption,”
“Salmonella infection,” and “peroxisome proliferator-activated
receptor (PPAR) signaling” (Figures 4A,D). Twenty-six of 261
pathways were significantly enriched in FMb vs. bH compared
with those in FMb; the enriched pathways of bH were “cell cycle,”
“cytokine–cytokine receptor interaction,” “PPAR signaling,” and
“ferroptosis” (Figures 4B,E). Twenty of 198 pathways were
significantly enriched in bH vs. bHNaB (P< 0.05) compared with
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FIGURE 3 | GO classification and enrichment analysis of the DEGs in the distal intestine of hybrid grouper. GO terms of FMb vs. bL, FMb vs. bH and bH vs. bHNaB.
Distribution of the top 20 (level-2) GO terms significantly enriched in the categories of biological process, molecular function, and cellular component in FMb vs. bL
(A,D–F), FMb vs. bH (B,G–I), and bH vs. bHNaB (C,J–L).

those in bH; the enriched pathways of the bHNaB were “protein
processing in endoplasmic reticulum,” “cell cycle,” and “linoleic
acid metabolism” (Figures 4C,F).

Identification of Related DEGs
To verify the accuracy of the present transcriptome results, we
selected 24 genes related to three aspects, namely, intestinal
tight junctions, amino acid transporters, and inflammatory
factors, and validated the results using RT-PCR (Supplementary
Figure 6). The primers used in the experiment (Supplementary
Table 3) were designed based on the full-length intestinal
sequence of hybrid grouper (Zhang, 2020). Overall, the RT-
PCR results were generally consistent with the trend of
the transcriptome results, indicating that the transcriptome
sequencing results were relatively accurate.

Distal Intestinal Metabolome Analysis
Multivariate Analysis of the Metabolite Profiles
We used metabolome analysis to explore the differences in
the distal intestinal metabolite profiles of different comparison
objects. 24 distal intestine samples were analyzed by LC-MS in
both positive and negative ion modes, and the LC-MS spectra are
shown in Supplementary Figure 7 in positive (A) and negative
(B) ions. Score plots of the PLS-DA were performed to verify
the DMs in different comparison objects, and a multivariate
analysis was performed to validate Supplementary Figure 8.
The samples in each comparison object were clearly separated
in both positive and negative ions, and the samples in each

group were within the 95% confidence interval (Supplementary
Figures 8A1,A3,B1,B3,C1,C3), indicating that different doses of
7S and NaB produced significant effects on the distal intestinal
metabolic profile of hybrid grouper. Meanwhile, the R2 value
was greater than the Q2 value, and the intercept of the Q2

regression line with the Y-axis was less than zero, which indicated
that the PLS-DA model in this experiment was not over-fitted
and that the model was stable and reliable (Supplementary
Figures 8A2,A4,B2,B4,C2,C4).

Identification and Functional Annotation of the DMs
Next, we performed DM analysis for the two groups in each
comparison object using a VIP threshold of 1 and an FC
threshold of 1.5 (P < 0.05). Subsequently, hierarchical clustering
analysis was performed on the DMs obtained for each group to
derive the differences in metabolic expression patterns between
and within the two groups of one comparison object. For
FMb vs. bL, 161 positively ionized DMs (122 significantly
upregulated and 39 significantly downregulated) (Figures 5A1,
6A) and 84 negatively ionized DMs (50 significantly upregulated
and 34 significantly downregulated) (Figures 5A2, 6B) were
screened. For FMb vs. bH, 154 positively ionized DMs (111
significantly upregulated and 43 significantly downregulated)
(Figures 5B1, 7A) and 100 negatively ionized DMs (53
significantly upregulated and 47 significantly downregulated)
(Figures 5B2, 7B) were screened. For bH vs. bHNaB, 89
positively ionized DMs (47 significantly upregulated and 42
significantly downregulated) (Figures 5C1, 8A) and 55 negatively
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FIGURE 4 | KEGG pathway classification and enrichment analysis of the DEGs in the distal intestine of hybrid grouper. KEGG classification of all DEGs (A–C). Top
30 enriched of KEGG pathways of FMb vs. bL (D), FMb vs. bH (E) and bH vs. bHNaB (F).

FIGURE 5 | Volcano plots of the DEGs in the distal intestine of hybrid grouper at different comparison objects. FMb vs. bL: positive (A1) and negative (A2) ions; FMb
vs. bH: positive (B1) and negative (B2) ions; bH vs. bHNaB: positive (C1) and negative (C2) ions.

ionized DMs (38 significantly upregulated and 17 significantly
downregulated) (Figures 5C2, 8B) were screened.

Furthermore, the DMs were analyzed using KEGG
annotation. In the FMb vs. bL comparison object, for the positive
ionization data, 11 DMs were enriched in 19 pathways, and

the “histidine metabolism,” “arginine and proline metabolism,”
“cysteine and methionine metabolism,” and “glycine, serine, and
threonine metabolism” pathways were enriched (Figure 9A1);
for the negative ionization data, 46 DMs were enriched in 31
pathways, and the “biosynthesis of unsaturated fatty acids,”
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FIGURE 6 | Hierarchical clustering analysis of the DMs in FMb vs. bL: positive (A) and negative (B) ions. Red and blue indicate that the DMs were upregulated and
downregulated, respectively.

“primary bile acid biosynthesis,” “fatty acid biosynthesis,” and
“taurine and hypotaurine metabolism” pathways were enriched
(Figure 9A2). In the FMb vs. bH comparison object, for the
positive ionization data, 70 DMs were enriched in 36 pathways,
and the “cysteine and methionine metabolism,” “ferroptosis,”
and “AMP-activated protein kinase (AMPK) signaling” pathways
were enriched (Figure 9B1); for the negative ionization data,
37 DMs were enriched in 25 pathways, and the “galactose
metabolism,” “starch and sucrose metabolism,” and “amino
sugar and nucleotide sugar metabolism” pathways were enriched
(Figure 9B2). In the bH vs. bHNaB comparison object, for the
positive ionization data, 53 DMs were enriched in 33 pathways,
and the “histidine metabolism,” “glycine, serine and threonine
metabolism,” “arginine and proline metabolism,” and “ATP-
binding cassette (ABC) transporters” pathways were enriched
(Figure 9C1); for the negative ionization data, 35 DMs were
enriched in 19 pathways, and the “biosynthesis of amino acids”
pathway was enriched (Figure 9C2).

Correlations Between the Intestinal
Bacteria and Water Pollutants, DEGs,
and DMs
We performed Spearman correlation analysis of the top 30
intestinal genera with pollutants (AN, NIT, TN, and TP),
DEGs (Table 1), and DMs (Table 2). In the correlation

between intestinal bacteria and pollutants, Ralstonia and
Rothia were positively correlated with changes in ammonia
nitrogen and Lactococcus, Pediococcus, Pelagibacterium,
Anaerovibrio, Prevotella, and Bacillus were negatively
correlated with changes in nitrite (Figure 10A). In the
correlation between intestinal bacterial and DEGs, Lactococcus,
Pediococcus, and Pelagibacterium were positively correlated
with changes in ccnf, Numa1, pkb, spc25, and Cks1b
genes (Figure 10B). In the correlation between intestinal
bacteria and DMs, Lactococcus was negatively correlated
with changes in sucrose and α,α-trehalose; Pelagibacterium
was negatively correlated with changes in methylimidazole
acetic acid; Anaerovibrio was positively correlated with
changes in choline, S-adenosylhomocysteine, creatinine,
urocanic acid, N-acetyl histamine, and methylimidazole
acetic acid and negatively correlated with changes in
quercetin, α,α-trehalose, sucrose, L-fucose, and UDP-N-
acetylglucosamine; Prevotella was positively correlated
with changes in N-acetyl histamine and methylimidazole
acetic acid and negatively correlated with changes in
raffinose, quercetin, α,α-trehalose, sucrose, and L-fucose;
and Bacillus was positively correlated with changes in
S-adenosylhomocysteine, urocanic acid, N-acetyl histamine,
and methylimidazole acetic acid and negatively correlated
with changes in raffinose, quercetin, and α,α-trehalose
(Figure 10C). Finally, 10, 4, and 4 potential biomarkers
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FIGURE 7 | Hierarchical clustering analysis of the DMs in FMb vs. bH: positive (A) and negative (B) ions. Red and blue indicate that the DMs were upregulated and
downregulated, respectively.

FIGURE 8 | Hierarchical clustering analysis of the DMs in bH vs. bHNaB: positive (A) and negative (B) ions. Red and blue indicate that the DMs were upregulated
and downregulated, respectively.

Frontiers in Marine Science | www.frontiersin.org 11 July 2021 | Volume 8 | Article 705332

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-705332 July 13, 2021 Time: 16:51 # 12

Yin et al. β-Conglycinin and Sodium-Butyrate on Grouper

FIGURE 9 | Metabolic pathway enrichment analysis following positive and negative mode ion. DMs were enriched in the different comparison objects. FMb vs. bL:
positive (A1) and negative (A2) ions; FMb vs. bH: positive (B1) and negative (B2) ions; bH vs. bHNaB: positive (C1) and negative (C2) ions.

were screened in groups bL, bH, and bHNaB, respectively.
ROC analysis showed that the metabolite AUCs all exceeded
0.88 at 95% confidence intervals (Supplementary Figure 9),
indicating that the potential biomarkers had good predictive
power.

DISCUSSION

Distal Intestinal Microbiota in Response
to 7S and NaB
The intestinal environment and microbiota interact with food
ingested by the host (Wahlström et al., 2016). The intestinal
microbiota is quite sensitive to changes in the quality and
quantity of food (Wang et al., 2017). In this experiment,
we observed that the dominant bacteria were Proteobacteria,
Cyanobacteria, Firmicutes, Bacteroidetes, and Actinobacteria,
which is consistent with previous results (Li, 2019). The
dominant bacteria were influenced by 7S. The process of
intestinal microecological dysbiosis is usually accompanied
by an increase in Proteobacteria (Shin et al., 2015). This
indicates that the intestinal inflammation induced by high-dose
7S in hybrid grouper is closely related to the abundance of
Proteobacteria. In addition, the abundance of Proteobacteria and
Cyanobacteria were not affected by NaB, and the abundance of
Firmicutes, Bacteroidetes, and Actinobacteria decreased further
after the addition of NaB compared with that in bH. To
further analyze the effects of 7S and NaB on the intestinal

microbiota of hybrid grouper, we conducted another assessment
at the genus level.

At the genus level, different treatments resulted in different
dominant genera in each group. We selected some bacteria that
were closely related to the intestinal health of hybrid grouper
for analysis. Pelagibacterium, Pediococcus, Staphylococcus, and
Lactobacillus became the dominant bacteria in the bL. These
bacteria played important roles in maintain intestinal resistance
to disease and absorption of nutrients (Uymaz et al., 2009;
Jiang et al., 2012; Liu and Yu, 2015; Ortiz-Rivera et al., 2017).
Therefore, the growth promotion of hybrid grouper by low
doses of 7S may be closely related to the enhanced intestinal
resistance of these four dominant bacteria (Supplementary
Table 4). The relative abundance of Ralstonia is highly positively
correlated with the host inflammatory response (Fu et al.,
2017), and a decrease in its relative abundance is effective
in alleviating chronic inflammation (Kwon et al., 2018). In
addition, increased abundance of Photobacterium may disrupt
the intestinal morphology of Litopenaeus vannamei (Tzuc et al.,
2014). The increased abundance of Ralstonia and Photobacterium
might be the cause of intestinal inflammation in hybrid groupers
owing to high doses of 7S. After supplementation with NaB,
the abundance of Ralstonia and Photobacterium decreased in
bH and became similar to that in FMb and bL. Thus, we
speculate that the protective effect of NaB on the distal intestine
of hybrid grouper may be achieved by suppressing the abundance
of Ralstonia and Photobacterium, which reduces the risk of
intestinal inflammation.
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TABLE 1 | Significantly changed DEGs in distal intestine of hybrid grouper.

Gene ID Function annotation Log2(FC)

FMb vs. bL FMb vs. bH bH vs. bHNaB

Unigene0028315 Lymphokine-activated killer T-cell-originated protein kinase homolog (PKB) −1.32 −2.30 1.75

Unigene0036995 Protein ECT2 isoform X3 (ECT2) −1.06 −2.11 1.39

Unigene0057278 LOW QUALITY PROTEIN: G2/M phase-specific E3 ubiquitin-protein ligase (G2E3) −1.43 −2.02 1.38

Unigene0016769 Reverse transcriptase (pol) 2.24 −0.43 2.35

Unigene0009017 Kinetochore protein Spc25 isoform X1 (spc25) −0.51 −2.04 1.58

Unigene0019408 G2/mitotic-specific cyclin-B3-like (CCNB3) −0.78 −2.11 1.54

Unigene0023111 Cyclin-F isoform X1 (ccnf) −0.96 −2.13 1.43

Unigene0030934 Kinetochore-associated protein 1 isoform X2 (KNTC1) −0.62 −1.36 1.80

Unigene0059615 Spindle and kinetochore-associated protein 1 (ska1) −1.17 −2.56 1.89

Unigene0084381 Cyclin-dependent kinases regulatory subunit 1 (Cks1b) −0.92 −1.51 1.22

Unigene0084467 Mitochondrial fission regulator 2 isoform X2 (mtfr2) −0.92 −1.55 1.11

Unigene0001450 Forkhead box protein M1 isoform X1 (Foxm1) −1.85 −4.24 3.09

Unigene0033995 Nuclear mitotic apparatus protein 1 (Numa1) −1.15 −2.15 1.37

Unigene0033658 Borealin (cdca8) −1.34 −2.41 1.63

Unigene0049714 Ras GTPase-activating-like protein IQGAP3 (IQGAP3) −1.86 −2.88 1.76

Distal Intestinal Transcriptome in
Response to 7S and NaB
To gain further insight into the regulatory mechanism of 7S
and the restorative effects of NaB, the distal intestinal tissue was
analyzed using RNA sequencing technology. In this study, based
on the GO significant enrichment analysis, 7S and NaB have
similarities and differences in the regulation of the distal intestine.
We selected the top three GO enrichment sub-categories in each
category for our analysis. Ribosomes are the site of intracellular
protein synthesis (Dauloudet et al., 2020), and ribosomal protein
L31 and L3 contribute to the binding and translation of ribosomal
subunits (Petrov et al., 2014; Ueta et al., 2017); furthermore, L7
is an important ribosomal component required for translation
process (Pettersson and Kurland, 1980) and plays a critical role
in the synthesis of host proteins. A low dose of 7S elevated the
expression of associated ribosomal proteins, which may imply
that a low dose of 7S effectively promoted the synthesis of
distal intestine-associated proteins in hybrid grouper. To test
this hypothesis, we further analyzed the expression of genes
controlling proteins related to intestinal health and observed
that the expression of genes controlling collagen (Claudio et al.,
2017), cofilin-1 (Wang et al., 2016), calreticulin (Krzysztof et al.,
2017), and tubulin (Saegusa et al., 2014) protein synthesis in
the distal intestine was significantly increased at low doses
of 7S, suggesting improvement in tight junctions and barrier
function in the distal intestine. Fructose-bisphosphate A catalyzes
fructose 1,6-diphosphate to produce glyceraldehyde 3-phosphate
and dihydroxyacetone phosphate (Katebi and Jernigan, 2015).
Therefore, the glycolytic capacity of hybrid grouper was also
improved to some extent by promoting the expression of
fructose-bisphosphate aldolase A.

When high-dose 7S was administered, the intestinal injury
became critical. Mitosis plays an important role in maintaining
normal growth and development of individuals (Sanz-Gómez
et al., 2020). G2/mitotic-specific cyclin-B1 (Xie et al., 2019), B2

(Waesch and Cross, 2002), and B3 (Garrido et al., 2020) are three
proteins essential for mitosis, and their deletion or inhibition
of expression usually results in varying degrees of cellular
damage, consequently affecting cellular function. We observed
that these three cyclins were significantly downregulated, and
the expression of genes related to cell cycle regulatory proteins
and chromosome structure maintenance, such as cyclin-F
(D’Angiolella et al., 2012), double-strand break repair protein
(Sinha et al., 2020), and structural maintenance of chromosome
protein 2 (Heidelberg, 2011) were inhibited. These results suggest
that high doses of 7S inhibit the division of hybrid grouper
intestinal cells and disrupt their normal functions. In addition,
we observed that the expression of genes associated with ion
channels, transient receptor potential cation channel subfamily
M, and voltage-dependent L-type calcium channel subunit β-
4 in intestinal cells was also negatively affected. The function
of ion channels in the cell membrane, in addition to regulating
the osmotic pressure inside and outside the cell, is maintaining
the cell membrane potential (Page et al., 2005; Wu and Cui,
2014), indicating that high-dose 7S also disrupted distal intestinal
cell membrane ion channels, thus, affecting the function of
regulating ion transport.

To investigate how NaB protects the distal intestine of
hybrid groupers, we supplemented NaB after high-dose
7S treatment. The expression of cyclin B1, B2, and B3,
which were repressed at high-dose 7S, was significantly
increased after NaB supplementation, and the gene expressions
related to transcriptional and translational processes, such
as RNA polymerase II transcription, eukaryotic translation
initiation factor 1A, and transcription factor GATA-4, were also
upregulated. This may indicate that NaB effectively protected
the process of mitosis in the intestinal cells of hybrid grouper,
allowing the intestinal cells to undergo normal division. NaB
is a common and effective inhibitor of cell mitosis, which
can inhibit the G1 phase of mitosis in mouse fibroblasts
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TABLE 2 | Significantly changed DMs in distal intestine of hybrid grouper.

Metabolites Log2

(FC)
Annotated pathways Classification

FMb vs. bL

Methylimidazoleacetic acid 1.03 Histidine metabolism Protein absorption
and metabolism

Urocanic acid 1.02

N-Acetylhistamine 1.55

Hydroxyproline 1.09 Arginine and proline
metabolism

Creatinine 1.51

L-Ornithine −0.72

L-Cystine 1.16 Cysteine and
methionine metabolism

Glutathione 0.89

Betaine aldehyde 0.75 Glycine, serine and
threonine metabolism

D-Serine 0.67

Arachidic acid 1.03 Biosynthesis of
unsaturated fatty acids

Lipid utilization and
biosynthesis

Stearic acid 1.05

Docosanoic Acid 0.92

Nervonic acid 1.36

Cholic acid 2.24 Primary bile acid
biosynthesis

Taurine 0.92

Stearic acid 1.05 Fatty acid biosynthesis

Hypotaurine 0.92 Taurine and hypotaurine
metabolism

Taurine 0.78

FMb vs. bH

D-Cysteine −1.03 Cysteine and
methionine metabolism

Protein absorption
and metabolism

Glutathione 0.59 Ferroptosis

Quercetin −5.13 AMPK signaling
pathway

Carbohydrate
utilization and
metabolism

Sucrose −1.15 Galactose metabolism

Raffinose −2.24

Stachyose −1.02

Sucrose −1.15 Starch and sucrose
metabolism

α,α-Trehalose −1.24

Sucrose −1.15 ABC transporters

Raffinose −2.24

α,α-Trehalose −1.24

UDP-N-acetylglucosamine −1.12 Amino sugar and
nucleotide sugar
metabolism

L-Fucose −0.60

bH vs. bHNaB

Urocanic acid 0.63 Histidine metabolism Protein absorption
and metabolism

N-Acetylhistamine 0.81

Creatinine 1.13 Arginine and proline
metabolism

L-Arginine 1.68

(Continued)

TABLE 2 | Continued

Metabolites Log2

(FC)
Annotated pathways Classification

L-Arginine 1.68 ABC transporters

Choline 0.88

Citric acid 0.63 Biosynthesis of amino
acids

O-Phospho-L-serine −0.73

S-Adenosylhomocysteine 0.86

(Wintersberger et al., 2010) and also induce G2 blockade of
the human breast cancer cell line MDA-MB-231 (Lallemand
et al., 1999). However, the addition of NaB to the post-weaned
heifer diet can effectively stimulate the mitosis of small intestinal
epithelial cells and inhibit their apoptosis, thus, improving
intestinal absorption function and promoting the effective
absorption and utilization of nutrients (Rice et al., 2019). We
speculate that the reason for this difference in mechanism
may be species-related and may also be related to direct
addition to cells and to feed; NaB may have the same repair
mechanism in the intestine of post-weaned heifer and hybrid
grouper. Glyceraldehyde 3-phosphate dehydrogenase can
catalyze the oxidation (dehydrogenation) and phosphorylation
of glyceraldehyde 3-phosphate to produce 1,3-diphosphoglyceric
acid, which is the central link in sugar metabolism and, therefore,
plays an important role in glycometabolism (Allonso et al.,
2015; Zhang et al., 2016). As a member of the glyceraldehyde
3-phosphate dehydrogenase family, chitinase can catalyze the
hydrolysis of chitin to produce N-acetylglucosamine (Rosa
et al., 2016). Galactosyltransferase can transfer active galactose
residues from nucleoside diphosphate galactose to glycosyl
receptor molecules (Klohs et al., 2010). The activities of all
three enzymes, glyceraldehyde 3-phosphate dehydrogenase,
chitinase, and galactosyltransferase, were upregulated after NaB
supplementation, suggesting that NaB could also enhance the
absorption of glucose in hybrid grouper to some extent by
promoting distal intestinal glycometabolism.

Based on the KEGG pathway analysis, the results have
similarities and differences with the results of GO annotation.
Under low-dose 7S conditions, the formation of ribosome-
associated component proteins was promoted, which in turn
enabled better protein synthesis by the host. In addition, two
signaling pathways, “protein digestion and absorption” and
“PPAR signaling,” which are closely related to the digestion and
absorption of two major nutrients, proteins (Yang et al., 2019)
and lipids (Calejman et al., 2020), were also positively affected,
suggesting that 7S can significantly promote the absorption and
metabolism of proteins and lipids in hybrid groupers. Salmonella
is a common foodborne pathogen that can enhance bacterial
virulence by inhibiting autophagy through the plasmid virulence
gene spvB (Li et al., 2016). Salmonella infection in fish can cause
disturbances in the intestinal environment and reduce immunity
in fish (Wu et al., 2016). A low dose of 7S improved intestinal
immunity in hybrid groupers and might be closely related to
suppression of the Salmonella infection pathway.
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FIGURE 10 | Spearman correlation analysis between distal intestinal bacteria at genus level and water pollutants, DEGs, DMs. The correlation analysis of distal
intestinal bacteria and water pollutants (A). The correlation analysis of distal intestinal bacteria and DEGs (B). The correlation analysis of distal intestinal bacteria and
DMs (C). Red and green indicate positive and negative correlation, respectively. * significant differences (P < 0.05), ** very significant differences (P < 0.01),
*** extremely significant differences (P < 0.001).

Under high-dose 7S conditions, the results were the opposite
of the partial results for low-dose 7S. “PPAR signaling
pathway” was significantly negatively affected. Ferroptosis is
an impairment of intracellular lipid oxide metabolism, with
abnormal metabolism catalyzed by iron ions (Yang and Stockwell,
2016). The promotion of “ferroptosis” pathway further illustrates
that high-dose 7S leads to disturbances in host lipid metabolism.
Similarly, high doses of 7S significantly inhibited “cell cycle” and
“cytokine–cytokine receptor interaction,” two pathways that are
closely related in cell division (Sarraf et al., 2019) and intercellular
signaling (Leung, 2004).

After NaB supplementation in the high-dose 7S condition,
we observed that the “progesterone-mediated oocyte maturation”
pathway was promoted, similar to the results of bL, indicating
that NaB enhanced the digestion and absorption of proteins
in hybrid grouper. In addition, the “cell cycle” pathway, which
was inhibited in bH, was activated after NaB supplementation,
indicating that NaB could protect the normal division and
maintain the normal function of intestinal cells in hybrid
grouper. Linoleic acid is a naturally occurring unsaturated fatty
acid with many important physiological functions (Smith et al.,
2004). It can promote the secretion of immunoglobulins, and
thus, enhance the immunity of fish (Huang et al., 2018), and
it can improve the lipid metabolism of fish (Makol et al.,
2012). Facilitation of the “linoleic acid metabolism” pathway
indicates that NaB can effectively improve lipid utilization by
hybrid groupers.

Distal Intestinal Metabolomics in
Response to 7S and NaB
To reveal the regulatory mechanism of 7S on the distal
intestine of hybrid groupers and the protective effect of NaB
in a multidimensional manner, we further utilized the LC-
MS technique to analyze the metabolic profile changes in the
distal intestine. Low-dose 7S had positive effects on “histidine
metabolism,” “arginine and proline metabolism,” “cysteine and
methionine metabolism,” and “glycine, serine, and threonine

metabolism” in the positive ion mode and positive effects
on “biosynthesis of unsaturated fatty acids,” “primary bile
acid biosynthesis,” “fatty acid biosynthesis,” and “taurine and
hypotaurine metabolism” in the negative ion mode. There are
10 amino acids that fish cannot synthesize in sufficient amount
to support maximum growth and must be provided in the
diets; these essential amino acids include: methionine, arginine,
histidine, isoleucine, leucine, lysine, phenylalanine, threonine,
tryptophan and valine (Hua and Bureau, 2019; Nascimento et al.,
2020). Proline and glycine are considered as non-essential amino
acids, and are involved in key metabolic pathways, they can
modulate immune function health, reproduction and growth
(Zhao et al., 2015; Li and Wu, 2018). Histidine is involved in the
synthesis of hemoglobin in aquatic and terrestrial animals and
is important for growth, tissue formation, and repair (Michelato
et al., 2017; Khan, 2018). Histidine also inhibits oxidative
stress-induced inflammation in human intestinal epithelial cells
(Dong et al., 2005). Proline can act as a protective substance
for membranes and enzymes and as a free radical scavenger,
enhancing the body’s antioxidant capacity (Vunnam et al.,
2010; Zabirnyk et al., 2010). The immunomodulatory effect of
arginine on fish is mainly achieved through the regulation of
endocrine hormones by the arginine/nitric oxide pathway, which
plays an important role in the regulation of body immunity
and protection of intestinal mucosa function (Zhou, 2011).
Methionine can improve the antioxidant system by inhibiting
apoptosis, and it can also improve immunity by upregulating
the tight junction proteins claudin-b, claudin-c, ZO-1, and ZO-2
in the head, kidney, and spleen (Pan et al., 2016). The addition
of glycinin to feed can significantly increase the expression of
peptide-transporters 1 (PepT1) in the intestines of grass carp
(Cyprinus carpio L.) and promote the absorption of peptides
(Ostaszewska et al., 2010). Serine is an important component of
the catalytic active site of serine proteases that can significantly
enhance host recognition of pathogens (Liu et al., 2017)
and improve the cellular immunity of the organism (Ashton-
Rickardt, 2009). Threonine deficiency leads to impaired protein
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synthesis and poor proximal intestinal development in grass
carp (Gao et al., 2014), upregulates the expression of the pro-
inflammatory factors TNF-α and IL-1β, and downregulates the
anti-inflammatory factor TGF-β, resulting in increased intestinal
inflammation (Dong et al., 2017). These observations combined
with the results of this study suggest that 7S could enhance
the antioxidant capacity, immunity, and protein hydrolysate
absorption efficiency of the distal intestine by promoting the
metabolism of essential amino acids.

Highly unsaturated fatty acids (HUFAs) are essential fatty
acids for marine fish because they lack the ability to synthesize
HUFAs. HUFAs can prevent inflammation caused by high lipid
deposition by inhibiting the activity of enzymes related to lipid
deposition (Ma, 2008) and also enhance the innate immunity of
grass carp by upregulating the expression of TLR22 and MyD88
(Li, 2013). Bile acids (Bertaggia et al., 2017) and taurine (El-Sayed,
2014) can increase the efficiency of intestinal lipid transport and
promote lipid absorption. Consistent with these observations,
our results suggest that low-dose 7S can promote lipid utilization,
inhibit fat production, and avoid inflammation caused by lipid
deposition in hybrid groupers.

However, high-dose 7S negatively affected the distal intestine
of hybrid grouper from a different perspective. Our results
showed that high-dose 7S had negative effects on “cysteine
and methionine metabolism,” “AMPK signaling pathway,”
“galactose metabolism,” “starch and sucrose metabolism,”
“ABC transporters,” and “amino sugar and nucleotide sugar
metabolism” and a positive effect on “ferroptosis.” Quercetin
could inhibit oxidative stress and inflammatory responses by
regulating the AMPK/SIRT1/NF-κB signaling pathway (Zhang
et al., 2020), indicating that high-dose 7S might inhibit the
absorption and utilization of carbohydrates in the feed of hybrid
grouper, resulting in insufficient energy supply. Ferroptosis
is caused by the accumulation of reactive oxygen radicals on
membrane lipids because of the failure of glutathione peroxidase
activity (Doll et al., 2016). Similar to the transcriptome
annotation results, in the metabolome, we also found that the
“ferroptosis” was activated by high doses of 7S, which further
suggests that high-dose 7S could disrupt the normal function of
intestinal cells by inducing ferroptosis. Most ABC transporters
are extremely energy-dependent and require the transport of
various endogenous substrates and xenobiotics across the lipid
bilayer via ATP (Popovic et al., 2010). We hypothesize that the
negative effect on cell signaling in hybrid grouper is due to 7S
inhibition of the uptake and utilization of carbohydrates, such as
sucrose, raffinose, and α,α -trehalose.

After supplementation with NaB in the context of high-dose
7S, the DMs closely related to essential amino acid metabolism in
hybrid groupers, such as urocanic acid, betaine aldehyde, choline,
creatinine, and L-arginine, were all upregulated. Consequently,
the uptake and utilization of protein hydrolysis products by
hybrid grouper were improved. One of the reasons why NaB can
be utilized in livestock animals is that it can supply energy to
intestinal epithelial cells (Huang et al., 2015). ATP is required
for the proper functioning of ABC transporters, which suggests
that the addition of NaB to the feed of hybrid grouper can
effectively supply energy to the intestinal cells and, thus, promote

the efficiency of ABC transporters and biosynthesis of amino
acids.

Correlation Between Distal Intestinal
Microbiota and Water Pollutants and
Host Health
The intestinal microbiota co-evolved with the host and plays
an important role in host nutrient absorption, metabolism,
information transfer, and disease infection (Carlos Magno
Da Costa et al., 2015; Jones and Guillemin, 2018; Eckel,
2021; Post et al., 2021). Imbalance of intestinal microbiota
can disrupt the intestinal internal environment, which is an
important site for nutrient absorption and digestion (Liu et al.,
2020). This leads to the excretion of unabsorbed nitrogen
and phosphorus from the feed, causing pollution of farm
water (Wu et al., 2019). In this study, the changes in the
abundance of Ralstonia were significantly positively correlated
with the ammonia nitrogen content, indicating that the increase
in Ralstonia relative abundance may be the main reason for
the high TN content in water. Lactobacillus can enhance the
uptake of amino acids mediated by PepT1 in in mice with
spontaneous colitis (Chen et al., 2010). Pediococcus is able
to secrete proteases that accelerate protein hydrolysis (Afriani
et al., 2018). These results indicate that these bacteria might
affect the hydrolysis and absorption processes of nitrogen-
containing nutrients, such as proteins, in the diet of hybrid
grouper. The abundance of Pediococcus, Pelagibacterium, and
Lactococcus was significantly positively correlated with the
expression of ccnf, Numa1, pkb, spc25, and Cks1b genes associated
with cell proliferation, suggesting that these bacteria may play
important roles in the proliferation of distal intestinal cells in
hybrid grouper. The changes in the abundance of Prevotella
were significantly negatively correlated with nitrite content and
significantly positively correlated with methylimidazole acetic
acid and N-acetyl histamine levels. Prevotella has proteolytic
activity, a function similar to that of exopeptidases, with
positive effects on protein degradation and utilization of
hydrolysis products (Griswold and Mackie, 1997), and plays
an important role in carbohydrate utilization (Durb‘An et al.,
2013; Aakko et al., 2020), indicating that the decrease in
Prevotella abundance caused by high-dose β-conglycinin had
a more serious negative effect on the response to nitrogenous
nutrients and “carbohydrate utilization and metabolism” in
hybrid groupers. The decrease in the abundance of Anaerovibrio
was significantly negatively correlated with nitrite content
and significantly positively correlated with methylimidazole
acetic acid, N-acetyl histamine, urocanic acid, creatinine,
glutathione, and S-adenosylhomocysteine levels. Anaerovibrio
mainly utilizes lipids in the intestine, yet its abundance is
highly correlated with metabolites associated with protein
absorption and metabolism, which may be related to hindering
the utilization of lipids by Anaerovibrio to produce unsaturated
fatty acids (Castagnino et al., 2015), thereby reducing protein
absorption by the host. The increase in the abundance of
Pelagibacterium was significantly negatively correlated with
nitrite level and positively correlated with methylimidazole
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acetic acid level, indicating that low-dose 7S may promote
protein absorption and metabolism in hybrid grouper and,
thus, reduce nitrogen emissions. The increase in the abundance
of Burkholderia-Caballeronia-Paraburkholderia in bHNaB was
significantly positively correlated with taurine, hydroxyproline,
nervonic acid, stearic acid, docosanoic acid, L-cystine, and
D-serine levels, suggesting that supplementation with NaB
significantly improved lipid utilization and biosynthesis in
hybrid grouper possibly regulated by Burkholderia-Caballeronia-
Paraburkholderia. A number of highly relevant bacteria, genes,
and metabolites were selected separately in this study, which
could serve as potential biomarkers for evaluating the regulation
of 7S and NaB in the intestine of hybrid grouper.

CONCLUSION

In this study, altered intestinal flora affected aquaculture water
quality, host transcription, and metabolism, thus, affecting
host health. Two bacteria, Ralstonia and Rothia, had negative
effects on water quality, and Lactococcus, Pelagibacterium,
Anaerovibrio, Prevotella, and Bacillus had positive effects.
Low-dose 7S significantly increased the relative abundance of
Pelagibacterium, Pediococcus, and Staphylococcus. High-dose
7S increased the probability of distal intestinal inflammation
by increasing the relative abundance of pathogenic bacteria
Ralstonia and Photobacterium, while NaB effectively inhibited
the relative abundance of pathogenic bacteria Ralstonia and
Photobacterium. Gene expression also showed significant
differences between the treatments. The pathways involved
in the regulation of low-dose 7S include “ribosome,” “protein
digestion and absorption,” and “PPAR signaling” to promote
protein synthesis and lipid uptake in hybrid grouper; the
pathways involved in the regulation of high-dose 7S include
“cell cycle,” “cytokine–cytokine receptor interaction,” and
“PPAR signaling,” which interfered with the normal nutrient
absorption function of intestinal cells in hybrid grouper. The
pathways involved in the regulation of NaB supplementation
include “protein processing in endoplasmic reticulum,”
“cell cycle,” and “linoleic acid metabolism.” Distal intestinal
metabolism was observed, and low-dose 7S mainly affected
pathways associated with protein absorption, metabolism,
and lipid utilization and biosynthesis; high-dose 7S mainly
affected pathways associated with carbohydrate utilization
and metabolism; and NaB supplementation contributed to
protein absorption and metabolism. In addition, 15 DM markers
were identified, including UDP-N-acetylglucosamine, L-fucose,
sucrose, α,α-trehalose, quercetin, raffinose, methylimidazole
acetic acid, N-acetyl histamine, urocanic acid, creatinine,
S-adenosylhomocysteine, and choline. Above all, we initially
predicted some potential biomarkers associated with water
pollutants, host microbiota and genes based on Spearman
association analysis, proving that cell proliferation and utilization
of three major nutrients (protein, lipid, carbohydrate) might
be potential targets for treating the negative effects caused by
7S in hybrid grouper, but further in-depth validation is highly
imperative.
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