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The El Niño-Southern Oscillation (ENSO) is one of the main drivers of the interannual

climate variability of Earth and can cause a wide range of climate anomalies, so multi

year ENSO forecasts are a paramount scientific issue. However, most existing works

rely on the conventional iterative mechanism and, thus, fail to provide reliable long-term

predictions due to error accumulation. Although methods based on deep learning (DL)

apply the parallel modeling scheme for different lead times instead of a single iteration

model, they leverage the same DL model for prediction, which can not fully mine the

variability of different lead times, resulting in a decrease of prediction accuracy. To solve

this problem, we propose a novel parallel deep convolutional neural network (CNN) with

a heterogeneous architecture. In this study, by adaptively selecting network architectures

for different lead times, we realize variability modeling of different tasks (lead times)

and thereby improve the reliability of long-term predictions. Furthermore, we propose a

relationship between different prediction lead times and neural network architecture from

a unique perspective, namely, the receptive field originally proposed in computer vision.

According to the spatio-temporal correlated area and sampling scale of lead times, the

size of the convolution kernel and the mesh size of sampling are adjusted as the lead time

increases. The Coupled Model Intercomparison Project phase 5 (CMIP5) from 1861 to

2004 and the Simple Ocean Data Assimilation (SODA) from 1871 to 1973 were used for

model training, and the GODAS from 1982 to 2017 were used for testing the forecast skill

of the model. Experimental results demonstrate that the proposed method outperforms

the other well-known methods, especially for long-term predictions.

Keywords: ENSO, long-term prediction, deep learning, convolutional neural networks, heterogeneous architecture

1. INTRODUCTION

El Niño-Southern Oscillation (ENSO) is a short-term interannual climate change consisting of
three phases: neutral, El Niño, and La Niña (Yang et al., 2018). It is a significant feature of
ocean-atmosphere interaction over the equatorial Pacific Ocean and, thus, directly or indirectly
leads to global climate abnormalities and regional meteorological disasters such as flooding in the
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summer and low temperatures in the winter (Forootan et al.,
2016). Generally, an El Niño event occurs when the average sea
surface temperature (SST) anomaly in the Nino3.4 region (5◦N–
5◦S, 170◦W–120◦W) is above the threshold of 0.5◦C for at least
five consecutive overlapping 3-month periods (Cane et al., 1986).
Based on this occurrence regularity, ENSO forecasts expected
to be an essential method for minimizing the negative effects
of climate change has been researched in the last few years.
However, due to the spring prediction barrier, the complexity
of the internal oscillation mechanism, and the chaos of climate
variability, developing an efficient multi year ENSO forecasts
method with high accuracy and low complexity is incredibly
challenging (Santoso et al., 2017).

In essence, ENSO forecasts are an example of a spatio-
temporal sequence prediction problem, whereby past ENSO data
(e.g., SST grid maps) are applied to predict future information.
Generally, people use related indexes to predict the development
tends of ENSO. The commonly used ENSO indexes include
the Nino 3,4 index, SST index, and Oceanic Nino index (Yan
et al., 2020). By studying the change law of the index, people try
to reveal the underlying complex ENSO change characteristics.
The existing approaches for making ENSO forecasts can roughly
be classified into two categories such as numerical weather
prediction methods and statistical prediction methods. With
the aid of physics and human experience, numerical models
can predict ENSO events by establishing various equations
(Goddard et al., 2001). For instance, Zebiak and Cane (1987)
proposed the first dynamic model for making seasonal ENSO
forecasts, which was followed by various improved models,
such as the intermediate coupled model, the hybrid coupled
model, and the coupled general circulation model (Wang et al.,
2017). However, these models can only well predict ENSO
no more than 6 months in advance (Duan and Wei, 2013).
To date, the conventional numerical prediction models have
been comprehensively developed and are moving toward high
resolution and multi-physical processes. Nevertheless, due to the
cognitive limitation of empirical models and uncertainties in the
optimization of key parameters, the increasingly accumulating
prediction errors hinder the application of numerical models to
long-term prediction (Duan andWei, 2013). Moreover, when the
horizontal resolution increases by one order of magnitude, the
calculation complexity increases by three orders of magnitude
(Masumoto et al., 2004).

Speaking of statistical methods, they can be further divided
into two subclasses, namely, the conventional statistics method
and the deep learning (DL)method. The former subclass includes
the Holt-Winters method and the autoregressive integrated
moving average (ARIMA) method. More specifically, So and
Chung (2014) used the Holt-Winters method to predict the
Niño region 3 SST index, and the final root mean square
errors from January 1933 to December 2012 were 0.303 by 1-
month-ahead and 1.309 by 12-month-ahead. Given that the long-
term prediction was poor, they introduced an improved Holt-
Winters model to deal with periodically stationary time series.
Rosmiati et al. (2021) used the ARIMA method to predict ENSO
regional SST Niño 3.4 and found that the ARIMA model stage
is well suited for predicting short-term ENSO events. However,

the occurrence and evolution of ENSO are nonlinear and the
methods mentioned above are incapable of extracting inherent
characteristics from nonlinear problems with a huge quantity
of raw data. Therefore, conventional statistical methods are not
ideal for complex pattern recognition and knowledge discovery.

In contrast, the DL method, which does a good job
constructing an end-to-end mapping model for high-
dimensional data with complex associations, is considered
to have significant potential to make ENSO forecasts. To be
more specific, Shukla et al. (2011) used an adaptive neural
network (ANN) model to predict the rainfall index by selecting
the Niño 1 + 2, 3, 3.4, and 4 indexes as predictors. The results
show that the ANN model outperforms all the linear regression
models. Unfortunately, the ANN model is unable to capture
and process the sequence information in the input data, so
researchers must resort to a recurrent neural network model
to improve prediction accuracy. Mcdermott and Wikle (2017)
used the Bayesian spatial-temporal recurrent neural network
model to predict the Oceanic Nino Index with a lead time of 6
months. In an other study, Zhang et al. (2017) leveraged long
short-term memory (LSTM) to predict the variation of SSTs in
the Bohai Sea, and Broni-Bedaiko et al. (2019) applied seven
input predictors to obtain stable predictions with a lead time of
11 months. Noticeably, LSTM, as an improved recurrent neural
network model, offers long-term memory with several control
gates and is, thus, suitable for dealing with sequence modeling
problems. However, the single-point prediction method based
on LSTM ignores the spatial correlation of SST and breaks the
continuity of the temperature distribution.

To mitigate the drawbacks of the LSTM model, Xingjian et al.
(2015) proposed a convolution LSTM (ConvLSTM) architecture
to implement the precipitation prediction, where convolution
layers are added based on LSTM to capture spatial features. He
et al. (2019) proposed a DLENSO model based on ConvLSTM
to forecast ENSO events, and the simulation results indicate
that it outperforms the conventional LSTM model. Gupta et al.
(2020) proved that using a ConvLSTM network to predict the
Niño3.4 index overcomes the spring predictability barrier. For
ENSO forecasts, ConvLSTM not only obtains the sequential
correlation of a single point over time series but also exploits
the spatial correlation of the region at a certain time through the
convolution operation (Mu et al., 2019).

Thus, it can be easily found that the above-mentioned
DL methods are capable of mining the correlation of
high-dimensional data to carry out complex modeling and
significantly improve the prediction accuracy of ENSO events.
However, the drawback of these DL-based methods is that they
only build a single depth model for predicting the next lead time
and try to predict longer lead times by iteration mechanism,
which still exposes them to the error-accumulation problem.
Thus, none of these models can provide reliable long-term
forecasts (i.e., over 1 year in advance).

In contrast with the above-mentioned DL methods, which
make long-term predictions by iterating a single prediction
model, Ham et al. (2019) proposed a parallel modeling scheme
for long-term prediction. For each lead time, an independent
deep neural network is built, and the parallel predictions of
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these models are constructed into a prediction sequence, which
improves the reliability of long-term predictions. The reasons for
this are as follows: First, long-term prediction is decomposed
into multiple parallel independent prediction tasks, so the
iterative process is replaced by parallel predictions to avoid
error accumulation. Next, different models establish different
scale patterns, which leads to multiscale modeling. Therefore,
this method extends the ENSO prediction time horizon from 1
to 1.5 years.

There is no doubt that the parallel model can provide reliable
long-term predictions. Nevertheless, this work only leveraged
the same DL model for making predictions with longer lead
times, which does not fully mine the variability of different tasks,
resulting in a shortage of reliable predictions. To overcome this
drawback, we propose herein an adaptive DL model selection
method that, depending on the prediction lead times, adaptively
chooses between two key structures of the DL model such as
the size of the convolution kernels and the mesh size of the
input. The idea of an adaptive selection scheme is inspired
by the receptive field in computer vision (Gál et al., 2004).
The receptive field is defined as the area of a pixel on the
feature map of a convolutional neural network (CNN) that is
mapped onto the original image (Figure 1). In this study, we
regard the spatio-temporal correlated area, which varies with
the prediction lead time as the receptive field, and then map
it to the size of convolution kernels and mesh size in the
input layer of the deep network model. By constructing the
relationship between prediction time, the size of convolution
kernels, and themesh size of the input layer we obtain an adaptive
selection of network structure with different lead times and
thereby improve the modeling ability with different lead times.
By enhancing the reliability of a single model, we thus improve
the reliability of parallel model predictions and the accuracy of
the results.

Themain contributions of this study can, thus, be summarized
as follows:

1. We propose a novel framework that uses parallel deep
CNNs with a heterogeneous architecture to forecast ENSO.
In this study, by replacing the traditional iteration process
with parallel predictions, the proposed scheme avoids error
accumulation. Meanwhile, with the help of the adaptive
selection of heterogeneous neural network architecture,
the modeling can be adjusted to accommodate different
tasks (lead times) and, thus, improve the reliability of
long-term predictions.

2. We investigate and formulate the relationship between
different prediction tasks (lead times) and neural network
architectures from a unique perspective, namely, the receptive
field from computer vision. We discover that with lead time
lengthened, the correlated spatial area should be appropriately
increased. From the view of computer vision, the prediction
spatial-temporal correlated area is corresponding to the
receptive field range, which is determined by the convolution
kernels size and sampling mesh size of the input in a
deep neural network. According to this, we design an
adaptive network structure selection method with respect

to lead time lengthened and applied it in the long-term
ENSO prediction.

3. We validate the effectiveness of the proposed method by
comparing its results with those of current efficient methods.
The experimental results demonstrate the advantages of the
proposed approach.

2. DATA AND METHOD

2.1. Data
Since ENSO is related to sea temperature, the monthly SST and
heat content (HC) (vertically averaged oceanic temperature in the
upper 300 m) anomaly maps are used as two input predictors.
The heat exchange in the ocean is carried out by vertical vortex
motion, convective mixing, and vertical ocean current convey, so
SST and HC are correlated to each other at different moments.
The anomaly maps extend over 0◦–360◦E, 55◦S–60◦N, and the
spatial resolution is 5◦ latitudes by 5◦ longitudes.

The dataset used in this study was originally published by
Ham et al. (2019). Since the observation data of global oceanic
temperature distribution is only available as of 1,871 (Giese and
Ray, 2011), only 146 are available for each calendar month.
To overcome the limitation, Ham et al. (2019) introduced
the Coupled Model Intercomparison Project phase 5 (CMIP5)
output to increase the number of samples. The CMIP5 output
is the simulation data from the numerical climate model that
contains the variables SST and heat content. Therefore, the
dataset consists of three-part data (as shown in Table 1): the
historical numerical simulations produced by the 21 CMIP5
models (Taylor et al., 2012), the reanalysis data from the Simple
Ocean Data Assimilation (SODA) (Giese and Ray, 2011), and the
Global Ocean Data Assimilation System (GODAS) (Behringer
and Xue, 2004).

2.2. Receptive Field of CNN
2.2.1. The Size of Receptive Field

Convolutional neural networks have the powerful ability to
hierarchically capture spatial structural information (LeCun
et al., 1998). They can map the effect of neighborhood points
on the center point through a convolution filter and, multilevel
convolution processing, they can map the evolution of dynamic
complexity between points. The convolution process of CNNs
extracts local characteristics from the global maps and calculates
dot products between values in the convolution filter and those in
the input layer. The jth feature map in the ith convolution layer
at grid point (x, y) is calculated by using

v
x,y
i,j = tanh





Mi−1
∑

m=1

Pi
∑

p=1

Qi
∑

q=1

w
p,q
i,j v

(

x+p−
Pi
2 ,y+q−

Qi
2

)

(i−1),m
+ bi,j



 , (1)

where the hyperbolic tangent serves as the activation function, Pi
andQi are horizontal and vertical size of the convolution filter for
convolution layer i, Mi−1 is the number of feature maps in layer

i − 1, w
p,q
i,j is the weight at grid point (p, q), v

(x+p−Pi/2, y+q−Qi/2)

(i−1),m

is the value of feature map m for convolution layer i − 1 at grid
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FIGURE 1 | Receptive field: same input and different convolutional kernel. The gray squares represent the padding. (A,B) illustrate how the input map converts the

output (feature map) through a convolution operation with 2×2 and 3×3 kernels, respectively.

TABLE 1 | The dataset for training and testing the model.

Data Type Period

CMIP5 Historical run 1861–2004

SODA Reanalysis 1871–1973

GODAS Reanalysis 1982–2017

point (x + p − Pi/2, y + q − Qi/2), and bi,j is the bias of feature
map j in convolution layer i.

In computer vision, the receptive field represents the spatial
mapping of each point after multilevel convolution operations;
that is, the size of the receptive field represents the ability to
acquire the spatial correlation range, as shown in Figure 1.
Figures 1A,B illustrate how the input map converts the output
(feature map) through a convolution operation with 2 × 2 and 3
× 3 kernels, respectively, so the receptive field of 1 unit in output
is a region containing 4 units in the input map in Figure 1A,
whereas it contains 9 units in Figure 1B. Given a deep CNN,
the receptive field term usually considers the final output unit in
relation to the network input. For example, as shown in Figure 2,
the receptive field of the unit in the final output map denotes
the area in the input map, which consists of every unit that
has propagated its value through the whole chain to the given
end unit.

It is easy to calculate the size of the receptive field of an
output unit in a basic CNN with a fixed structure, since only
the convolution and pooling layers can affect its size. The
convolution layer uses the kernel to execute the convolution

FIGURE 2 | Receptive field a deep CNN. (A) The first convolving: a 3 × 3

kernel over a 5 × 5 input padded with a 1 × 1 border of zeros using unit

strides. The second convolving: a 2 × 2 kernel using unit strides. (B) The first

convolving: a 4 × 4 kernel over a 5 × 5 input padded with a 1 × 1 border of

zeros using unit strides. The second convolving: a 2 × 2 kernel using 2×2

strides.

operation to multiply the receptive distance by the kernel size.
The pooling layer downsamples following a certain stride to
multiply the receptive distance by stride size. Thus, the receptive
field size can be formulated as

RFi+1 = RFi + (Ksize i+1 − 1)Si, (2)
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where RFi+1 and RFi are the receptive field of layers (i + 1) and
(i), respectively, with RF0 = 1, Si is the product of all layer strides
before layer (i + 1) (i.e., Si =

∏i
i=1 Stride i), and Ksize i+1 is the

size of convolution kernels at layer (i + 1). Thus, the receptive
field area of the last feature map on the input image is (RFn, RFn),
where n is the last convolution layer in the network.

Note that Equation (2) is calculated based on the assumption
that the shape of input images and convolution kernels are
square, whereas the input anomaly maps and convolution in the
model are rectangular, so Equation (2) must be rewritten as

RFi =
(

RFxi ,RF
y
i

)

RFi+1 = RFi + (Pi+1 − 1)× Si

RFi+1 = RFi + (Qi+1 − 1)× Si (3)

where the receptive field area of the last feature map on the input
image is (RFxn,RF

y
n).

2.2.2. Relationship Between Receptive Field and

Lead Time

In the simulated prediction, each grid point in the input is spatio-
temporally correlated. Specifically, owing to the complicated
interactions of the global climate system, the one grid point is
highly correlated to the near points and distant points, and hence
the slight changes of grid point will lead to the variation of other
points. Therefore, in this study, the spatio-temporal correlated
area can be regarded as the receptive field in CNN.

All related works applied only a single DL model for multi
year ENSO forecasts, which use the same size of convolution
kernels and the same step size for different lead times. Therefore,
according to Equation (2), the receptive field is the same for
different lead times. However, with the increase of prediction
lead times, the spatio-temporal correlated area of each point
differs. Sønderby et al. (2020) used 64 km as the basic unit to
predict the probability of precipitation in the next 8 h. With
an input patch covering 1, 024 × 1, 024 km and an average
precipitation displacement of 1 km per min, they set the target
patch to cover 64 × 64 km centered on the input patch. They
mentioned that accurate predictions of the target tensor for
a longer lead time require a larger spatio-temporal context
around the target. Therefore, in the prediction problem, the
spatio-temporal correlated area (receptive field) of the target
should expand with the increase of lead time. As mentioned,
the receptive field size is determined by the stride size and the
size of the convolution kernels. To this end, we now design a
scheme by adjusting the two parameters to appropriately expand
the receptive field size.

First, the input mesh size can be selected by changing the
stride size through multiple pooling processes. The mesh size
of the input means the receptive field resolution; that is, each
input grid point represents the number of original grid points.
The increase in receptive field resolution allows not only the
small range simulations and noises to be smoothed but also the
receptive field to be expanded. We assume that the receptive field

resolution should increase by a multiple of four as the prediction
lead time increases. In prediction modeling, the predicted lead
times are divided into three stages for ENSO forecasts: short,
medium, and long term, which can be stated as

Tterm =











Short term (ST), |lt|−1
5 ≤ 1

Medium term (MT), 1 <
|lt|−1
5 ≤ 3

Long term (LT), 3 <
|lt|−1
5 ,

(4)

where lt is the lead time of ENSO forecasts, which ranges from 1
to 20 months. Thus, the receptive field resolution for these three
terms is 1 : 4 : 16.

The mesh size of the original image is changed and, with
the increased lead time, the receptive field is enlarged at the
first assumption. However, in computer vision, a larger receptive
field does not mean better performance. Luo et al. (2016) also
refer to the concept of an effective receptive field. Increasing the
mesh size causes the receptive field to expand fourfold, so it is
slightly larger.

Second, in the process of convolution feature extraction, we
change the kernel size to adjust the size of the expanding receptive
field. We assume that the receptive field enlarges at the rate
of 2αN−1 (0 < α 6 1) with the increase of lead term; N
represents Tterm and its value is 1, 2, 3 for each of these three
terms. In conclusion, we formulate the relationship between
the prediction lead time, input mesh size, and kernel size to
increase the receptive field and realize multi-task modeling of
spatio-temporal differences.

2.3. Architecture Details
Given that the same single model for multi year ENSO forecast is
often unreliable and more difficult to train (Chevillon, 2007; Shi
and Yeung, 2018), a more promising strategy must be proposed
for long-term prediction. Thus, considering the differences in
the spatio-temporal dependencies of different tasks, we propose
a framework that uses parallel deep CNNs with heterogeneous
architectures to forecast ENSO. Figure 3 illustrates the schematic
structure of the framework, which is called the MS-CNN model
and consists of four parts: the input mesh size selection (IMSS)
module, the multiterm swappable convolution (MSC) module,
the fully connected (FC) module, and the parallel prediction
result splicing (PPRS) module.

The IMSS module automatically selects different sampling
mechanisms according to the three prediction terms. The
sampling mechanism changes the mesh size of the input by
selecting the pooling strategy to increase the receptive field.
The hypothesis that the resolution of the receptive field should
increase with prediction time is realized by the subsampling
mechanism. SST and HC anomaly maps for three consecutive
months serve as original input predictors.

In the MSC module, we set up a heterogeneous network
architecture to select one model of these three-term periods
adaptively based on the CNN network model (Ham et al., 2019).
This module serves mainly to adjust the expanding receptive field
of the first module by setting the size of the convolution kernels to
appropriately expand the receptive field. In the proposed model,
before the feature map enters the fully connected layer of the
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FIGURE 3 | The architecture of the MS_CNN model. (1) Input mesh size selection (IMSS) module aims to increase the input mesh size as the prediction lead time

lengthened. (2) Multi-term swappable convolution (MSC) module is mainly to adjust the appropriate receptive field expansion. (3) Fully connected (FC) module

transforms the feature map of CNN to vector, and then output the prediction of Nino 3.4 index. (4) Parallel prediction result splicing (PPRS) module splices the Nino

3.4 index of each lead time at the parallel network.

FC module, the process after downsampling is convolution →

pool→ convolution→ pool→ convolution. We assume that the
three convolutions have sizes (P1,Q1), (P2,Q2), (P3,Q3), so the
receptive field of these three terms is

RF = 4s((4P3 + 2P2 + P1 − 3), (4Q3 + 2Q2 + Q1 − 3)), (5)

where s represents the different downsampling scales of the three
terms, with s = 0 for ST, s = 1 for MT, and s = 2 for LT.

To satisfy the above assumption that the receptive field grows
at the rate of 2αN−1 (0 < α 6 1) with respect to the increase
in the prediction lead time, the receptive field should grow
appropriately for different lead terms. Therefore, we formulate
the relationships between input mesh size (downsampling
strategy), convolution kernel size, and the time period in the
network to control the size of the receptive field under these three
terms and improve the accuracy of prediction. The formula is

(C1,C2) = (P3P2P1, Q3Q2Q1)

s
∏

m=1

2(m−1), (6)

where s is the same as in Equation (5), C1 and C2 are the
same constants for the three terms in the model. We control
the receptive field by adjusting C1 and C2 and use the large
convolution kernels for the short term and the small convolution
kernels for the long term to make the product (6) a constant.

The FC module transforms the CNN feature map to a vector
and then outputs the prediction of the Niño 3.4 index. The PPRS
module is used to splice Niño 3.4 index of each lead time at
the parallel network, and the final result is the prediction of the
whole lead time series. In this study, by replacing a traditional
iteration with the same model with parallel prediction, the
proposed scheme avoids error accumulation. Thus, by designing
the heterogeneous architecture model, the evolution of different
lead times can be fully explored.

TABLE 2 | Correlation skill (Corr) of lead times with different layers.

Layers 2 3 4 5

6-month 0.693 0.742 0.697 0.692

12-month 0.522 0.540 0.514 0.512

18-month 0.307 0.328 0.327 0.305

Bold values is the best value of the four layer parameters.

TABLE 3 | Root Mean Square Error (RMSE) of lead times with different layers.

Layers 2 3 4 5

6-month 0.631 0.582 0.606 0.625

12-month 0.754 0.742 0.753 0.757

18-month 0.852 0.848 0.853 0.859

Bold values is the best value of the four layer parameters.

3. EXPERIMENTS

We ran the numerical experiments on a single NVIDIA
RTX2080ti-11G, and the proposed model was implemented by
using Python 3.6 with Pytorch.

3.1. Experiment Settings
a) Input and output data: Sea surface temperature and HC
anomaly maps are used as inputs. The output of the model is the
Nino 3.4 index, which is the area-averaged SST anomaly over the
Nino3.4 region, as a predictand to be predicted up to 20-months-
ahead. That is, only SST is used to calculate the actual result of
the Nino3.4 index. HC is just an additional input predictor. More
specifically, the model uses SST and HC for three consecutive
months as input, so the input size is 6 × 72 × 24 (an anomaly
map size is 72 × 24). A single network output is the predicted
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FIGURE 4 | The correlation skill (Corr) between predicted values and actual values with different input sizes. The different input size represents the different regional

ranges: area1 (yellow) represents the Nino3.4 region (5◦S–5◦N, 170◦W–120◦W), area2 (gray) represents the region of (15◦S–15◦N, 170◦E–100◦W), area3 (orange)

represents the region of (30◦S–30◦N, 125◦E–55◦W), and area4 (blue) represents the region of (55◦S–60◦N, 0◦E–360◦E).

FIGURE 5 | Root Mean Square Error between predicted values and actual values with different input sizes. Refer to Figure 4 for the information of the area1, 2, 3, 4.

value of the Nino3.4 index for the corresponding lead month,
so the size is 1 × 1. The final output of the parallel networks
is a 20 × 1 vector of Nino3.4 index from 1- to 20-month-lead.
The transfer learning technique is used to optimally train the
model. The SODA of 1871–1973 is used for the training period
to minimize the systematic errors caused by the CMIP5 samples
(from 1861 to 2004). Then, we use the GODAS of 1982–2017 for
testing the forecast skill of the model.

b) Evaluation metrics: To evaluate the performance of the
MS-CNN model, we adopt two commonly used metrics such as
Temporal Anomaly Correlation Coefficient Skill (Corr) and Root

Mean Square Error (RMSE) of the prediction lead months. Corr
measures the linear correlation between the predicted value and
the actual value, whereas the RMSE measures the difference. The
formulas for calculating the Corr and RMSE are

Corrl =

12
∑

m=1

∑e
t=s

(

Yt,m − Ȳm

) (

Pt.m.l − P̄m,l

)

√

∑e
t=s

(

Yt,m − Ȳm

)2 ∑e
t=s

(

Pt.m.l − P̄m,l

)2
(7)
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RMSEl =

12
∑

m=1

√

∑e
t=s

(

Yt,m − Py·m.l

)2

|e− s|
(8)

where P and Y are the predicted value and observed value,
respectively, P̄m,l and Ȳm are the mean values of P and Y , m =

1–12 is the calendar month, the label t is the forecast target
year, and s = 1982 and e = 2017 are the starting and ending
years, respectively.

3.2. Comparison of Different MS-CNN
Structures
To further analyze the relationships between the different
network structures and simulation results and to prove that the
proposed model is reasonable, we compare it with three aspects
of the MS-CNN model: (1) the number of layers, which is a
fundamental setting for deep neural-network structure; (2) the
size of the region on original maps, which is the geographic scope
of the original area; and (3) the relationship between the three
terms, the size of the input mesh, and the size of the convolution
kernel, which represent the change in receptive field size as the
lead time lengthens. Experiments (1) and (2) were implemented
on the same parallel model based on CNNs to select the optimal
basic parameters for the subsequent Experiment (3).

Tables 2, 3 show the comparison of Corr and RMSE between
different layers. The results show that, (1) at each layer, both
metrics deteriorate as the lead time increases, and (2) more layers
do not always guarantee better performance. It is observed that
the RMSE of the results decreases at the outset and then increases
over the next few lead months. Previous experiments (Mu et al.,
2019) show that implementing more layers does not improve
performance, because of insufficient training data for a large
number of parameters. In this experiment, three layers can be
considered as an appropriate choice under the two metrics.

Next, Figures 4, 5 show the performance of different original
anomaly maps with a three-layer network. In these figures, areas
1, 2, 3, and 4 represent the Nino3.4 region(5◦S–5◦N, 170◦W–
100◦W), (15◦S–15◦N, 170◦E–100◦W), (30◦S–30◦N, 125◦E–
55◦W), (55◦S–60◦N, and 0◦E–360◦E), respectively. The existing
DL models for ENSO forecasting use mostly the Nino3.4 area as
original input, but Park mentioned that SST anomalies outside
the equatorial Pacific Ocean can lead to an ENSO event with
a time-lag longer than 1 year (Park et al., 2018). Therefore, we
explore how the region size of original anomaly maps affects
multi year forecasts. The results show that (1) at each region,
both metrics deteriorate as the lead time increases, and (2) larger
original anomaly maps result in more accurate forecasting. These
results show that the SST patterns are related to each other over
a vast area of the ocean, which is consistent with the opinion
of Park. We, thus, choose the entire anomaly maps (55◦S–60◦N,
0◦E–360◦E) as the original maps.

With the fixed layer and original map area, we next explore
the relationship between lead time, input mesh size, and the size
of the convolution kernels to determine how the receptive field
changes to improve the reliability of ENSO predictions as the
lead time increases. Figures 6, 7 show that single-scale means

FIGURE 6 | The Corr between predicted values and actual values with

different relationships among lead months, input mesh size, and convolution

kernel size. Their relationship determines the ratio of the receptive field size in

the three prediction lead terms. Single-scale means that input mesh size and

convolution kernel size are the same with the increase of lead months. The

Conv3d are A/C/E (8,4), B/D/F (4,2) at MSC module. Thus, the receptive field

size about these three terms has a ratio of 1:1:1. Multi scale(1) means their

relationship is consistent with Equation (6). Noticeably, these three terms

correspond to the different input mesh size by downsampling the original map

and the ratio of input mesh size is 1:4:16. The Conv3d are different at MSC

module, is A(8,4)/B(4,2),C/D (4,2), E/F (2,1). So the receptive field size about

these three terms has an approximate ratio of 1:2.5:4. Multi scale(2) have the

same input mesh size as multi scale(1) in these three lead terms. But multi

scale(2) uses the same Conv3d (A/C/E (8,4), B/D/F (4,2)) at MSC module, so

the relationship is not consistent with Equation (6). The size of the receptive

field about these three terms has a ratio of 1:4:16.

FIGURE 7 | Root Mean Square Error between predicted values and actual

values with different relationships among lead months, input mesh size, and

convolution kernel size. Their relationship determines the ratio of the receptive

field size in the three prediction stages. Refer to Figure 6 for the information

on the single-scale, multi scale (1), and multi scale (2).

that the original map does not downsample for any of these
three lead terms. In the same way as with the MSC module,
the sizes of the convolution kernels for the three lead terms are
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FIGURE 8 | Multi year El Nino-Southern Oscillation (ENSO) forecasts Corr in the MS-CNN model. (A) The all-season correlation skill of the 3-month-moving-averaged

Nino3.4 index as a function of the forecast lead month in the model (red), HAM-CNN model (blue), ZG-PSDL(black), and U-net model(brown). (B,C) The correlation

skill of the Nino3.4 index targeted to each calendar month in the MS-CNN model (B) and the HAM-CNN model (C). Hatching highlights the forecasts with correlation

skills exceeding 0.5.

all the same [A/C/E (8,4) and B/D/F (4,2)]. Thus, the receptive
field size about these three terms has a ratio of 1:1:1. Multis
cale (1) means that lead times are divided into three terms,
and these three terms correspond to the different mesh size
of the input map by downsampling. The relationship between
the three terms, the mesh size, and the size of the convolution
kernel is consistent with Equation (6): C1 = 64 and C2 =

16, the Conv3d is A(8,4), B/C/D (4,2), E/F (2,1), so the size of
the receptive field about these three terms has the approximate
ratio of 1:2.5:4. Multiscale (2) is similar to multiscale (1), but
the relationship is not consistent with Equation (6). Instead, it
uses the same Conv3d [A/C/E (8,4), B/D/F (4,2)] in the MSC
module, so the size of the receptive field about these three terms
has a ratio of 1:4:16. We can observe from Figures 6, 7, both
Corr and RMSE, the multi scale (1) scheme corresponding to
Equations (5) and (6) perform best. The receptive field nearly
expands at the rate of 2αN−1 (α = 1) for three terms. Moreover,
with increasing lead time, the performance gap between the
three terms increases. The single-scale scheme does not build
different receptive field models to differentiate spatio-temporal
dependencies. Multi scale (2) scheme expands the receptive
field indefinitely. This scheme only expands the receptive field

resolution but does not change the kernel size to adjust the
receptive field. Neither of these two schemes fits the hypothesis,
and the ratio does not expand at the rate of 2N−1 for these three
terms. These results prove that the hypothesis is correct and
that the method to appropriately expand the receptive field size
is reasonable.

3.3. Performance Comparison of Different
Models
We now compare the MS-CNN model with the following SST
prediction models and multiscale models of computer vision:

a. The method of Ham et al. (2019). A multi year ENSO forecast
model based on CNNs and denoted HAM-CNN. The parallel
model is formulated separately for each forecast lead month
and target season.

b. The method of Zheng et al. (2020). A model with four stacked
composite layers for forecasting the evolution of the SST. It is
denoted ZG-PSDL.

c. UNET (Ronneberger et al., 2015).Amultiscalemodel for image
segmentation. The features of different scales are extracted by
using downsampling, and then the output of upsampling is

Frontiers in Marine Science | www.frontiersin.org 9 August 2021 | Volume 8 | Article 717184

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Ye et al. Multi-Year ENSO Forecasts

combined with feature maps of the corresponding scale to the
decoder.

d. LSTM-FC (Zhao et al., 2019). An LSTM model with a FC
neural network.

The deep neural networks are trained with the same number of
epochs for a meaningful comparison: 80 epochs are used for the
first training using the CMIP5 output, and 30 epochs are used for
the second training using the reanalysis data. The total number
of convolution filters is 30. An Adam optimizer is applied during
the training process. The size of the mini-batch for each epoch is
set to 64, and the learning rate is fixed to 0.005.

Inspired by Ham et al. (2019), Figure 8 facilitates the
comparison. Figure 8A shows the all-season Corr of the 3-
month moving-averaged Niño3.4 index from 1982 to 2017. We
experiment with forecasting 1–20 months in advance, and the
forecast accuracy of the Niño3.4 index in the MS-CNN model
is systematically superior to that of the other models, especially
for lead times longer than 6 months. The all-season Corr of the
Niño3.4 index in the MS-CNN model is greater than 0.50 for up
to a lead time of 16 months, whereas it is 0.41 for a lead time
of 16 months in the HAM-CNN model. The HAM-CNN model
provides accurate predictions, but when we introduce multiscale
network architecture and the method of adaptively controlling
the size of convolution kernels to enlarge the receptive field (that
is, the MS-CNN model), the prediction accuracy significantly
improves for medium to long lead times.

Zhenggang’s model and UNET use a multiscale model, but
both models have the same convolution kernels for different
lead times, which prevents them from controlling the size of
receptive fields. Moreover, both models are fused multiscale
feature maps, which introduce noise so that the results fluctuate
badly. Therefore, we conclude that the MS-CNN model provides
a skillful and stable forecast of ENSO phenomena for up to a lead
time of 18 months.

The MS-CNN model also provides a greater Corr than the
HAM-CNN model for the Niño3.4 index for almost each target
season (as shown in Figures 8B,C). The improvement in Corr
is clear at longer lead times and is robust for target seasons
between the late boreal spring and autumn. For example, the
forecasts for the May-June-July season have a correlation skill
exceeding 0.50 up to lead time of 10 months for the MS-CNN
model, but only up to a lead time of 6 months for the HAM-CNN
model. In addition, for theHAM-CNNmodel, the Corr fluctuates
significantly for medium lead time (11–16months), but the result
of the model is relatively stable and decreases for longer lead
times. This narrows the gap in the ability of the proposed model
to forecast different target seasons. The conclusion imposed is
that the MS-CNN model is robust and essentially independent
of the spring predictability barriers.

3.4. Results of the MS-CNN Model
Considering the heat exchange in the ocean, we analyze the
influence of SST and HC on the prediction results. Figure 9
shows the performance of different input predictors with CNN
and the MS-CNN model. The results show that: (1) the Corr
of only SST is higher than only HC, which confirms that SST

FIGURE 9 | The Corr between predicted values and actual values with

different input predictors based on (A) CNN model, (B) MS-CNN model. The

red line shows SST and heat content (HC) were all used as input predictors.

The blue line shows only SST was used as input predictors. The black line

shows only HC was used as input predictors.

is the most important factor. The reason is that the Nino3.4
index is obtained by calculating the area-averaged SST anomaly
over the Nino3.4 region, so the input of SST is the key factor
that decides the fluctuation of results; (2) SST+HC scheme
both perform best on CNN and MS-CNN model. These results
indicate although the predicted Nino3.4 index is only related
to SST, the HC as an input predictor can significantly improve
the accuracy of long-term prediction. The reason is that internal
ocean motion, such as vertical vortex motion and convective
mixing, produces heat exchange. To be more specific, the ocean
under the surface can transfer heat to the ocean surface for a
while, and vice versa. Therefore, using SST and HC for several
previous months as two input predictors, the model can extract
some laws and features of ocean internal motion for better
long-term prediction.

We regarded the spatio-temporal correlated area as the
receptive field in the study. Given the complicated interactions
of the global climate, each grid point is highly correlated to
near points and distant points, so slight changes of a grid point
will cause other points to vary. For short-term forecasting, a
small correlated area is enough to predict the change of the
grid point. But for long-term forecasting, a larger correlated
area should be used. First, we smooth out the fluctuations and
noise by changing the mesh size and then adjust the receptive
field by changing the convolution kernel size. The correlation

Frontiers in Marine Science | www.frontiersin.org 10 August 2021 | Volume 8 | Article 717184

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Ye et al. Multi-Year ENSO Forecasts

FIGURE 10 | Predicted and actual values of the January-February-March season Nino3.4 indexes for four different lead months.

can be extracted from the convolution kernel of CNN. We
make the physical assumption that as the prediction lead time
increases, the space temporal correlated area of each grid point
should increase appropriately, that is, the receptive field of a
pixel in CNN last layer should increase appropriately. More
specifically, we assume that the receptive field enlarges at the
rate of 2αN−1 (0 < α 6 1) with respect to the increase
in the leading term. Figure 6 shows that the assumption is
reasonable and its performance is best in these three schemes.
The traditional method did not consider the dynamic variation
that the spatio-temporal correlated area of grid point will change
as the prediction lead time increases. The single-scale scheme,
which is the traditional method of using only a single model
for all lead times, does not build different receptive field models
to differentiate spatio-temporal dependencies. The multi scale
(2) scheme, which only expands the receptive field resolution
by downsampling, does not change the kernel size to adjust the
receptive field and lead to the receptive field expand indefinitely.
Therefore, the physical assumption that as the prediction lead
time increases, the spatio-temporal correlated area of each grid
point should increase appropriately is correct.

The Nino3.4 index from 1982 to 2017 was predicted 1–20
months in advance in this experiment. The result from Figure 8A

shows that the 1-month-lead prediction is the most accurate, and
the 20-month-lead prediction is the least accurate. Specifically,
the curve produced by the 1-month-lead prediction of Corr is
0.96, and the corresponding RMSE is 0.31; the Corr predictions
with a 16-month lead are all greater than 0.50; even for the 20-
month-lead prediction, the worst Corr approaches 0.40, and the
corresponding RMSE is 0.83. As shown in Figure 8B, the MS-
CNN model generally provides accurate predictions for autumn

and winter (e.g., for December, January, and February, Corr
is greater than 0.50 for 19 consecutive months). Although the
results for spring and summer are improved compared with other
models, the prediction results remain poor in the medium and
long term.

The Niño3.4 index for the January-February-March season
for 1-, 6-, 12-, and 18-month-lead predictions demonstrates
that the proposed MS-CNN model predicts the evolution and
the ENSO amplitude by the 12-month-lead time (Figure 10).
The Corr values are 0.96, 0.87, 0.68, and 0.60, respectively.
However, at times with strong EI Niño or La Niña phenomena,
the prediction errors become relatively large with increasing
lead time. Thus, the proposed method is better than previous
methods but does not work well for longer lead times in a more
demanding environment.

4. CONCLUSION

Improving the predictability of ENSO is the key to better seasonal
predictions across the globe. At present, the DL-based methods
for multi year ENSO forecasts only focus on the application
of deep neural networks, but none consider the distribution
characteristics of oceanic spatio-temporal data. Using SST and
HC for several previous months as two input predictors, the
model can extract some laws and features of ocean internal
motion for better long-term prediction. It can be concluded that
it is feasible to improve the reliability of the long-term prediction
by adding more related predictors as input.

The spatio-temporal correlated area was regarded as the
receptive field in this study. We make the physical assumption
that the space-temporal correlated area of each grid point should
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increase appropriately with the lead time increases, that is, the
receptive field of a pixel in CNN last layer should increase
appropriately. Given the differences in the spatio-temporal
dependencies of different lead times for forecasting ENSO, we
build a framework that we call the ”MS-CNN model” by using
parallel deep CNN with a heterogeneous architecture for multi
year ENSO forecasts. First, by replacing the traditional iteration
process with parallel predictions, the proposed scheme avoids
error accumulation. Second, by using an adaptive selection
of heterogeneous neural network architectures, we adaptively
expand the receptive field with increasing prediction lead time.
The results of using the model on a real-world dataset show that
the hypothesis (i.e., the receptive field expands appropriately as
the prediction lead time increases) is reasonable. The reanalysis
data for 1982–2017 were predicted 1–20 months in advance.
Furthermore, the proposed method provides more accurate
predictions than other models, especially for a longer lead
times: the Corr is nearly 0.60 for 13-month-ahead and 0.40
for 18-month-ahead.

Although the method proposed for multi year ENSO forecasts
significantly improves upon the performance of the conventional
methods, some shortcomings remain. For instance, when strong

ENSO events happen, the prediction of the Niño3.4 index is

relatively inaccurate, and the errors increase with increasing

prediction lead time. In addition, the predictions are more
accurate than those of other models only for spring, as
opposed to all seasons. Thus, in future research, we will
focus on the following three themes: (1) introducing more
related measurements, such as westerly wind bursts and warm
water volume, to model the spatio-temporal process more

comprehensively and improve ENSO forecasting for the spring
season; (2) integrating the CONVLSTM with the proposed
method to determine whether it is generalizable and whether it
can further improve the accuracy of multi year ENSO forecasts;
(3) learning more knowledge in the marine field and improving
the reliability of forecasting by combining the DL methods with
numerical simulation models.
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