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The changing world presents negative impacts on marine ecosystems and has led to

the development of diversified tools to support reef restoration. Harnessing restoration to

achieve success needs innovative techniques that also address the restoration of reef fish

assemblages, contributing to the conservation of biodiversity and ecosystem functions

and also tackle the cost-effectiveness through impact-driven solutions. Here, we propose

a proof-of-concept for enhancing fish populations on reefs using: (1) postlarvae capture,

(2) aquarium culture, and (3) release to reef sites. We conducted field studies in the

Mexican Caribbean to analyze for the first time, the possibility of using the capture and

aquarium culture of postlarvae fish species and release of juveniles as a tool for the

potential recovery of reef biodiversity resilience. We tested the potential of postlarvae

capture using two distinct night light traps (BOX and collect by artificial reef ecofriendly

traps, C.A.R.E.) in three sampling sites with different distances from shoreline and

depth. We collected 748 postlarvae reef fishes from eight orders, 20 families, and 40

species. Acanthuridae, Pomacentridae,Monacanthidae, and Tetraodontidae comprised

the highest species number of postlarvae families. We also set up a pilot release

experiment with Stegastes partitus using two trials (32 and 1 day after capture) and

propose analysis to determine appropriate reef sites to release the cultured juveniles and

to aid ecological planning. We present the results of the pilot release experiment with S.

partitus, showing that there is a positive effect in survivorship during the capture (80%)

and release (76–100%) procedures into suitable habitat and good chance that more

studies will bring novelty to the field. Although trials carried out with more species relevant

to restoration will be needed. The use of these techniques can be a great opportunity

to improve the research of restoration efforts in the Caribbean region with fish-depleted

coral reefs with vulnerable food webs, especially at local scales and supporting other

management strategies.
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INTRODUCTION

Active strategies approach has been proposed (Schmidt-Roach
et al., 2020) to promote reef restoration in areas with severely
decreased reef fish communities (Abelson et al., 2016). In the
Caribbean, restoration efforts have been focused on the recovery
of corals (Bayraktarov et al., 2020; Calle-Triviño et al., 2020).
Although social and ecological outcomes target various benefits
(Calle-Triviño et al., 2018), current challenges of these efforts
include long-term implementation, identifying the feasibility of
this implementation, and ecological processes restoration (Ladd
et al., 2018; Duarte et al., 2020).

Efforts for broadening the reef restoration from coral
species to fishes remain limited and have been rarely used as
a method (Obolski et al., 2016). Nevertheless, reef fishes have
a pelagic larval phase during their lifecycle that allows them
to disperse spatially and a demersal juvenile phase that leads
to the colonization of these species on a reef (Sale, 2015).
The former is one of the most critical stages in their cycle,
which determines the characteristics of the populations such as
distribution, abundance, and population dynamics (Victor and
Wellington, 2000; Simpson et al., 2013). It is a phase where they
experience high-mortality rates of ∼60% (Doherty et al., 2004;
Almany and Webster, 2006), and survival is often related to
early life-history traits (Sponaugle et al., 2011). This postlarval
phase continues to be studied to understand the settlement
processes (Dufour, 1994; Hendriks et al., 2001; McCormick et al.,
2002; Lecaillon, 2017). Several studies have used settlement stage
reef fishes to realize small-scale fisheries based on postlarval
capture and culture (Bell et al., 2009). This method has also
been integrated into experimental protocols as a potential tool
for restoration of fish assemblages as a proof-of-concept (Heenan
et al., 2009; Abelson et al., 2016). The aforementioned is based
on the concept of removing extremely high-mortality rates that
occur during settlement, and post-settlement of the first few
weeks, and take advantage of this process to significantly increase
survivorship (Vallès et al., 2008).

Several techniques have been developed to capture coral
reef fish in the early life stages (Choat et al., 1983), including
light traps (Lecaillon, 2004; Moana Initiative, 2007), “hoa”
nets that are used in shallow passes (termed hoa in French
Polynesia) that allow water to enter “closed” and “semiclosed”
atoll lagoons (Lecaillon and Lourié, 2007) and crest nets in
French Polynesia (Dufour and Galzin, 1993), Australia (Doherty
and McIlwain, 1996), Solomon Islands (Hair et al., 2002),
and La Reunion (Durville et al., 2003). In addition, extensive
light trap work has been carried out in the Florida Keys,
focused on examining and measuring the processes of larval
fish supply (Sponaugle et al., 2006; D’Alessandro et al., 2007)
and capture during the settlement stage of Stegastes partitus
larvae (Rankin, 2010). Remarkably, there have been very few
studies on the postlarvae and early stages of ichthyofauna within
the Caribbean coral reefs. Vásquez-Yeomans et al. (1998, 2003,
2011) and Álvarez-Cadena et al. (2007) carried out studies
on ichthyoplankton obtained by surface trawling, and channel
nets. Recently, Ayala-Campos (2014) used a light trap technique
for sampling.

Despite these research efforts, little data have been collected
on postlarvae of the fish in the Caribbean region, some of
which have not been published. In addition, implementing these
low-environmental impact techniques as an effective tool for
biodiversity monitoring and conservation activities are absent.
Given this situation, we performed a proof-of-concept to enhance
fish populations on reefs by using techniques for postlarvae
capture, aquarium culture, and release. In addition, the goal
of this study was to supply primary information to address
the current interest in coral reef restoration. To do so, we
described temporal variations in postlarvae abundance of reef
fishes during the high-settlement season by testing two different
kinds of night light traps. We addressed the aquarium-culture
factors and release of cultured juveniles, using a pilot release
experiment with S. partitus and a landscape analysis. We use
these results and analysis to test feasibility and comment on the
potential ecological application of this method into Caribbean
restoration efforts.

MATERIALS AND METHODS

Study Approach and Location
A primary criterion for applying our approach and address the
study was to consider a multidisciplinary engage approach. It was
necessary to establish a strong partnership among the science,
public (marine-protected area; MPA), and private sectors (Xcaret
and Wave of Change) (Abelson et al., 2016; Doropoulos et al.,
2019). In this sense, operationalizing the study, the choice of
study site, technical process setup, and field collection were
conducted based on the requirements for feasible applications in
the Caribbean region (Figure 1).

The study was performed within an MPA in the northern
part of the State of Quintana “Reserva de la Biosfera del
Caribe Mexicano.” This location was chosen because: (1) the
area is managed by the authorities (Comisión Nacional de
Áreas Naturales Protegidas; CONANP); (2) the staff of Xcaret
control the recreational activities including protection and
fishing regulations; and (3) it has proximity to logistic facilities
to support the study in all the stages. Sampling was conducted
in the three sites: Site 1 (Punta INAH reef) is closer to the shore
(100m) with a depth of 10m. This area is characterized by more
complex coral reef structures in comparison with the other sites,
the reef crest is conspicuous, and the area is covered with larger
seagrasses. At Site 2 (Punta Venado reef), the distance to the coast
is 200m, with an average depth of 12m, the bottom is mainly
characterized by low-seagrass coverage and some isolated reef
patches. At Site 3 (Calica reef), the distance to the shoreline is
300m, with a depth of 15m, dominated by a few isolated patches
of seagrass and coral reef.

Device for Capturing Postlarvae and
Methodology
Between July and October 2018, which are the months for
the highest recruitment (Williams and Sale, 1981; Leis and
McCormick, 2002; Watson et al., 2002; Ayala-Campos, 2014),
monthly catches of postlarvae fish were conducted at all three
sites as a part of the first stage method. These catches consisted

Frontiers in Marine Science | www.frontiersin.org 2 September 2021 | Volume 8 | Article 718526

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Cortés-Useche et al. Reef Fishes to Support Coral Reef Restoration

FIGURE 1 | General outline process for scaling up restoration of coral reef using oostlarval reef fishes: capture, culture, and release.

of the placement of six-night light fish traps in total (n = 3
replicates per treatment) at each site: three Australian design
single chamber box (acrylic) traps on each side and three C.A.R.E
design traps (Collect by Artificial Reef Ecofriendly patented
by Ecocean) (Lecaillon, 2004) (Supplementary Figure S1). The
traps were deployed during nights of minimal lunar illumination
(new moon), set at sunset, and removed at sunrise (minimum of
10 h functioning) for 7 consecutive days.

Aquarium-Culture of Postlarval Fish
As a second stage, a total of 48 fish tanks (32 tanks ×

10 L and 16 tanks × 20 L) were designed and built for the
sorting, maintenance, and observation of captured organisms.
The larger tanks were used to accommodate species of fish
that were collected in larger numbers to prevent overstocking
or hyperpredation in the tanks. On capture days, the fish
were distributed in fish tanks according to the species or
behavior (territorial, aggressive, and passive). The fish tanks were
conditioned with shelters made of sheets of PVC and/or raffia
fibers. The fish were fed twice a day (at 0,800 and 1,700 h)
with nauplius, adult artemia (Artemia sp.), and commercially
prepared food. The organisms observed were identified following
the Cervigón et al. (1992), Humann and DeLoach (2002)
identification guides and systematically sorted according to
FishBase criteria (Froese and Pauly, 2019). All the collected

postlarvae were monitored for 15 days post-capture (complete
metamorphosis) to test for differences in survival (Victor, 1991).

Release of Cultured Juveniles Into
Caribbean Reefs
To explore the role of releasing cultured juveniles as a feasible
restoration tool, we considered site-specific survival, efficiency
of target species behavior, and ecology of reef fishes. Given that
habitat variation is a key modeling factor in the early-stage of
reef fishes (Paddack and Sponaugle, 2008), we performed a pilot
release study in a controlled matrix or artificial structure for the
juveniles. As the first step of this stage, we selected individuals of
bicolor damselfish (Stegastes partitus) for the experiment based
on their prevalence, territorial behavior, and their fidelity to the
habitat where they settle (Thiessen and Heath, 2006; Heenan
et al., 2009). A total of 42 samples of S. partitus were collected
and released using two trials to test the site survival of released
fish: (1) postlarvae collected and cultured for a period of 32
days; and (2) juveniles collected and released 1 day after capture.
Trials were equally split among 21 individuals, resulting in three
replicates placed in six tanks (200 L) with seven individuals per
tank, considering a 3 cm size for all the replicates. The tanks had
artificial structures (matrix) made of cement, raffia, and ceramic
tiles as refuges. Before the release of cultured juveniles, the
structures were transported to the selected slopes (12m depth).
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FIGURE 2 | Outline for selecting target sites for release postlarval reef dishes after capture and aquarium culture.

The artificial structures were haphazardly arranged on the slopes
of reefs separated by 10m between each structure to prevent
migration between them. Release protocol and duration of visual
counts were focused on to assess post-release survival. Based on
the methodology used by Heenan et al. (2009), site survival of
released fish was measured twice on days 1, 2, and 3 using visual
census (at 0,800 and 1,700 h) and then once daily (0,800 h) for
another 5 days, for a total of 8 days.

Selecting Target Sites for Release Criteria
Environmental requirements such as structural complexity, coral
composition, fish community, and benthic reef cover need to be
considered to enhance the release approach (Figure 2). We used
the Agisoft Metashape Professional Edition software to process
preliminary images that we obtained by taking pictures with
two cameras (GoPro 8) for the building of the photomosaics
in Cozumel (Francesita reef) and Riviera Maya (Manchoncitos
reef). In addition, we carried out an assessment corresponding to
fish communities already present.

Data Analysis
To recognize the temporal variations through species abundance,
we evaluated species richness (number of species present in each
sample) and Shannon-Weaver’s diversity (H ) (Jost, 2007). An
analysis of the local contribution to beta diversity was used to

determine the percentage of contribution in each of the sites and
identifying the uniqueness based on existing diversity (Legendre
and De Cáceres, 2013).

A Multivariate Permutational Analysis of Nested Variance
(Nested PERMANOVA) was carried out to determine differences
between capture months. The ANOVA one-way was used to
determine differences between the catch per unit effort (CPUE)
(individual/trap/day) of fish caught by the two different light
night traps. A CAP was carried out to visualize the dispersion of
the samples through a season with the same data matrix. A heat
map (descriptive analysis) of the total abundances of postlarvae
species captured by the months of study was made, with cluster
analysis (similarity with Euclidean distances).

Differences in site survival of released fish among trials were
compared with Kaplan-Meier’s survival analysis, with CIs (α =

0.05), followed by Log-Rank (Wilcoxon) pairwise comparisons.
All the analyses were performed and plotted using the statistical
program R version 3.3.1 (R Core Team, 2017).

RESULTS

A total of 748 postlarval reef fishes from eight orders, 20 families,
and 40 species were identified (Table 1). The most abundant
species were those belonging to the families Acanthuridae,
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TABLE 1 | Taxonomic list of postlarval fish recorded in the northern Mexican

Caribbean.

Order Family Species Capture method

Anguilliformes Congridae Ariosoma balearicum BOX

Beloniformes Exocoetidae Cheilopogon

melanurus

BOX

Hemiramphidae Hemiramphus

brasiliensis

BOX

Beryciformes Holocentridae Sargocentron

vexillarium

BOX, C.A.R.E.

Sargocentron

coruscum

BOX

Lophiiformes Antennariidae Antennarius striatus C.A.R.E.

Perciformes Acanthuridae Acanthurus tractus BOX, C.A.R.E.

Acanthurus coeruleus C.A.R.E.

Acanthurus chirurgus BOX, C.A.R.E.

Apogonidae Paroncheilus affinis BOX, C.A.R.E.

Astrapogon

puncticulatus

BOX, C.A.R.E.

Phaeoptyx pigmentaria BOX, C.A.R.E.

Apogon maculatus BOX, C.A.R.E.

Apogon aurolineatus C.A.R.E.

Carangidae Caranx latus BOX

Chaetodontidae Chaetodon ocellatus BOX

Chaetodon capistratus BOX, C.A.R.E.

Gerreidae Eucinostomus

melanopterus

C.A.R.E.

Kyphosidae Kyphosus sectatrix BOX

Lutjanidae Lutjanus apodus BOX

Lutjanus griseus BOX, C.A.R.E.

Lutjanus analis BOX, C.A.R.E.

Pomacanthidae Holacanthus ciliaris BOX, C.A.R.E.

Pomacanthus arcuatus BOX, C.A.R.E.

Pomacentridae Microspathodon

chrysurus

BOX, C.A.R.E.

Stegastes partitus BOX, C.A.R.E.

Stegastes adustus BOX, C.A.R.E.

Abudefduf saxatilis BOX, C.A.R.E.

Stegastes leucostictus C.A.R.E.

Chromis cyanea BOX, C.A.R.E.

Stegastes variabilis BOX

Sphyraenidae Sphyraena barracuda BOX, C.A.R.E.

Pleuronectiformes Bothidae Bothus ocellatus C.A.R.E.

Scorpaeniformes Scorpaenidae Scorpaena inermis BOX, C.A.R.E.

Tetraodontiformes Monacanthidae Monacanthus tuckeri BOX, C.A.R.E.

Cantherhines pullus BOX, C.A.R.E.

Monacanthus ciliatus BOX, C.A.R.E.

Tetraodontidae Canthigaster rostrata BOX, C.A.R.E.

Sphoeroides spengleri BOX

BOX, Australian design of a single chamber box and a lower collector and C.A.R.E, collect

by artificial reef eco-friendly traps.

Pomacentridae, Monacanthidae, and Tetraodontidae. The most
dominant species were the bicolor damselfish (Stegastes partitus)
with 132 individuals, followed by the sharpnose-puffer fish
of the family Tetraodontidae (Canthigaster rostrate) with 121

individuals. The highest abundances and CPUE occurred in
October (267 individual and 10 individual/trap/day), followed
by August (227 individual and 8.36 individual/trap/day).
The highest richness (taxa) and diversity (H’) was recorded
in August and September, and the lowest was in July
(Supplementary Figure S2).

Species composition by month showed significant differences
in terms of species replacement component of beta diversity
(p < 0.001) (Supplementary Table S1). Canonical Analysis
of Principal Coordinates confirms differences among months
(Supplementary Figure S3). July and October were the months
with the highest variation of species and least similar in terms
of beta diversity, while August and September were more similar
(Supplementary Figure S4).

Of the total of 748 individuals, each of the trap types collected
approximately 50% of the total fish present (367 individuals in
the box design light traps and 381 individuals in the C.A.R.E light
traps). The species with the most significant contribution were: S.
partitus (Family: Pomacentridae), Canthigaster rostrata (Family:
Tetraodontidae), Monacanthus tuckeri, and Cantherhines pullus
(Family: Monacanthidae) with a contribution of more than 50%
of the total species composition (Figure 3). Species composition
between the different months showed the highest abundance and
presence of S. partitus and C. rostrata in all the months. However,
most of the less abundant species were replacedmonth bymonth,
for example, of the 23 species recorded in August 9 species were
replaced in October.

A total of 367 individuals of 34 species were identified
from the box light traps. Several rare and unique species were
recorded in the net catches in this trap. Of these species,
six presented only one individual (Lutjanus apodus, Kyphosus
sectatrix, Sargocentron coruscum, Hemiramphus brasiliensis,
Ariosoma balearicum, and Caranx latux), and two presented
more than one individual (S. variabilis, Sphoeroides spengleri,
and Cheilopogon melanurus). The C.A.R.E. light traps captured
a total of 381 individuals of 30 species. Five species were unique
to this trap and were rare with at least one individual per
species (Eucinostomus melanopterus, Bothus ocellatus, Apogon
aurolineatus, and Antennarius striatus). The species Acanthurus
coeruleus, with an abundance of seven individuals, was caught
only by the C.A.R.E. trap. Despite the observed differences
in species composition by trap type, the species replacement
component of beta diversity was not significant (PERMANOVA,
999 permutations: F1, 53 = 1.23, p = 0.45). However, the
one-way ANOVA for CPUE variation between the two types
of traps showed a significant difference (P = 0.000676)
(Supplementary Table S2). The C.A.R.E. type traps obtained
not only higher CPUE of postlarvae type but also more
considerable variation in their records (12.4 individual/trap/day
± 5.54 CI) when compared with the box design traps (4.3
individual/trap/day± 1.26 CI).

Survivorship results based on aquarium culture were analyzed
using an overall approach. Survivorship of total postlarvae
captured during the aquarium-culture stage was 80% until 15
days of post-capture. Also, we evaluated the survivorship for
release stage, after 8 days of the site-specific survival experiment,
and 76% of juveniles released within 1 day of capture (n = 16)

Frontiers in Marine Science | www.frontiersin.org 5 September 2021 | Volume 8 | Article 718526

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Cortés-Useche et al. Reef Fishes to Support Coral Reef Restoration

FIGURE 3 | Some of the most abundant species recorded in the area include the following: (A) Stegastes partitus; (B) Canthigaster rostrata; (C) Monacanthus

tuckeri, (D) Acanthurus chirurgus, (E) Acanthurus tractus, and (F) Mycrospathodon chrysurus.

survived, while juveniles released after 32 days in culture survived
100% (n = 21). A significant difference in survival of juveniles
released was evident based on results for the two trials (P = 0.04,
X2= 4.2).

Results based on the preliminary landscape analyses suggest
different target sites for release criteria. For example, a seascape

dominated by Agaricia agaricites, A. tenuifolia, Porites porites,
and P. astreoides were present in Cozumel (Mexico) on a shallow
reef (8–10m). The reef-building corals (e.g., Orbicella complex
and Montastrea cavernosa) were present in the Manchoncitos
Reef (Riviera Maya) between 9 and 13m depth range. The
highest contributions of fish species in Francesita reef 27.6%
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were covered by grunts, 11.8% by surgeonfishes, and 10.1%
by parrotfishes, while in Manchoncitos reef were 43.6% were
covered by grunts and 27.1% by parrotfishes. Haemulon
flavolineatum and H. aurolineatum were the most species
abundant in Francesita, while Caranx ruber andH. aurolineatum
were in the Manchoncitos reef.

DISCUSSION

This study describes the method of capture using two kinds of
night light traps, BOX (Doherty, 1987) and C.A.R.E (Ecocean,
2020). Even though this study is preliminary, results show some
distribution patterns similar to fish postlarvae in a previous
survey (Ayala-Campos, 2014). The species richness (40 spp.) is
consistent withmost of the representative families:Acanthuridae,
Pomacentridae,Monacanthidae, and Tetraodontidae, in addition
to the more abundant species S. partitus and C. rostrata (Álvarez-
Cadena et al., 2007). Therefore, the species identified in this
work constitute 40% of the taxonomic diversity for this region
reported by Álvarez-Cadena et al. (2007). In previous studies,
118 species belonging to 53 families and 115 species belonging to
55 families were recorded, respectively (Vásquez-Yeomans et al.,
2011). However, most of the research they conducted was not
recorded as postlarvae.

The difference in species richness may be related to the
method and effort of sampling (Cortés-Useche et al., 2018).
In the previous studies conducted in the Mexican Atlantic, a
greater number of sites and different sampling methods (i.e.,
trawls, dredge, and crest nets) were used (Del Moral-Flores
et al., 2013). In addition, other studies have focused on the
estimation of species richness in tropical communities through
the use of various sampling gear andmethods (Vásquez-Yeomans
et al., 2011). Considering the biology of the species besides their
positive phototactic response, capture with light traps has the
advantage of efficiency in catching reef species which prefer
sheltered locations (tigmotropism), while non-target pelagic fish
just swim over the reef (Lecaillon and Lourié, 2007). However,
in order to increase efforts in the context of reef restoration, the
use of other types of traps such as hoa traps and crest nets may
be considered.

The capture of postlarvae during the summer season observed
here is consistent with the highest CPUE in French Caribbean
islands (Lecaillon, 2017). Our study, focused on captures made,
taking into account that most of the recruitment occurs during
a relatively short period, during the summer months, and
postlarvae have movement during dusk and at night which is
more significant on nights with lower luminosity (Dufour and
Galzin, 1993; Milicich and Doherty, 1994; Leis and McCormick,
2002; Watson et al., 2002). However, the differences observed
between October and July could be due to peaks of temperature
during the summer. Villegas-Sánchez et al. (2009) associate the
differences in these peaks with variations in sea temperature.

The catches obtained by the two kinds of night light traps
showed that the C.A.R.E. trap obtained higher abundances
(CPUE), but a lower richness (four fewer species). The
effectiveness of this method is because it uses an artificially lit

space that takes advantage of the behavior of the recruits to
catch them (Lecaillon and Lourié, 2007): (1) the attraction to
light (phototropism); (2) the desire to come into contact with
a solid object (tigmotropism); and (3) the need to take refuge
from predators. These sensory elements are essential for fish
postlarvae, which have very acute senses during recruitment
(Sweatman, 1988; Kingsford et al., 2002; Lecaillon and Lourié,
2007). The differences observed in CPUE may be associated with
the design of the two types of traps, the intensity and type of
light (Vadziutsina and Riera, 2020). It is important to highlight
the fact there is a risk of the occurrence of hyperpredation in
and around the traps during the capture process. For example, in
our study, we recorded the presence of predatory individuals of S.
barracuda, and we recommend checking the traps continuously
to avoid filling them with many individuals and predatory
species. In addition, we recommend separating the captures early
on in the boat by species and size, thus avoiding the loss of
individuals and the loss of benefits of thismethod of local capture.

Despite the differences between the two types of traps, C.A.R.E
and BOX traps can be considered for harvest in a complementary
range of species, to catch a greater diversity and larger number
of fish (Dufour et al., 1996). In this study, postlarvae collected
(Table 1) through the C.A.R.E and BOX traps were effective in
terms of both the diversity (40 species) and abundance (748
target postlarvae collected). These results illustrate that capture of
postlarvae in the summer season in the context of feasibility is the
most appropriate period for collection in the Caribbean region.
Moreover, following sampling from three sites, the results of the
abundance suggest that further upscaling of locations can provide
a more significant number of captured organisms to improve
culture and release stages.

In this study, the overall production of juveniles has been
achieved successfully with almost 80% survival until 15 days
post-capture. For other reef fishes, Durville et al. (2003) cited
survival between 60 and 92%, and Moana Initiative (2007)
reports survival of target fish grown out were 80% after reaching
the juvenile size. Survival can be considered as a crucial criterion
for evaluating the optimum-rearing condition. Evidence from
experimental studies with reef fishes (Planes and Lecaillon, 2001;
Steele and Forrester, 2002; Webster, 2002; Doherty et al., 2004)
suggests an advantage in the culture of postlarvae in contrast
to postlarvae that settled in the wild. These experience high
mortality as a result of increased predation rates (Bailey and
Houde, 1989; Doherty, 2002). This result is significant for future
directions of scaling up production as it allows for feasibility in
its implementation. Overall, technical knowledge of aquarium
culture must be expanded, for example, tests are needed to
compare survival rates post-capture of specific species and
functional groups (i.e., based on trophic level).

To our knowledge, our study is the first to carry out a series of
experiments that involves related themes of growth, feeding, and
reproduction of reef fish cycle as a potential tool to contribute to
restoring Caribbean coral reefs. In Caribbean coral reefs, there
is no reviewed literature about restocking experience (Obolski
et al., 2016). Our results highlight the need to take advantage
of the colonization phase when the postlarvae transform into
juveniles and suffer catastrophic mortality rates (>90%) in the
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week following colonization (Planes et al., 2002; Doherty et al.,
2004).

The release stage for future implementation also requires
several considerations. As a first step, we addressed the recording
of the standard length and total length of individuals on the
day of capture and the day of release. This was done to
eliminate differences in the sizes of the juveniles released, as
several studies indicate that larger individuals may have greater
experience with predators, which may result in causing a wary
behavior during the experiment (Rankin, 2010). While the pilot
experiment with S. partitus showed high survival, damselfishes
need to be tested in the context of coral restoration (Heenan
et al., 2009). It is crucial to determine if they support or
undermine the restoration efforts (Ladd et al., 2018) by algal
farming which can lead to tissue mortality (Precht et al., 2010)
and/or reduce the presence of other corallivorous by defending
their territory (Schopmeyer and Lirman, 2015). It is reasonable
to expect that the release of species with different behavioral
and ecological characteristics can influence survivorship and
migration rates, even in the processes of trophic interactions
in coral reefs (Ladd and Andrew, 2020). However, in the
context of the experimental setup species with similar life history
and behavior (e.g., site fidelity) to that of other damselfishes,
may be the starting point for scaling up to other species
or groups.

Caribbean reefs have experienced unprecedented declines;
they are characterized by coral-algal phase shifts in which coral
cover is declining to be replaced by algae (Arias-González
et al., 2017). The choice of release habitat should be considered
using landscape analysis. For example, based on the relationship
between habitat condition and target species, where habitats
dominated by macroalgae or algal turfs can be supplied by
herbivorous species such as grazers (surgeonfish), scrapers
(parrotfish), and browsers (chubs) to provide a top-down control
of algae (Green and Bellwood, 2009; Obolski et al., 2016).
Caribbean reefs also have been changing in coral composition.
Species of genus Agaricia spp. and Porites spp. tend to dominate
the seascape (Perry et al., 2018). This scenario (Cozumel—
Mexico) can be an opportunity for experiments to test diverse
ecological functions.

Another characteristic habitat in the Mexican Caribbean
region is the largely acroporid-dominated coral nurseries such as
the current ex situ restoration sites of Wave of Change (Cozumel
and Riviera Maya). This habitat has the recurrent prevalence
of predators such as fireworm Hermodice carunculata that
have a highly negative impact on populations of A. cervicornis
and A. palmata (Calle-Triviño et al., 2017). These reefscapes
can be benefited by the supply of fish such as white grunts
(Haemulon plumierii) and sand tilefish (Malacanthus plumieri)
(Ladd and Shantz, 2016). Coral growth can be improved by
adding fishes such as grunts (Haemulidae) around coral nurseries
or outplanting sites via delivery of fish-derived nutrients (Shantz
et al., 2015) or via concentrate grazing by Sparisoma sp. and
Acathurus sp. (Shantz et al., 2017; Calle-Triviño et al., 2021).
Despite, the highest contributions of grunts and herbivorous
fishes (surgeonfishes and parrotfishes) in both study sites our
results suggest that there is a good chance of using these species

to enhance research and may be considered in the context of
restoration both structurally and functionally.

The primary method employed here can be used to broaden
and predict the taxonomic composition and distribution of
postlarval fishes. Also, it can promote the capture, culture,
and release of reef fish with a sustainable approach, especially
in enforcement and management sites across the Caribbean
region. The results obtained are very promising in terms of
species richness, diversity, abundance, and CPUE as well as
an innovative way to drive restoration of coral reef services
and functions. This sampling method provides the benefit
of increasing the productivity of target species, for example,
commercial and herbivorous fishes (Bell et al., 2009). These
efforts can contribute to identifying settlement areas for reef fish,
biodiversity monitoring (McLeod and Costello, 2017), managing
of MPAs (Obolski et al., 2016), and supporting fisheries control
through research and social engagement (Hein et al., 2020;
Cortés-Useche et al., 2021). They can also support the restoration
efforts of reefs that have suffered a loss in the resilience of
their fish biodiversity (Lorenzen et al., 2010) or re-establish
the provisioning services delivered by reefs in providing habitat
and nursery areas for commercially (Hein et al., 2020) and
functionally important species. In this sense, future work could
be focused to improve sampling biodiversity and broadening
monitoring variables that have an influence on recruitment such
as luminosity, pH, algal blooms, wave exposure, rugosity, etc.

The pilot test (S. partitus) showed very promising results
on survivorship relative to the settlement stage ex situ. This
method tested here can be set up for a variety of fish species
and seems to be a feasible restoration tool, to increase the
benefits of management through the effective implementation
that includes long-term ecological and economic synergies
(Lirman and Schopmeyer, 2016; Cortés-Useche et al., 2019). Key
aspects, such as fisheries policy and water quality treatment in
the context of climate change and managing the connectivity
of the tropical coastal reefscapes should be considered (Arias-
González et al., 2016; Hein et al., 2020; Schmidt-Roach et al.,
2020; Cortés-Useche et al., 2021).
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