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Marine macrophytes constitute one of the most productive ecosystems on the planet,
as well as one of the most threatened by anthropogenic activities and climate change.
Their monitoring is therefore essential, which has experienced a fast methodological
evolution in recent years, from traditional in situ sampling to the use of satellite remote
sensing, and subsequently by sensors mounted on unmanned aerial vehicles (UAV).
This study aims to advance the monitoring of these ecosystems through the use of
a UAV equipped with a 10-band multispectral camera, using different algorithms [i.e.,
maximum likelihood classifier (MLC), minimum distance classifier (MDC), and spectral
angle classifier (SAC)], and using the Bay of Cádiz Natural Park (southern Spain) as a
case of study. The results obtained with MLC confirm the suitability of this technique
for detecting and differentiating seagrass meadows in a range of 0–2 m depth and
the efficiency of this tool for studying and monitoring marine macrophytes in coastal
areas. We inferred the existence of a cover of 25452 m2 of Cymodocea nodosa, and
macroalgae species such as Caulerpa prolifera, covering 22172 m2 of Santibañez (inner
Bay of Cádiz).

Keywords: unmanned aerial vehicles, marine macrophyte, seagrass meadows, macroalgae, multispectral,
coastal areas

INTRODUCTION

Marine macrophytes, including seagrass meadows and macroalgae, constitute a coastal habitat
of great value due to the ecosystem services they provide, which makes them one of the most
productive ecosystems on the planet, comparable to coral reefs or tropical forests (Beca-Carretero
et al., 2020; Veetil et al., 2020; Zoffoli et al., 2020). They act as large sinks of atmospheric CO2 (De
los Santos et al., 2020; Egea et al., 2020; Zoffoli et al., 2020), but they are also considered biodiversity
hotspots providing refuge and food for numerous animal species, some of which are protected,
such as turtles or other marine mammals (Brodie et al., 2018; Egea et al., 2020; Veetil et al., 2020).
In addition, they perform coastal protection tasks, reducing the hydrodynamic forces of the waves
and protecting the seabed from erosion thus facilitating sedimentation (Brun et al., 2015; Zoffoli
et al., 2020). Seagrass beds also provide climate-change mitigating services, such as reduction in

Abbreviations: DLS, downwelling light sensor; GPS, global positioning system; GSP, Ground Station Pro; MDC, minimum
distance classifier; MLC, maximum likelihood classifier; MTOW, maximum takeoff weight; NIR, near infrared; RGB, red
green blue; ROIs, region of interests; SAC, spectral angle classifier; UAV, unmanned aerial vehicle.
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ocean acidification by buffering pH (Garrard et al., 2014),
elevating sediment height and trapping particulate matter
(Potouroglou et al., 2017).

These meadows are spread throughout tropical and temperate
coastal areas around the world. However, they are currently one
of the most threatened ecosystems, resulting in a significant
decrease in their global extension (Veetil et al., 2020; Yang
et al., 2020) due to their vulnerability to natural, and mainly,
anthropogenic activities (Sánchez-Quiles et al., 2017; Tamondong
et al., 2020; Zoffoli et al., 2020). Among the main factors causing
their population loss are the reduction of water quality due to
pollution, the illegal fishing gear, the introduction of invasive
species or eutrophication (Brun et al., 2015; Veetil et al., 2020;
Zoffoli et al., 2020). In addition, they are poorly protected
due to the scarce media attention they receive compared to
other ecosystems, which makes them all the more vulnerable
(Brun et al., 2015).

Monitoring and studying seagrass and macrophyte beds
extent and location is therefore crucial for evaluating their
ecological status and evolution (Kellaris et al., 2019; Veetil et al.,
2020). Moreover, they are particularly useful as indicators of
environmental quality, supporting decision-makers with issues
of protection, restoration and conservation management of
these habitats, as well as the management of commercially
important macrophytes (Nahirnick et al., 2018; Wilson et al.,
2020). Traditionally, monitoring and studying their health needs
in situ sampling involving diving, which is time consuming,
implying human and logistical resources, and providing only
small spatial resolution (Kutser et al., 2006; Beca-Carretero et al.,
2020; Veetil et al., 2020). Currently, the use of remote sensing
imagery is increasing the accuracy and efficiency of monitoring
on a broader scale (Beca-Carretero et al., 2020; Kaufman and
Bell, 2020), serving as an added-value to traditional techniques.
However, there are still limitations in the use of remote sensing
satellite, so that even the finest spatial resolution of their sensors
are insufficient to taxonomically detect coastal vegetation species
in submerged areas with precision (Nahirnick et al., 2018; Veetil
et al., 2020). In this sense, the use of unmanned aerial vehicles
(UAV)-mounted sensors could be a suitable alternative.

Unmanned aerial vehicles present a number of advantages
for monitoring marine macrophytes: (i) they offer a spatial and
spectral resolution accurate enough to taxonomically identify
seagrass or other organisms with a high level of detail (centimeter
scale); (ii) they provide greater control of temporal resolution
than satellites, increasing the flexibility for image acquisition;
(iii) they are not affected by cloud cover; (iv) they are cost-
effective tool because of the rapid technological development, and
improvements related to longer battery life and higher spatial
resolutions (Kellaris et al., 2019; Rossiter et al., 2020a). However,
the use of UAVs for mapping submerged habitats has some
limitations such as the environmental conditions at the time
of data acquisition, they cannot cover large areas due to the
battery autonomy, the need for trained personnel and they need
to comply with the specific regulations of each territory for their
deployment (Nahirnick et al., 2018).

Recent studies have used RGB digital sensors onboard UAVs
to study the evolution of marine vegetation in coastal areas by

generating a supervised classification from the spectral signatures
of coastal vegetation (e.g., Kellaris et al., 2019; Tait et al.,
2019; Jiang et al., 2020). However, it was difficult to distinguish
between species with similar RGB optical profiles (Kellaris et al.,
2019) or between those found in the subtidal zone due to
the light attenuation with increasing depth (Tait et al., 2019;
Beca-Carretero et al., 2020). Moreover, there are areas where
different species of macrophytes are growing together, which
makes the identification of these communities even more difficult
at small and large spatial scales (Oppelt et al., 2012). The use
of multispectral sensors provides a broader range of possibilities
to distinguish spectral signatures in these communities of
organisms, since the detection of spectral profiles of these species
can be improved by isolating key parts of the electromagnetic
spectrum from non-overlapping bands (Tait et al., 2019). These
sensors allow us to collect data from the visible and near-
infrared regions of the electromagnetic radiation spectrum with
three or more different bands, offering higher spectral resolution
than RGB sensors. Vegetation detection is notably improved by
measuring reflection at near infrared (NIR), however, infrared
wavelengths are largely absorbed by water, rendering a precise
taxonomic identification difficult with increasing water depth
(Casal et al., 2011; Oppelt et al., 2012; Tait et al., 2019).

The aim of this study is to examine the adequacy and
accuracy of the use of a UAV-mounted multispectral camera
for the monitoring and identification of marine macrophytes
using the Bay of Cádiz Natural Park as case of study. We
examine the benefits of improved spectral detection over RGB
sensors from the use of a 10-band multispectral camera, which
allows us (i) to detect the potential of these sensors for
taxonomic separation of the different species of macroalgae and
seagrasses in the intertidal and subtidal zones; and (ii) to analyze
the effectiveness of geoprocessing tools for the generation of
supervised classification, allowing us to monitor the evolution
of these coastal ecosystems in a faster, more precise, and
economically viable way.

MATERIALS AND METHODS

Study Area
The study was conducted in Santibañez, a tidal flat area located
in the Bay of Cádiz Natural Park, in southern Spain (Figure 1).
It is a protected area of 10522 hectares, which constitutes
one of the most important coastal wetlands in Europe, and
whose diversity of ecosystems (beaches, marshes, intertidal
plains, pine forests, and tidal channels) host an abundance
of biodiversity. The inner bay is sheltered from the action
of large waves, but is influenced by the effect of the semi-
diurnal tide (Álvarez et al., 1999). The area is characterized
by a temperate climate with average annual air temperatures
around 20◦C, and average annual rainfall around 595 mm
(Moreno-Marín et al., 2016; Egea et al., 2019). This area is
known for its biodiversity, associated to the coastal submerged
vegetation dominated by marine macrophytes, hosting important
populations of fish, birds, and invertebrates (Brun et al., 2015).
The area is characterized by shallow beds of silty sediments,
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supporting the presence of the three seagrass species inhabiting
Atlantic European waters: Zostera noltei Hornemann, Cymodocea
nodosa Ucria (Ascherson), and more isolated, Zostera marina
Linnaeus (Arroyo et al., 2012; Brun et al., 2015). The benthic
community is almost entirely covered by extensive beds of rooted
macrophytes. The subtidal zone is mainly dominated by the
seagrass C. nodosa and the chlorophyte macroalgae Caulerpa
prolifera (Forsskål) J. V. (Vergara et al., 2012), with small patches
of Z. marina also thriving in the subtidal zone (Brun et al.,
2015), and the seasonal ephemeral chlorophyte macroalgae Ulva
sp. (Corzo et al., 2009). The seagrass Z. noltei is the dominant
species in the intertidal zone in the study area, whereas the
saltmarsh species Spartina maritima dominates the supratidal
zone (Morris et al., 2009).

UAV Platform and Sensors
The UAV used was a hexacopter with three-bladed propellers
which has a DJI6010 electric motor (130 Kv brushless type) for
each of the six blades (Condor, Dronetools©) (Figure 2A). Li-ion
batteries are used to power the motor, with a total capacity from
14000 to 28000 mA, separated into four 7000 mA batteries. The
empty weight of the equipment with the four batteries is 11.8 kg,
with a maximum flight autonomy of up to 60 min (without
payload). However, the maximum takeoff weight (MTOW) is
14.9 kg. In the case of incorporated cameras, the equipment has
three axes with stabilization which can be controlled from the
ground station. In addition, it has an autopilot of the DJI A3
PRO model, which has several types of control modes depending
on the help provided to the pilot: (i) Altitude hold mode (ATTI
mode), in which the autopilot stabilizes the aircraft in attitude and
the pilot commands attitude and altitude references, without the
use of GPS; (ii) GPS mode, in which the autopilot stabilizes the
aircraft in attitude and fixes the position of the aircraft, requiring
GPS data; and (iii) Return to home mode. It also has an on-
board flight controller, allowing flight parameters to be known,
such as height, speed, distance to home, or the GPS satellite
number, among others.

This UAV was equipped with a MicaSense RedEdge-MX
dual multispectral camera (Figure 2B), which has 10 different
spectral bands able to acquire infrared data in addition to the
standard RGB, respectively, in the blue (2 bands), green (2
bands), red (2 bands), red edge (3 bands), and near infrared
(1 band) wavelengths (Figure 2C). The resolution of the sensor
is 1280 × 960 pixels (8 cm/pixel from a height of 120 m)
and has a horizontal field of view of 47.2◦, which allows a
broad surface coverage. It also has a downwelling light sensor
(DLS) with built-in GPS. The DLS provides more accurate and
reliable measurements of irradiance and solar angle, improving
radiometric accuracy and reducing post-processing time. The
included calibration panel (RP04-1924106-0B) can be used
for radiometric calibration, and the reflectance data can be
obtained directly.

Data Collection
Capture of the multispectral images took place on May 20th
2020 during low tide, with partially cloudy weather conditions.
Prior to the flight, a flight plan was prepared using the DJI
Ground Station Pro (GSP): The flight height was 114 m to

achieve an approximate 2.3 cm/pixel resolution in acquired
imagery with the multispectral camera. This resolution increased
the potential to capture the smallest of seaweed patches within
pixels. The image overlaps were set to 80% frontlap and
60% sidelap. The considerations established in the protocol
proposed by Doukari et al. (2021) for UAV flight planning were
followed, carrying out a preliminary analysis of the climatic
and oceanographic conditions, in order to fly during low tide
conditions, without wind and in the morning to avoid the
effect of sunglint on the photos taken during the survey (under
high solar zenith angle conditions). Seven points were set along
a gradient transect of increasing depths, from supratidal to
subtidal, perpendicular to the coastline covering the vegetation
communities previously described in the area (Olivé et al.,
2013; Figure 1C and Table 1). On each point, in situ visual
identification of vegetation and underwater photographs were
taken by scuba divers. Samples from each marine macrophyte
were also taken for further identification in the laboratory. This
information was used to validate the results after processing the
images obtained with the UAV.

Methodology
For the generation of the photomosaic from the images
obtained from the flight, as well as the GCPs implemented for
precise georeferencing, we used the software Pix4D Mapper
(Pix4D SA, Lausanne, Switzerland). The WGS84 (EPSG: 4326)
coordinate system was used to georeference the images.
Once the images were imported into Pix4D Mapper, initial
processing steps were performed, including the generation of
the point cloud, the textured 3D mesh, the digital surface
model (DSM), and the orthomosaic. In addition, reflectance
data were generated for each spectral band. The radiometric
processing and the calibration of the reflectance values of
each band were performed from the calibration panel, which
was photographed moments before the start of the flight, and
with the DLS. The difference between them is the almost
Lambertian behavior of the calibration panel whose spectral
characteristics had been previously determined by calibration
in a laboratory, while the DLS is a solar sensor that measures
the solar irradiance in the upper part of the aircraft in order to
detect changes in environmental conditions (for example, due to
the presence of low clouds). By combining the DLS irradiance
measurements with the radiance detections from multispectral
sensors, reflectance values can be obtained from UAV images.
Reflectance is given by the relationship between reflected
radiation (camera measurements) and incident radiation (DLS
measurements) (Hakala et al., 2018; Taddia et al., 2020).
Although reflectance values could only be obtained with DLS
measurements, using a calibrated reflectance panel allows for
more robust results, especially when combined with DLS.

All reflectance bands were imported into the QGIS
software [QGIS Development Team (2011) QGIS, Geographic
Information System, Open Source Geospatial Foundation
Project]1. Supervised classification analysis was performed using
the semi-automatic classification plugin (SCP; Congedo, 2020).
This method was implemented to distinguish different species

1http://qgis.osgeo.org
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FIGURE 1 | (A) Sentinel-2 image of Cádiz Bay (Spain). Framed in yellow, the study area of Santibañez. (B) RGB orthomosaic generated from images taken with the
MicaSense RedEdge-MX dual multispectral camera. (C) Zoom of the study area in which the seven sampling points are represented, whose coordinates and
taxonomic information are detailed in Table 1. (D) Diagram of the distribution of the different species monitored in Santibañez. From left to right: supratidal (a:
Spartina maritima), high intertidal (b: Zostera noltei); Low intertidal and subtidal (c: Cymodocea nodosa, d: Caulerpa prolifera, and e: Ulva sp.).

of marine macrophytes in the study area. Firstly, regions of
interest (ROIs) had to be generated to allow us to correlate the
spectral information of each species with the different classes
to be identified (eight classes were generated, five of which

corresponded to specific species: Ulva sp., C. nodosa, C. prolifera,
Z. noltei, and S. maritima; others corresponded to sediment and
rocks; and the last class corresponded with unidentified mixed
vegetation, which is made up of (i) remains of dead vegetation
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FIGURE 2 | (A) The UAV (Condor, Dronetools©) equipped with the MicaSense RedEdge-MX dual multispectral camera (framed in yellow). (B) The ten bands dual
multispectral camera (framed in yellow). (C) Representation of the spectrum from visible to non-visible light (range 400–900 nm). The bands of the multispectral
camera are indicated.

that has accumulated on the upper dry intertidal by the action
of the tide, (ii) vegetation that has been removed by the action of
shellfish or fishing in the area, or (iii) areas in which the species
under study are fragmented, intertwined or mixed with dead
remains so that it is difficult to distinguish taxonomically among
them). In this approach, ROIs were selected in separate areas
since spectral signatures are affected by factors such as water
depth, projected shadows or the incidence of solar radiation,
in such a way that they present variability between some areas
and others. In order to separate the water from the land in our
images, a manual mask based on the NDWI index was created.
This index is used because it assigns different values to the pixels
in the image depending on whether they correspond to water or
land, so that this allowed us to separate the subtidal zone from the
intertidal zone, thus facilitating a thematic classification by areas.
Three different classification algorithms were tested, “maximum
likelihood classifier” (MLC), “spectral angle classifier” (SAC),
and “minimum distance classifier” (MDC). MLC is the most
commonly used classifier with remote sensing data (e.g., Mugo
et al., 2020; Rossiter et al., 2020b; Taddia et al., 2020). This
calculates the probability of a pixel belonging to a specific
class, assuming a Gaussian distribution for each of the inputted
training classes (Richards and Jia, 2006; Marcello et al., 2018;
Rossiter et al., 2020b). According to Richards and Jia (2006),
this algorithm can be expressed from the following equation:

gi = ln p (ωi)−
1
2

ln
∣∣∣∑ i

∣∣∣− 1
2

(x−mi) t
−1∑

i

(x−mi)

where i is class, x equals n-dimensional data, p(ωi) is the
probability that class ωi occurs in the image and is assumed the
same for all classes, | 6i| is the determinant of the covariance
matrix of the data in class ωi, 6i−1 is the inverse matrix and mi
is the mean vector (Richards and Jia, 2006; Rossiter et al., 2020b).

Spectral angle classifier is an algorithm that compares the
similarity between two spectra based on their angular deviation,
assuming that they form two vectors in an n-dimensional space
(Richards and Jia, 2006; Oppelt et al., 2012; Marcello et al., 2018).
SAC identifies the spectral similarity between a pixel spectrum
and a reference spectrum obtained from a radiometer or taken
from an image (Rossiter et al., 2020b). According to Kruse et al.
(1993), it can be expressed using the following equation:

α = cos−1

 ∑nb
i = 1 tiri(∑nb

i = 1 tiri

) 1
2
(∑nb

i = 1 tiri

) 1
2


where t is the spectra for a pixel, r is for the reference spectrum
pixel, α is the spectral angle between t and r (measured in radians
or degrees) and n is the number of bands (Rossiter et al., 2020b).

Minimum distance classifier is an algorithm that calculates
the Euclidean distance between spectral signatures of image
pixels and training spectral signatures, according to the following
equation (Richards and Jia, 2006; Congedo, 2020):

d
(
x, y

)
=

√√√√ n∑
i =1

(
xi − yi

)2
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TABLE 1 | Geographical coordinates of diving sampling points.

Point Local
time

Coordinates Identification Field scene RGB image

1 9:49 36◦28.0664′

N –
6◦15.1647′

W

S. maritima
population

2 10:56 36◦28.1095′

N –
6◦15.1898′

W

Sediment and
unidentified
vegetation

3 10:41 36◦28.1647′

N –
6◦15.1429′

W

Patches of
Z. noltei

among the
sediment

4 10:44 36◦28.1938′

N –
6◦15.1183′

W

Mixed
meadow of
C. prolifera

and
seagrasses
(C. nodosa

and Z. noltei)

5 11:05 36◦28.2137′

N –
6◦15.0977′

W

C. prolifera
and small-size

C. nodosa

6 11:08 36◦28.2356′

N –
6◦15.0813′

W

Boundary
between

C. prolifera
and C. nodosa

7 11:10 36◦28.2580′

N –
6◦15.0528′

W

C. nodosa
population

Specific information of sample data.

where x is the spectral signature of an image pixel, y is the
spectral signature of a training area and n is the number of
bands. Therefore, the distance is calculated for every pixel
in the image, assigning the closest class of spectral signature
(Richards and Jia, 2006).

Finally, to evaluate the accuracy of the results obtained, the
elaboration of error matrices and the calculation of statistical
parameters, such as the Cohen’s Kappa index, were carried
out, based on the methodology developed by Oloffson et al.
(2014). This method consists of comparing the supervised
classification generated with “real” maps from the generation
of a sample design (stratified random sampling) with a good
representation value. In the results obtained, an overall accuracy
above 80% indicates that the classification and the results are
good. Regarding the Kappa coefficient, it can take values between
−1 and +1. The closer it is to +1, the greater the agreement
and the more accurate the results. Kappa <0 shows total
disagreement, between 0.01 and 0.20 slight agreement, between
0.41 and 0.60 moderate agreement, between 0.61 and 0.80 high

agreement, and between 0.81 and 1.00 total agreement or almost
total between diagnoses.

RESULTS

In situ Sampling
Simultaneously with the UAV flight, divers carried out the visual
interpretation along the seven selected sampling points in the
study area to 3–4 m depth. Table 1 shows the coordinates
of each of the sampling points, as well as a comparison
between the photographs taken at each of them and between the
visualization of the elements identified with the RGB composition
obtained with the UAV. In addition, the identification carried
out in situ serves as an additional validation of the thematic
classifications shown below.

Data Obtained With the Multispectral
Camera
Figure 3 shows the reflectance mosaics for all multispectral bands
processed with Pix4D Mapper. The typical composition used
in remote sensing studies to highlight vegetation is the “False
Composite” (Figure 4A), which results from the combination of
bands 10 (NIR), 6 (red-668), and 4 (green-560). As previously
mentioned, the detection of vegetation is significantly improved
if reflection in the near infrared is measured, since vegetation
spectrum typically absorbs in the red and blue wavelengths,
reflects in the green wavelength, and strongly reflects in the near
infrared (NIR) wavelength, so that it is marked in a clear red
color if a false color composite is used (bands NIR-red-green).
Nevertheless, the presence of water absorbed the wavelengths
of the near infrared, making taxonomic identification difficult.
However, despite having a similar pigmentation, the different
bands of the multispectral sensor made it possible to differentiate
spectrally between the species present in the subtidal zone.

The spectral signatures of the macroalgae C. prolifera and
Ulva sp., and the seagrass C. nodosa clearly differed in the
visible part of the spectrum, as shown in the spectral signature
graph (Figure 4B). Only the saltmarsh species S. maritima, in
the supratidal zone, shows higher values (reaching reflectance
values of 0.10 in the near infrared wavelength) due to the fact
that it is not submerged. With the exception of the latter, the
spectral behavior is very similar in the rest of the species, finding
reflectance peaks at 535 nm (green band) and 694 nm (red band)
and showing a decrease in reflectance with increasing wavelength
from 700 nm, due to the absorption by water that occurs in the
near infrared. The spectral signatures reveal the limited spectral
variability between the species monitored in this study and
highlights the existing difficulty in taxonomically distinguishing
species in these coastal ecosystems.

Image Analysis and Supervised
Classification
Imagery demonstrated that it is possible to visually identify
different species of coastal vegetation from 114 m height in RGB
composite (bands red668-green650-blue475). However, there
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FIGURE 3 | At-sensor reflectance orthomosaics of multispectral bands in the
study area.

were areas in which marine macrophytes were mixed, making
classification very difficult. Each habitat class was represented
from the creation of ROIs based on the information obtained
from the in situ sampling and the photo-interpretation. Table 2
shows the coverage percentages of each class for each algorithm
used, including sediment, rocks or areas with remains of
accumulated dead vegetation. The classification generated with
the MLC (Figure 5) reveals the existence of seagrasses in the
study area, C. nodosa being the dominant subtidal species with
a cover extent of 25452 m2, representing 12.13% of the total
area (209760 m2). It is intermixed with macroalgae, such as
Ulva sp., which covers 1.04% with an extension of 2184 m2, or

C. prolifera, which represents 10.57% covering 22172 m2. The
Z. noltei meadows are much less extensive, being reduced to
small patches in the intertidal zone and cover 0.35% (725 m2)
of the area. In the supratidal area, S. maritima meadows are very
easily identifiable from aerial images forming meadows that cover
6550 m2, which represents 3.12% of the area.

The other two algorithms, MDC (Figure 6) and SAC
(Figure 7), are more conservative when discriminating between
classes, so that the coverage of the species in the study area
varies slightly compared to those obtained with the MLC,
identifying clear examples of misclassification when algorithms
place S. maritima in the intertidal zone. However, the distribution
patterns observed remain similar, with the seagrass C. nodosa
(MDC: 12.13% and 25449 m2; SAC: 10.91% and 22880 m2)
and the macroalgae C. prolifera (MDC: 13.22% and 27725 m2;
SAC: 13.20% and 27691 m2) being the species with the greatest
area coverage. With these algorithms, the spectral signature of
S. maritima in the supratidal area can easily be confused with
that of the surrounding coastal vegetation, since taxonomic
discrimination of coastal vegetation is more difficult in this area.
That is why the area of the seagrass increases considerably up to
6.62% (13896 m2) under the MDC, but only increases to up to
5.74% (12032 m2) with the SAC, compared to the MLC. Ulva sp.
slightly decreased its coverage, reaching 0.55% (1145 m2) with
the MDC and 1.04% (2178 m2) with the SAC. Finally, Z. noltei
occupied 3.13% (6572 m2) of the area as expressed by the MDC,
compared to 1.38% (2897 m2) when the SAC was used.

Table 2 also shows the values obtained after evaluating
the accuracy of the classifications generated with the three
algorithms. In addition to the overall accuracy and Cohen’s
Kappa coefficient, the user and producer accuracies are also
displayed in the table. Producer accuracy indicates how often
the actual characteristics on the ground are correctly displayed
in the monitored classification, while user accuracy indicates
how often the classified class on the map is actually on the
ground. MLC resulted in an overall classification accuracy of
90.28% and a Cohen’s Kappa coefficient of 0.88, this algorithm
being the one that best suits this type of study, with an overall
accuracy above the values showed by MDC and SAC (79.87 and
81.60%, respectively).

DISCUSSION

This case study, using a UAV hexacopter equipped with a 10-
band multispectral camera, represents the first successful attempt
at UAV monitoring of coastal vegetation in the Bay of Cádiz
Natural Park (southern Spain), an area in which previous studies
confirm the existence of seagrass meadows (e.g., Brun et al.,
2015; Jiménez-Ramos et al., 2018; Egea et al., 2019), as well
as populations of marine macroalgae (e.g., Morris et al., 2009;
Moreno-Marín et al., 2016). Moreover, it demonstrates the
potential of this tool to assess a broader range of intertidal marine
macrophytes than satellites (lower spatial resolution) or UAVs
equipped with RGB sensors (lower spectral resolution).

Coastal environments are spatially and spectrally complex, so
high resolution data are necessary to generate accurate taxonomic
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FIGURE 4 | (A) False Composite formed by the combination of bands NIR, red and green (bands 10-6-4); (B) Spectral range of macroalgal species Ulva sp. (4,
purple), C. prolifera (5, blue) and seagrasses C. nodosa (3, green), Z. noltei (2, red), S. maritima (1, yellow). The reflectance has dimensionless values between 0 and
1, with 1 being 100% of the reflectance.

TABLE 2 | Accuracy assessment of habitat classification with the maximum likelihood classifier (MLC), the minimum distance classifier (MDC) and the spectral angle
classifier (SAC), including the accuracy of each class (user accuracy “U-acc” and producer accuracy “P-acc”), the overall accuracy (%), the Cohen’s Kappa estimate of
accuracy and the coverage (%) of the classes generated.

MLC MDC SAC Coverage (%)

Class U-acc P-acc U-acc P-acc U-acc P-acc MLC MDC SAC

Ulva sp. 0.88 0.61 1 0.16 0.94 0.39 1.05 0.55 1.04

Cymodocea nodosa 0.91 0.87 0.73 0.77 0.76 0.71 12.13 12.13 10.91

Caulerpa prolifera 0.85 0.55 0.73 0.52 0.55 0.69 10.57 13.22 13.20

Zostera noltei 0.88 0.54 0.75 0.82 0.78 0.44 0.35 3.13 1.38

Spartina maritima 0.97 0.78 0.63 0.67 0.81 0.96 3.12 6.62 5.74

Sediment 0.91 0.99 0.96 0.91 0.95 0.93 60.60 47.72 49.95

Unidentified mix 0.92 0.67 0.63 0.72 0.69 0.68 9.50 13.06 11.95

Rocks 0.88 0.85 0.73 0.66 0.64 0.74 2.68 3.56 5.83

Overall accuracy (%) 90.28 79.87 81.60

Cohen’s Kappa 0.88 0.72 0.74

identifications, from the detection and identification of the
different vegetation species, characterized by their distinctive
coloration and morphology. In this study, the main species of
marine macrophytes in the study area are correctly classified,
including those with similar spectral signatures, showing a clear
separation despite their inherent spectral similarities. However,
the results obtained show that this multispectral sensor still
cannot overcome one of the main limitations of working with
spectral information in water, which is the absorption of infrared
radiation by water and its constituents, as reported in previous
studies such as Tait et al. (2019) or Oppelt et al. (2012).
This causes the detection of the spectral information of the
multispectral bands to be progressively lost with increasing
depth, down to approximately 2 m, where it is practically
imperceptible. In clear waters this depth is greater, but the high
turbidity in the Bay of Cádiz causes the spectral detection to be
limited (Caballero et al., 2018). As a result, we were not able
to classify the deepest subtidal zone, with this limitation being

clearly observable at the edges of the classification in Figures 5–7,
which show unclassified pixels. Therefore, despite the fact that the
waters of the Bay of Cádiz present high turbidity, it was possible
to classify the different species of marine macrophytes in the
subtidal zone only down to a depth beyond which identification
is very difficult. A solution for lower depths could be other
techniques, such as a lateral scanning SONAR (multibeam) or
autonomous underwater vehicles.

To classify the reflectance mosaics generated, it was necessary
to create regions of interest (ROIs) from the spectral information
derived from these for each of the multispectral bands. These
were created where individual classes were easily identifiable, so
the number of ROIs for each class depends on the extent of the
classes. The larger and more homogeneous, the more ROIs will
be required. In the most homogeneous areas, especially those in
which C. prolifera and C. nodosa are together, it is very difficult
to spectrally differentiate the species. Deciding whether or not
a target feature corresponds to a specific class is case-specific
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FIGURE 5 | Maximum likelihood classifier, trained using image-derived spectra, result from the multispectral UAV survey in the study area. Coordinates are in
WGS84 (EPSG: 4326).

FIGURE 6 | Minimum distance classifier, trained using image-derived spectra, result from the multispectral UAV survey in the study area. Coordinates are in WGS84
(EPSG: 4326).

and it requires prioritizing the precision of the classification for
the dominant classes over the minor classes for the detection of
marine macrophytes.

The three algorithms tested gave results that are considered
good and reliable, with the MLC providing the most accurate
results, followed by the MDC and the SAC. Following the
methodology proposed by Oloffson et al. (2014) and taking as
reference the MLC, an overall accuracy above 80% indicates
that the supervised classification is accurate, and a Cohen’s
Kappa Index between 0.81 and 1 indicates that the agreement
between the generated classes is high, almost total. User and
producer accuracies show values above 70% in most classes, only
being below this value the classes Ulva sp., C. prolifera, and

Z. noltei. This shows that the classification could be improved
especially with the corresponding classes to Z. noltei and Ulva
sp. In spectrally complex systems such as coastal intertidal zones,
MLC allows accurate differentiation between a great variety of
spectrally different species, which makes it the most suitable
algorithm, despite the fact that it requires more calculation time
than other algorithms. MDC overclassifies the image, so it does
not deliver as good results as the MLC. The same occurs with
SAC, which is an algorithm that, although it does not overclassify
as much as the MDC and works fairly well in this type of
ecosystems, is normally used with high quality hyperspectral
images (e.g., Rossiter et al., 2020b). Based on the detection of
the existing spectral similarity between the pixel spectrum and
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FIGURE 7 | Spectral angle classifier, trained using image-derived spectra, result from the multispectral UAV survey in the study area. Coordinates are in WGS84
(EPSG: 4326).

FIGURE 8 | Zoom of the study area where the following species can be visually identified: Ulva sp., C. nodosa, and C. prolifera. A comparison is made between the
results obtained by applying the MLC, MDC, and SAC algorithms to make the supervised classifications.

the reference spectrum of the image, increasing the spectral
resolution of the image reduces this overclassification.

Figure 8 shows a reduced area in which the three algorithms
were applied, in order to qualitatively visualize the classification
accuracy and to compare them. Coinciding with the results
obtained in the accuracy assessment (Table 2), the classification
with the MLC adjusts best to reality, despite the fact that
classes are frequently confused, especially in areas where
the different species are intermixed. The spectral similarity
between the subtidal species most likely explains this small
misclassification. This was more evident with MDC and SAC,
which do not discriminate as well as MLC between species with
similar spectral signatures, with many pixels corresponding to
C. prolifera being classified as C. nodosa, and vice versa. As
shown in error matrices, all established marine macrophyte types
were also correctly classified. These types reached percentages
around 75% or higher indicating a high correlation between
image results and validation data, showing that this tool is
effective, fast and versatile, so that it enables the realization of

precise taxonomic classifications for the monitoring of marine
macrophytes in coastal areas.

The seabed of the inner Bay of Cádiz is mainly populated by
the seagrass C. nodosa and the macroalgae C. prolifera (Morris
et al., 2009; Brun et al., 2015). The results obtained from the UAV
not only corroborate the presence of these marine macrophytes in
the study area, but also confirm that they are the most abundant
species. Our results also identified the green macroalgae Ulva
sp. in the subtidal area, being easily identifiable and presenting
a fairly wide coverage at the time the survey was conducted.
Since the flights were conducted in spring, when the coastal
vegetation shows its maximum growth (Hernandez et al., 2010)
in Santibañez, we observed differences in the epiphyte coverage
in the leaves of C. nodosa. Further work is needed to study
the spectral differences of individuals of C. nodosa associated to
ages and epiphyte load. From our results, the UAV technique
proves to be a promising tool to quantify spatio-temporal changes
of marine macrophytes. Future studies analyzing the seasonal
evolution of submerged marine macrophytes will validate the
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adequacy of UAV sensors as a monitoring tool. Multispectral
imagery is proven to be more accurate than RGB imagery,
but we suggest using both methodologies together in order to
achieve better results and to generate an accurate classification
of coastal habitats. Moreover, the use of hyperspectral sensors
would provide additional quality to the study since, despite
being more expensive, they offer much more detailed spectral
information than that provided by multispectral sensors, thus
achieving greater accuracy in taxonomic classifications.

CONCLUSION

Our results demonstrate that a UAV-mounted multispectral
camera can be used to accurately classify and map marine
macrophyte meadows. The three algorithms tested show good
results, with overall accuracies above or close to 80%, with
the MLC offering the best result, and therefore, best fit to
the proposed objective. In addition, the validity, efficiency and
simplicity of the SCP plugin incorporated in the QGIS software
as a tool to accurately carry out this type of study is highlighted.
Further studies will be necessary to validate our method on
other marine macrophyte species (e.g., brown and red algae) and
under different environmental conditions (e.g., turbidity, light
irradiance, waves, etc.).
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