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Coral reefs are the biodiversity hot spots of the oceans, but they have suffered from
increasing environmental stresses caused principally by anthropogenic global warming.
The keystone species of coral reefs are scleractinian corals, which maintain obligatory
symbiotic relationships with photosynthetic dinoflagellates. Understanding cellular and
molecular mechanisms of symbiosis is therefore essential for future preservation of coral
reefs. To date, however, almost no in vitro experimental systems have been devised to
illuminate such mechanisms. To this end, our previous study established stable in vitro
cell culture lines, including IVB5, originating from planula larvae of the scleractinian
coral, Acropora tenuis. Here, we show that soon after mixture with the dinoflagellate,
Breviolum minutum, flattened amorphous coral cells with endodermal properties
exhibited elevated locomotor activity using filopodia and lamellipodia and interacted with
dinoflagellates. Several minutes thereafter, coral cells began to incorporate B. minutum,
and in vitro symbiosis appeared to have been accomplished within 30 min. Nearly a half
of the coral cells had incorporated algal cells within 24 h in a reproducible manner. Coral
cells that harbored algal cells gradually became round and less mobile, and the algal
cells sometimes settled in vacuole-like structures in coral cell cytoplasm. This symbiosis
state was maintained for at least a month. The IVB5 line of A. tenuis therefore provides
an experimental system to explore cellular and molecular mechanisms involved in coral-
dinoflagellate symbiosis at the single-cell level, results of which may be useful for future
preservation of coral reefs.

Keywords: in vitro symbiosis, corals, dinoflagellates, Acropora, endoderm, phagocytosis

INTRODUCTION

During evolution of cnidarians, the lineage leading to scleractinian corals or stony, reef-building
corals acquired the capacity to establish obligatory symbiosis with photosynthetic dinoflagellates.
In this endosymbiosis, corals provide shelter for their algal symbionts, which supply most of their
photosynthetic products to the host corals (Yellowlees et al., 2008). This alga-animal symbiosis
resulted in extraordinal prosperity of scleractinian corals, which produce stony reefs by depositing
calcium carbonate skeletons. Although coral reefs cover only 0.2∼0.3% of the marine surface, they
harbor an estimated one-third of all described marine species (Reaka-Kudla, 2001; Wilkinson,
2008). Coral reefs therefore support the most biodiverse ecosystems in the oceans. These ecosystems
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also support human life in tropical and subtropical countries by
virtue of fisheries, tourism, and culture (Spaldinga et al., 2017).
Coral reefs, however, are in crisis due to environmental changes,
including increased seawater temperatures, acidification, and
pollution, mainly caused by human activities (Hughes et al.,
2017; Sully et al., 2019). These stresses cause collapse of coral-
dinoflagellate symbioses, resulting in white, dead reefs, a process
known as coral bleaching, leading to loss of coral reefs and all the
species they support (Hoegh-Guldberg et al., 2007; Hughes et al.,
2017; Sully et al., 2019). Conservation of coral reefs is therefore
one of the most urgent environmental crises facing humanity.

Most scleractinian corals incorporate photosynthetic
dinoflagellates of the family Symbiodiniaceae through the
digestive tract into the gastrodermis (Coffroth and Santos, 2005),
although some species inherit symbionts vertically (Loh et al.,
2001). Modulation of coral host inert immunity allows symbiosis
of given species of algae in their cytoplasm (Davy et al., 2012).
Although many studies has attempted to explore cellular and
molecular mechanisms of coral-dinoflagellate endosymbiosis
(Dove, 2004; Davy et al., 2012; Yuyama et al., 2018; Weis, 2019;
Rosset et al., 2021; Yoshioka et al., 2021), many questions remain,
especially regarding recognition mechanisms involved in the
initial contact of animal and algal cells, cellular mechanisms
allowing dinoflagellate endocytosis and maintenance of
endosymbiosis, especially at the single-cell level (Davy et al.,
2012). Recently, our knowledge of mechanisms involved in
cnidaria-dinoflagellate symbiosis has been advanced by studies
using the sea anemone, Exaiptasia diaphana (Weis, 2019), and
the soft coral, Xenia sp. (Hu et al., 2020). Simultaneously, we need
to understand symbiosis mechanisms of reef-building corals.
Thus, many studies have attempted to culture in vitro lines of
stony coral cells, by which mechanisms of coral-dinoflagellate
symbiosis might be tackled. However, most attempts have failed
to establish stable in vitro cultures, although primary cultures of
cells or cell aggregates have been accomplished (Rinkevich, 2011;
Domart-Coulon and Ostrander, 2016).

In a previous study, we developed in vitro coral cell lines
originating from planula larvae of the scleractinian coral,
Acropora tenuis. After several trials to improve culture media,
we succeeded in producing various stable in vitro lines of coral
cells, twenty of which have been cryo-preserved (Kawamura et al.,
2021). Most cells of several lines are dark, flattened, amorphous
cells with lamellipodia and locomotor activity. Judging from
their morphology, behavior, and higher expression of endoderm-
related genes, they likely originated from larval endoderm. Then
we examined whether these cells could interact in vitro with
dinoflagellates when mixed in culture media or seawater. We
report here the occurrence of in vitro symbiosis between coral
cells and dinoflagellates in culture dishes.

MATERIALS AND METHODS

Acropora tenuis IVB5 Line
Detailed methods for production of stable in vitro culture
lines of coral cells are described in Kawamura et al. (2021).
Although the IVB5 line was not described in that report,

the essence of establishment of this line was same as those
reported there. Briefly, basic seawater medium consisted of
natural seawater, one-fifth volume of H2O, 10 mM HEPES
(final pH 6.8), and the antibiotics penicillin (100 U/mL),
streptomycin (100 µg/mL), and amphotericin B (0.25 µg/mL).
Immediately before use, the basic medium was mixed with
Dulbecco’s modified Eagle’s medium (DMEM) containing 15%
fetal bovine serum, penicillin (100 U/mL), and streptomycin
(100 µg/mL) at a ratio of 9:1. In the secondary cell culture,
plasmin (166-24231, FUJIFILM Wako Pure Chemical Corp.,
Osaka, Japan) was added to the growth medium at a final
concentration of 2 µg/mL. Dissociated cells were centrifuged
at 300 x g for 5 min and resuspended in growth medium
at a density of 2–5 x 107 cells/mL. Aliquots (0.5 mL each)
were dispensed to a 24-well multiplate and maintained at
20◦C by adding 0.2 mL of fresh growth medium to the old
medium twice a week. Proliferating cells were replated in new
multiplates every month.

The Dinoflagellate, Breviolum minutum
A culturable dinoflagellate, Breviolum minutum (LaJeunesse
et al., 2018), was used in this study. B. minutum was previously
named Symbiodinium minutum (LaJeunesse et al., 2012). The
B. minutum strain used was originally harbored by the Caribbean
coral, Orbicella faveolata (previously Montastraea faveolata),
maintained in the laboratory of Dr. Mary Alice Coffroth,
at State University at New York, Buffalo, United States and
then in the laboratories of Okinawa Institute of Science
and Technology Graduate University and Kochi University.
The culture ID of this strain is Mf1.05b (McIlroy and
Coffroth, 2017), which is currently provided through National
Institute of Environmental Science, Tsukuba, Japan under
https://mcc.nies.go.jp/strainList.do?strainId=3806 upon request.
For symbiosis experiments with the A. tenuis IVB5 line, the
B. minutum strain was precultured at 20◦C with standard
IMK medium using an incubator (SANYO MIR-554) under 12
h:12 h dark and light conditions for more than 10 months.
A fluorescent lamp producing 20 µmol/m2/s was used for
the algae culture.

Mixture of Coral Cells and Dinoflagellate,
and Observation
A 200–250-µL drop of culture medium containing B. minutum
was added to each well of a 24-well multiplate, which contained
approximately 1 mL of medium for culturing cells of the
IVB5 line. A 24-well multiplate that contained cultured coral
cells and algae was put in a translucent, moist container and
exposed to natural lighting at 20–22◦C throughout culture and
observation. Immediately after addition, interactions between
the coral cells and the dinoflagellates were observed using
an inverted microscope (Olympus CKX41) equipped with a
color digital camera (WRAYMER SR300). Photos obtained by
consecutive observation with time-lapse video (2–3-s interval)
was converted to a time-lapse video using iPhoto. Pictures and
videos were also taken with an ordinary microscope (Nikon
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Eclipse 80i) equipped with a differential interference contrast
(DIC) apparatus.

Immunocytochemistry with Antibodies
Specific to Acropora tenuis
In a previous study, we made two rabbit antibodies against
synthetic oligopeptides, one corresponding to a part of A. tenuis
Snail protein (a zinc finger transcriptional repressor) and the
other to a part of A. tenuis Fat1 protein (a Fat-like cadherin-
related tumor suppressor homolog) (for details, see Kawamura
et al., 2021). To confirm that cells of the IVB5 line that engulfed
algae are of A. tenuis, we carried out immunocytochemistry
using the antibodies. Cultured cells suspended in the culture
medium were centrifuged at 300 x g for 5 min and resuspended
in phosphate-buffered salt solution (PBS). Cells were fixed with
4% paraformaldehyde in PBS for 15 min in an ice bath. After
quenching with 200 mM glycine for 2 min and permeabilizing
with 0.1% Triton X-100 for 10 min, cells were incubated in a
mixture of 0.25% blocking reagent (Roche, Mannheim, Germany)
and 5% skim milk in PBS for 30 min. Then, they were reacted with
the rabbit primary antibody diluted 400-fold with PBS for 1 h and
with goat anti-rabbit secondary antibody labeled with fluorescein
isothiocyanate (FITC) (Vector Laboratory, Burlingame, CA,
USA) diluted 200-fold with PBS for 30 min. After washing by
centrifugation for 5 min twice with PBS, cells were counterstained
with 4′,6-diamidino-2-phenylindole (DAPI). They were observed
by means of a confocal microscopy system (ECLIPSE C1si, Nikon
Co. LTD., Tokyo, Japan).

Semi-Thin Sectioning
Seven hours after mixing coral cells and dinoflagellates, cells were
fixed for semi-thin sectioning for light microscopy. Cells were
fixed in 3% glutaraldehyde in 0.1 M phosphate buffer (pH 7.2)
containing 0.2 M sucrose and 1% tannic acid for 2 h at 4◦C.
Samples were rinsed with the buffer containing 0.2 M sucrose
and post-fixed in buffer containing 1% osmium tetroxide and 0.2
M sucrose for 2 h at 4◦C. Post-fixed specimens were dehydrated
in an acetone series and embedded in Spurr’s resin. Semi-thin
sections (0.5–1.5 µm) were cut with a diamond knife using
a Leica Ultracut UCT ultra-microtome (Leica Microsystems,
Germany), stained with 0.5% toluidine blue O and observed
through a light microscope (Nikon Eclipse 80i).

RESULTS

Acropora tenuis IVB5-Line Cells
IVB5 is one of 20 cryo-reserved cell lines established from
A. tenuis planula larvae in 2020 (Figure 1A). After replating the
culture line several times, cells were frozen in 2-mL serum tubes
in liquid nitrogen for permanent preservation. A few months
later, cells in a tube were melted back into culture medium to
proliferate as the original line of cells did (Figure 1A). Although
the IVB5 line is polyclonal and contains several types of cells
with different morphologies, the majority are dark, flattened,
amorphous cells, 20∼30 µm in length (Figure 1A). The line also

contains a few brilliant cells (Figure 1A) and small elongated
cells (Figure 1A). A large vacuole (Figures 1B1,B3) and several
small vesicles (Figures 1B1,B2) are found in the cytoplasm
of flattened amorphous cells. They extend lamellipodia and
sometimes filopodia as well (Figures 1B2,B3) and show moderate
locomotor activity (Supplementary Movie 1).

Using immunocytochemistry, we examined dark, flattened,
amorphous cells that did not engulf symbiotic dinoflagellates
(Supplementary Figure 1A) and cells that did (Supplementary
Figures 1B,1C). Although the former maintained their flattened,
amorphous morphology, the latter became spherical (described
later). Both showed distinct fluorescent signals in response
to A. tenuis-specific antibodies (Supplementary Figures 1A–
1C). In the case of anti-AtSnail, signals were restricted to the
nucleus (Supplementary Figure 1C), while in the case of anti-
AtFat1, fluorescent signals appeared throughout the entire cell
bodies (Supplementary Figures 1A,1B). In contrast, negative
control cells that were stained with non-immunized rabbit
serum did not exhibit FITC signals, but confirmed DAPI signals
(Supplementary Figure 1D). These results indicate that cells of
the IVB5 line that engulfed symbiotic algae are of Acropora tenuis.

The Dinoflagellate, Breviolum minutum
Breviolum minutum “(Figures 1C,D) has been maintained in our
laboratories for 8 years. During the proliferation stage, brown
cells appear globular, approximately 8 µm in diameter, do not
extend flagella, and show no locomotor activity. On the other
hand, during steady state, some algal cells extend flagellae and
swim in the culture medium. The B. minutum genome has been
sequenced (Shoguchi et al., 2013). The identity of B. minutum
used in this study was identified by partial genome sequence to
be strain ITS2-type B1 (Supplementary Figure 2).”

Occurrence of in vitro Symbiosis of Coral
Cells With Dinoflagellates
A 200–250-µL drop of culture medium containing B. minutum
was added to each well of a 24-well multiplate that contained
subconfluent coral cells in approximately 1 mL of growth
medium. Most immobilized B. minutum gradually settled at the
bottom of the culture plate wells after 5 or 6 min. The first
change detected after mixing animal and algal cells was increased
locomotor activity of flattened amorphous cells. Immediately
after mixing, coral cells developed filopodia and actively extended
and retracted pseudopodia (Figures 1C,D,E1, arrows). They
crept faster than those in plates that lacked dinoflagellates
(Supplementary Movie 1). Interactions between cells of the two
taxa occurred shortly after mixing (Figure 1C), followed by
coral cell phagocytosis of dinoflagellates (Figure 1D). Coral cells
incorporated coccoid cells, but not thecate motile cells. One day
after mixing, one or two and sometimes three dinoflagellates
were found in the cytoplasm of individual cultured coral cells
(Figures 1E1,E2). We repeated experiments more than five times
and obtained the same results, indicating that this in vitro
symbiosis is reproducible.

We examined whether the culture medium affects the
interaction between coral and dinoflagellate cells. Three media,
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FIGURE 1 | Acropora tenuis cells of the IVB5 line and symbiosis with the photosynthetic dinoflagellate, Breviolum minutum. (A) A vertical microscope image of IVB5
line. Most cells are dark, flattened, amorphous cells (blue arrowheads), while a few brilliant cells (yellow arrowhead) and small cells of different morphology (white
arrowhead) are present as well. (B–D) Differential interference microscopy images showing morphological features of flattened, amorphous cells. (B1) Lower and
(B2,B3) higher magnification. Flattened amorphous cells contain a large vacuole (black arrowheads) and several small vesicles (white arrowheads) in the cytoplasm.
They extend lamellipodia (bold b black arrows) and/or filopodia (thin black arrows) and show locomotor activity. (C–E) Coral cell engulfment of dinoflagellates, (C) 1 h
(1 h) and (D,E) 1 day after mixturing cells of the two taxa. (E2) is a dark-field image of (E1), showing red auto-fluorescence of dinoflagellates. Cells endocytosed
dinoflagellates numbered 1–5. Filopodia are indicated by arrows and vacuoles by black arrowheads. Scale bars, 100 µm in (A), 50 µm in (B1), 20 µm in
(B2,B3,C,D), and 50 µm in (E1,E2).

the conditioned cell growth medium that had been used for cell
culture for 2 weeks or more, newly prepared cell growth medium,
and basic seawater medium, were examined. One day after

inoculation in the conditioned medium, 50.2 ± 30.2% (number
of observation fields, n = 12, which contained approximately 20
cells) of cultured host cells incorporated algae (Supplementary
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Figure 3A). In newly prepared growth medium, algal uptake was
observed in 45.7 ± 28.8% (n = 14) of all cells (Supplementary
Figure 3B), and in seawater medium, 45.5 ± 30.3% (n = 7)
(Supplementary Figure 3C). These results indicate that 1 day
after inoculation, coral cell symbiosis with algal cells occurred
similarly in each of the three media in approximately 50% of
the cultured coral cells. Several days after mixing, coral cells did
not show further incorporation of dinoflagellates. Even when
dinoflagellates were present near or attached to coral cells, they
appeared to show no interest in dinoflagellates.

Realtime Observations of in vitro
Interactions Between Coral Cells and
Dinoflagellates
Two examples of in vitro symbiosis are described below.
In the first case (Supplementary Movie 2), three coral
cells and four dinoflagellates are present in the frames
(Figure 2A). At 0:00:00 (starting time of observation,
Figure 2A), coral cell b extended a filopodium further
and further (Figure 2B), and after approximately 20 sec,
the filopodium contacted dinoflagellate x (Figure 2C).
Maintaining contact with dinoflagellate x, the filopodium
of cell b became thicker and thicker (Figures 2C–E), and
∼2 min after contact, dinoflagellate x was phagocytosed by
the thickened filopodium or a part of the cytoplasm of cell
b (Figure 2F). Dinoflagellate x was moved to the center of
cell b (from Figures 2F–J). Cell b still extended lamellipodia

TABLE 1 | Representative Acropora tenuis genes highly expressed in
the IVB5 cell line.

GenelD TMM Blast annotation

Usual physiological function

aten_s0009.g61 246187 60S ribosomal protein L40

aten_s0244.gl2 196019 Polyubiquitin-C

aten_s0027.g69 193466 40S ribosomal protein S25-like

aten_s0013.gl32 75176 Actin, cytoplasmic-like

aten_s0094.g60 34872 Elongation factor 1 -alpha

Proliferation

aten_s0092.g59 968 Transcriptional regulator Myc-B-like
isoform X2

aten_s0035.g57 1082 Late histone H1-like

Gastroderm

aten_s0139.g34 19574 Collagen alpha-1 (XVII) chain-like

aten_s0075.g93 134 Soma ferritin-like

Glandular/secretory

aten_s0009.g9 21339 A disintegrin and metalloproteinase with
thrombospondin motifs 6-like isoform
X4

aten_s0282.g5 18605 Mucin-2-like isoform XI

aten_s0007.gl44 1128 Chymotrypsin-like protease CTRL-1

Epidermis

aten_s0062.g70 4512 CUB and zona pellucida-like
domain-containing protein 1

Neuron

aten_s0002.g29 3015 Synaptotagmin-like protein 2

and showed active locomotion. The accomplishment of
in vitro symbiosis between b and x, from contact of the
two cells until the settlement of x in the cytoplasm of
b, took only five min. In addition, during this time, cell
c contacted dinoflagellate y with its cell membrane or a
thin lamellipodium (Figure 2A). Cell c actively shifted
the membrane around y (Figures 2A–C) and quickly
incorporated y into the cytoplasm (Figure 2D). With
symbiotic dinoflagellate y in the cytoplasm, cell c exhibited
locomotion using pseudopodia (Figures 2E–J). Cell c also
promptly engulfed dinoflagellate y within a few min after their
first encounter.

In the second case (Supplementary Movie 3), at the start of
observations, coral cell b contacted the cell wall of dinoflagellate
x with its lamellipodium (Figure 3A). Although cell b showed
extensive lamellipodial activity, the interaction between b and x
appeared not to proceed further (Figures 3A–C). In the interim,
neighboring cell c that had already engulfed dinoflagellate y,
extended lamellipodia toward x (Figures 3B,C). Within 30 s
thereafter, dinoflagellate x was engulfed by cell c (Figure 3D).
While actively shuffling its membrane, an interaction between
cells b and c continued for a while (Figures 3E–H). Finally, cell c
departed from b, with two dinoflagellates, x and y, in its cytoplasm
(Figures 3I,J). This in vitro symbiosis between coral cells and
dinoflagellates was accomplished within∼5 min (Figure 3).

As described above, flattened amorphous coral cells repeatedly
extended and retracted filopodia and lamellipodia around algal
cells. Many coral cells had engulfed dinoflagellates within
∼5 min after mixing.

No cell types other than the flattened amorphous cells showed
this behavior. Coral cell membranes around the region that
attached to algal cells showed extensive shuffling activity, which
may be necessary for the cells to endocytose algal cells. Sometimes
coral cells endocytosed dinoflagellates and then exocytosed them
(Supplementary Movie 4). Some cells repeated this process.
In addition, single coral cells sometimes incorporated multiple
symbionts (Figures 1E, 3). The number of coral cells that
incorporated dinoflagellates increased throughout the day of
mixing (see next section).

Observations of Semi-Thin Sections of
Coral Cell-Alga Interactions
We examined and confirmed the interaction of coral cells with
algal cells by observation of semi-thin sections of the cells, 7 h
after mixture of the two types of cells (Figure 4). Figure 4A
shows a micrograph in which a coral cell filopodium extended
over an algal cell. In the next step, more than a half of the alga
body was covered by coral cell membrane (Figure 4B). Then,
another section revealed complete engulfment of an algal cell in
host coral-cell cytoplasm (Figure 4C). Figures 4D,E show the
relationship between engulfed algal cells and a large vacuole of
host cell cytoplasm. In Figure 4D, an engulfed algal cell was
close to the vacuole, but the two were separated by membranes.
In Figure 4E, however, the cytoplasmic membrane enclosing
an alga and the membrane of a vacuole appeared fused into a
continuous structure. Figure 4F shows that an engulfed algal cell
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FIGURE 2 | A time-lapse video of symbiotic interactions of coral cells (b and c) and dinoflagellates (x and y). The starting point of observations is shown at 0 h: 00
min: 00 s. (A–J) Serial pictures are taken at time intervals indicated at the bottom. Coral cell b engulfs symbiont x, whereas coral cell c endocytoses symbiont y. See
the detailed description in the text.

FIGURE 3 | Another time-lapse video of symbiotic interactions of coral cells (b and c) and dinoflagellates (x and y). The starting point of observations is shown at 0 h:
00 min: 00 s. (A–J) Serial pictures are taken at time intervals indicated at the bottom. Coral cell b interacted with symbiont x, but did not incorporate it, whereas
coral cell c endocytosed both x and y. See the detailed description in the text.

became fragmented in the host coral cell cytoplasm. The semi-
thin section undoubtedly demonstrates coral cell engulfment
of dinoflagellates.

Subsequent Fates of Symbiotic Algal
Cells and Host Coral Cells
One half to 1 day after inoculation, some engulfed algal cells
remained in the cytoplasm of host coral cells (Figure 5A).
On the other hand, some other algal cells were present within
large vacuoles in the cytoplasm (Figure 5B). Algal cells in the
cytoplasm (not in vacuoles) were approximately 12 µm in

diameter (Figure 5A), which was somewhat larger than those in
vacuoles (Figure 5B) and non-engulfed algal cells, which were
usually 8–10 µm in diameter (Figures 5C,D, arrows). This may
indicate swelling of dinoflagellates in host coral cell cytoplasm.
In addition, some algal cells began to exhibit fragmentation
(Figure 5C), and debris remained in the cytoplasm (Figure 5D;
Supplementary Movie 5). These changes were consistent with
the observation of semi-thin sections (Figure 4).

After 2 days of culture, cells with unfragmented algae survived
in the culture dish (Figure 6A, broken circles). They withdrew
pseudopods, stopped moving, and assumed a spherical form
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FIGURE 4 | In vitro interactions between coral cells and algae, 7 h after coral cell-algae mixture. Semi-thin sections were stained with toluidine blue. (A) Coral cell
extending filopodium over an alga. (B) Coral cell engulfing an alga. (C) Alga incorporated into coral cell cytoplasm. (D) Algal phagosome in association with a coral
cell vacuole. (E) Algal phagosome fused with a host vacuole. (F) Fragmented alga in a coral cell. a, algae; f, filopodium; fa, fragmented alga; v, vacuole. Bars, 10 µm.

(Figure 5B). Spherical cells with algal cells increased in number
until about a week of cell culture (Figures 6A,B,C1). In many
cases of 7-day-old cell culture, algae were in the cytoplasm
of host cells. Approximately 80% of spherical cells contained
1–3 unfragmented algae in their cell bodies (Figure 6C3). In
some cases, algal cells were observed within endogenous large
vacuoles in host cells (Figure 6C2), indicating translocation of
engulfed algae from cytoplasmic vesicles to vacuoles. However, it
is uncertain at present which phagosome-like vesicles or vacuolar
organelles become genuine, long-sustainable symbiosomes,
because it became more and more difficult to discriminate
between vacuolar membranes and phagosomal membranes. In
22-day-old symbionts, algal cells were still found in cultured
host cells, although host cells possessing algae had significantly
decreased in number (Figures 6D1,D2). At present, we failed in
subculturing coral cells with symbionts, because the symbionts
die after replating.

DISCUSSION

We reported here the occurrence of in vitro symbiosis of
cells of the reef-building coral, Acropora tenuis, with ITS2-
type B1 dinoflagellates (Breviolum minutum). Dark flattened
amorphous cells of the IVB5 line have properties of endoderm
and engulfed algal cells by actively shuffling cell membranes and
by extending filopodia and lamellipodia. Phagocytosis itself was
completed within 5 min after contact of coral cells with algal cells.
Approximately half of flattened amorphous coral cells achieved
symbiosis in the first day of the mixture, irrespective of the type

of culture medium. This in vitro symbiosis is highly reproducible;
thus, this in vitro system will facilitate exploration of cellular and
molecular mechanisms involved in coral-dinoflagellate symbiosis
at the single-cell level. Knowledge obtained in future studies
using this system may advance our understanding of coral
biology associated with bleaching, thereby providing cues for
methodological improvements of coral reef preservation.

The phagocytotic behavior of flattened amorphous coral
cells is very dynamic, and phagocytosis occurs very quickly
(Figures 2, 3). It is uncertain whether in vivo phagocytosis of
planula larva endoderm cells is like that of this in vitro system.
However, such dynamic and prompt symbiosis tempts us to
speculate that the first evolutionary step of coral-dinoflagellate
interactions was active coral cell phagocytosis of dinoflagellates,
moving through the gastric cavity into coral gastroderm cells.
It is likely that corals have maintained this high potential for
phagocytosis throughout evolution so that when they are cultured
in vitro, they show high ancestral phagocytotic activity.

One of the questions raised by this in vitro system is whether
symbiosis is accomplished by flattened amorphous cells alone
(without mixture or indirect help of other types of cells) or only in
a mixture containing other types of cells (Figure 1A). The IVB5
line is polyclonal and contains other types of cells beside flattened
amorphous cells. The cellular composition of the IVB5 line
therefore resembles that of planula larvae, which consist of outer
ectoderm and inner endoderm. Such a complex, harmonious
mixture of cells may be required for flattened amorphous cells
of endodermal origin to initiate symbiosis with algal cells. This
should be examined in the future using monoclonal, flattened,
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FIGURE 5 | Two modes of interaction between coral cells and dinoflagellates. (A,B) Settlement of dinoflagellates in coral cell cytoplasm, (A) outside and (B) inside a
vacuole. (C,D) Fragmentation followed by collapse of dinoflagellates in coral cell cytoplasm. Fragmentation appears more severe in (C) than (D). Dinoflagellates not
engulfed by coral cells are indicated with arrows. Scale bar, 20 µm.

amorphous cells. Nevertheless, the IVB5 line serves as an in vitro
system for studying coral cell symbiosis with photosynthetic
dinoflagellates at the single-cell level.

Future Studies Using This in vitro System
There are many questions regarding cellular and molecular
mechanisms involved in coral-dinoflagellate symbiosis. Three
major overlapping, interrelated processes involved in this
symbiosis are (1) the onset of symbiosis and mechanisms of
partner recognition, (2) maintenance and dynamic homeostasis,
and (3) dysbiosis that leads to bleaching (reviewed by Davy et al.,
2012; Weis, 2019).

In relation to the first process of coral-dinoflagellate symbiosis,
classification of symbiotic species of the family Symbiodiniaceae
has recently been revised and these taxa are classified into
Symbiodinium (previously Clade A Symbiodinium), Breviolum
(Clade B), Cladocopium (Clade C), Durusdinium (Clade D),
Effrenium (Clade E), and others (LaJeunesse et al., 2018). Of
these, Symbiodinium, Breviolum, Cladocopium, and Durusdinium
comprise major coral symbionts. Extensive studies have been
carried out to examine specificity, preferences, or exchange of
dinoflagellates of different genera hosted by different species of
corals (in case of A. tenuis, e.g., Yamashita et al., 2013, 2014, 2018).
In our laboratory conditions, Acropora tenuis larvae harbor

Symbiodinium, Breviolum, and Cladocopium, although ratios
of symbiosis differ depending on the algal species (Shoguchi
et al., unpublished data). Future studies should examine whether
dinoflagellates other than Breviolum are engulfed by the IVB5
line. If the IVB5 line shows different acceptance ratios, we might
address the question of symbiont recognition and specificity
using the IVB5 line and different species of dinoflagellates.

As to the second issue of maintenance and dynamic
homeostasis, algal cells need to be enclosed by an endomembrane
to form “symbiosome,” which is a critical component of
coral-dinoflagellate symbiosis (Wakefield and Kempf, 2001;
Davy et al., 2012; Rosset et al., 2021). How does its
composition and/or structures differ from the plasma membrane
in function, and what is the role of membrane trafficking in
its regulation and maintenance (Weis, 2019)? In the IVB5-
line system, algae engulfed by cultured cells likely have
two destinations: fragmentation or settlement in vacuoles
(Figures 4, 5). Fragmentation of Breviolum minutum does not
occur during the culture process, as far as our experience goes.
On the other hand, fragmentation of engulfed algae occurred in
cells of the IVB5 line. It is natural to assume that in the cytoplasm,
a phagosomal membrane encircling the algal cell fuses with
lysosomal membranes to make secondary lysosomes as part of the
normal pathway for degradation of foreign material (Davy et al.,
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FIGURE 6 | Maintenance of coral cells with symbiotic dinoflagellates. (A) 2 days, (B) 4 days, (C) 7 days, and (D) 22 days after mixture of the two types of cells. Coral
cells with symbiotic dinoflagellates (broken circles) became spherical, without pseudopodial extensions, and exhibit less and less locomotor activity. Those cells
became globular, bright cells. (C3,D2) are bright field images of (C1,D1), showing one (black arrowhead), two (gray arrowhead), and three algae (white arrowhead) in
single cells. p, pseudopodium; v, vacuole. Scale bars, 50 µm in (A,B,C3), 100 µm in (C1), 10 µm in (C2), and 20 µm in (D1,D2).

2012). Therefore, the escape of engulfed algae from the lysosomal
digestion by host cells is essential to establish symbiosis. If algal
cells are transferred from the phagosome to a vacuole, they may
escape lysosomal digestion. However, at present, it is uncertain
whether fragmentation always occurs in algae that were not
engulfed by vacuoles. Future studies should explore the role of
organelles as well as intracellular membranes in the establishment
of symbiosis in vitro.

The IVB5 line also provides a system to explore molecular
mechanisms involved in coral-dinoflagellate symbiosis. Studies
should strive to duplicate results of previous transcriptomic

studies (Yuyama et al., 2018; Yoshioka et al., 2021) and of
single-cell RNA-seq analyses (Hu et al., 2020). If genes that play
pivotal roles in the symbiosis are found in future studies, an
introduction of CRISPR/Cas9-mediated genome editing method
seems challenging (Cleves et al., 2018). Since genomes of
both Acropora tenuis (Shinzato et al., 2021) and Breviolum
minutum (Shoguchi et al., 2013) have been decoded, molecular
biological studies may be facilitated using genomicinformation.
Transcriptome analyses of gene expression changes in the IVB5-
line cells after interaction and phagocytosis of algal cells are
now in progress.
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Supplementary Movie 3 | A time-lapse video showing another case in which
coral cells engulf dinoflagellates into the cytoplasm using filopodia and
lamellipodia. For more detailed, see Figure 3 and the main text. Frames were
taken 2–3 sec intervals.

Supplementary Movie 4 | A time-lapse video showing extensive shuffling activity
of coral cell membranes around the region that attached to algal cells, by which
coral cells endocytose algal cells and then exocytose them. Some coral cells
repeat this process. Frames were taken 2–3 sec intervals.

Supplementary Movie 5 | A time-lapse video showing coral cells that
incorporated dinoflagellates in host coral-cell cytoplasm, and fragmentation of
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