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In several countries, the public health and fishery industries have suffered from
harmful algal blooms (HABs) that have escalated to become a global issue. Though
computational modeling offers an effective means to understand and mitigate the
adverse effects of HABs, it is challenging to design models that adequately reflect the
complexity of HAB dynamics. This paper presents a method involving the application
of deep learning to an ocean model for simulating blooms of Alexandrium catenella.
The classification and regression convolutional neural network (CNN) models are used
for simulating the blooms. The classification CNN determines the bloom initiation while
the regression CNN estimates the bloom density. GoogleNet and Resnet 101 are
identified as the best structures for the classification and regression CNNs, respectively.
The corresponding accuracy and root means square error values are determined as
96.8% and 1.20 [log(cells L−1)], respectively. The results obtained in this study reveal
the simulated distribution to follow the Alexandrium catenella bloom. Moreover, Grad-
CAM identifies that the salinity and temperature contributed to the initiation of the bloom
whereas NH4-N influenced the growth of the bloom.

Keywords: harmful algal blooms, deep learning, convolutional neural network, classification, regression

INTRODUCTION

The occurrence, period, and frequency of harmful algal blooms (HABs) have increased in recent
years, thereby posing a serious threat to the aquatic ecosystem (Weiher and Sen, 2006; Gobler et al.,
2017). The United States spends $22 million annually on public-health damages and suffers an
annual loss of $75 million due to HABs (Hoagland et al., 2002; Weiher and Sen, 2006; Anderson
et al., 2012). In South Korea, the economic loss incurred due to HAB over the past three decades
was $121 million (Park et al., 2013). China and Japan have similarly incurred enormous economic
losses in northeast Asia (Wang and Wu, 2009; Itakura and Imai, 2014). These damages can be
attributed to the changes in the aquatic environmental conditions due to climate change and/or
nutrient enrichment caused by such human activities as agriculture, industrialization, tourism, and
urbanization (Heisler et al., 2008; Gobler et al., 2017). Accordingly, HABs have escalated to become
a global concern. Anthropogenic global warming is visible in the northward expansion of the warm
pool to the northwestern Pacific. The Korean Peninsula, which is closed on the marginal sea of
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the northwestern Pacific, has been reported as a vulnerable
region in the new normal climate. Accordingly, there exists
the threat of HAB expansion into the Korean coastal waters
owing to changes in HAB dynamics due to global warming.
Outbreaks of PSP in Korean coastal waters have been perceived
as spring events since the first record in 1986 (Chang et al., 1987).
Recurrent PSP events in the spring of Korea have been linked
to the spring blooms of Alexandrium catenella (A. catenella)
(previously reported as A. tamarense). The spring blooms of
the toxic dinoflagellate population are regular in the coastal
waters of marginal sea connected to the northwestern Pacific
(Han et al., 1992; Ishikawa et al., 2014).

Prior research concerning HABs has mainly focused on
increasing awareness and improving monitoring techniques
(Kim et al., 2002; Wang et al., 2008). Since the 1970s, a significant
amount of infrastructure, labor, and time has been required for
HAB field monitoring. However, the extent of this requirement
has differed based on the properties of HAB. Moreover, given the
need for HAB monitoring and relevant analyses, computational
modeling has been considered to be an alternative approach
to understand and mitigate the effects of HABs (Yoshioka and
Yaegashi, 2018; Pyo et al., 2019). Pinto et al. (2016) simulated
the abundance of HAB species using a particle-tracking model.
Likewise, He et al. (2008) developed a mathematical model
for simulating A. catenella (former A. fundyense) bloom in the
western Gulf of Maine. Although these efforts have contributed
toward the improvement of the simulation performance of algal
blooms, overcoming the limitations of these models remains a
major challenge owing to the complexity of HAB dynamics that
are dependent on the multiple effects from physical, chemical,
and biological systems (McGillicuddy, 2010).

A data-driven deep-learning model can push the frontiers
of the aforementioned models further. Deep learning has been
proposed as a promising technique owing to its big-data handling
capabilities (Szegedy et al., 2015). Deep learning has been adopted
in several fields, including speech recognition, image analysis,
and biological mechanisms (Chen and Manning, 2014; Young
et al., 2018). Shen et al. (2019) estimated cyanobacteria blooms
in river waters using a support vector machine. Additionally,
Pyo et al. (2020) simulated algal blooms in freshwater systems
using a convolutional neural network (CNN). However, these
studies focused on HABs in inland waters, which further access
is necessary to undergo more dynamic and complex hydrological
and ecological cycles in seawater. Recently, Baek et al. (2021)
suggested a method for identifying factors that influence
A. catenella bloom using decision tree and hydrodynamic models.
They revealed that water temperature and nutrients affected the
growth of A. catenella. However, this approach is not suitable
for continuous A. catenella bloom simulation because it can only
generate four bloom levels based on cell density.

This study evaluates the applicability of deep learning
for HAB simulation with the ocean model to generate
the temporal–spatial distribution of physical, chemical, and
biological variables. Using these variables and CNNs, we
simulated the temporal distribution of A. catenella, a notorious
dinoflagellate species causing paralytic shellfish poisoning (PSP).
Convolutional neural network-based deep learning models

can extract the features of multi-dimensional data using
convolutional filters (Deng et al., 2009). Additionally, using
gradient-weighted class activation mapping (Grad-CAM), we
identified the factors that influence the simulation of A. catenella
(Selvaraju et al., 2017).

MATERIALS AND METHODS

Data Collection
We conducted spatial–temporal monitoring to investigate the
occurrence of A. catenella. The monitoring site is located on
the southeastern coast near Namhae, Geoje Island, and Busan,
South Korea (Figure 1), opened toward off sea, causing fresh
and oceanic water intrusion (Kang et al., 2012). In particular,
the eastern coast of Geoje Island has frequently occurring
PSP initiation (National Fisheries Research and Development
Institute, 2020). PSP outbreaks provoked by A. catenella bloom in
our study area have been reported (Chang et al., 1987; Kim et al.,
2015). Water surface elevation, wind, and wind velocity data were
measured by the Korea Ocean Observing and Forecasting System
and used to set up the model. Two observations at stations 1 and
2 were used to calibrate the water level, temperature, and salinity.
Another three observations at stations 3, 4, and 5 were used to
calibrate NH4-N and PO4-P (Figure 1).

One-thousand one-hundred and seventy-five samples were
collected from the water surface at the sampling sites, which had
water depths of 12 to 59 m. The monitoring period was from
January 2017 to December 2019. Water samples were acquired
with a Van Dorn bottle and fixed with Lugol solution (final
conc., 2%) from 9:00 AM to 4:00 PM. The fixed seawater was
concentrated to 5–50 mL aliquots by overnight sedimentation.
Alexandrium catenella cells were enumerated using a Sedgwick–
Rafter counting slide at a 200× magnification with a light
microscope (Zeiss Axioscope 2). To identify the species based on
morphological and molecular analyses, the cells were processed
as described by Kim et al. (2020). Cysts of A. catenella were
isolated from sediment samples collected using a core sampler
and incubated at bottom temperatures on the sampling dates. The
germination ratio of the cysts was estimated by the percentage
of cysts germinating within one month. Growth experiments
of A. catenella were conducted under several temperature and
salinity conditions, reflecting the sampling site environments.
The measurements of germination ratio and growth rate were
described in detail by Kim et al. (2020).

Preparation of Input Data for Deep
Learning
The input data in this study consisted of two parts: (1) ocean
physical data (e.g., water velocity, water temperature, water
elevation, and retention time) and chemical data (e.g., salinity,
PO4-P, and NH4-N) and (2) ocean biological data [e.g.,
germination ratio, growth rate, and operational taxonomic unit
(OTU)]. This study applied the environmental fluid dynamics
code (EFDC) model, adopted for simulating ocean and coastal
waters (Dai et al., 2011; Du and Shen, 2016) to generate the ocean
physical and chemical data. The EFDC model is a fluid simulation
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FIGURE 1 | Study site—red dots indicate the observation station for water elevation, salinity, and temperature; blue dots indicate the observation point for NH4-N
and PO4-P; yellow circles indicates the monitoring point for A. catenella.

model that includes three-dimensional flow and biochemical
transport in the ocean, estuaries, and lakes. EFDC can solve free
surface, vertical hydrostatic, and turbulent equations for fluids
with different densities. The governing equation was derived
using the vertical hydrostatic boundary with turbulent equations
and consists of the momentum [Eq. (S1, S2)], vertical hydrostatic
pressure (Eq. S3), and continuity equations [Eq. (S4, S5)] (Jeong
et al., 2010). The ocean physical and chemical data included
the temporal and spatial distributions of water velocity, water
temperature, water elevation, retention time, salinity, PO4-P,
and NH4-N. These data have been verified as variables that
influence the life cycle of A. catenella (Itakura and Yamaguchi,
2001; Kim and Yoo, 2007; Armi et al., 2011; Kim et al., 2020). The
ocean physical and chemical distributions were calculated by the
EFDC model. Ocean biological data included the temporal and
spatial distributions of the germination ratio of A. catenella cysts,
growth rate of vegetative cells of the species, and OTU of bacteria.
The cyst germination and growth rates are critical elements in
recurrent outbreaks of A. catenella blooms in situ, although
dormant populations are significantly affected by environmental
variables. Hence, we adopted these rates as the input data to
simulate A. catenella. The data pertaining to cyst germination and
growth rate were obtained by Kim et al. (2020). The microbial
community data in this area, including the OTU data, were
extracted from the previous study (Cui et al., 2020). operational
taxonomic units were analyzed at a distance of 0.01 using
the mothur v1.39.3 pipeline with SILVA database, release 132
(Schloss et al., 2009; Kozich et al., 2013). Three representative
OTUs (OTU1, OTU2, and OTU3), which were identified as
A. catenella-related OTUs based on ecological network analysis
in the previous study (Cui et al., 2020), were selected for further
analysis in this study. Taxonomically, OTU1, OTU2, and OTU3
were assigned to genera Fluviicola (family Crocinitomicaceae),
Ascidiaceihabitans (family Rhodobacteraceae), Candidatus
Actinomarina (family Candidatus Actinomarinaceae),

respectively. Supplementary Figure 1 presents the process
used to generate the temporal and spatial distribution of
biological data. A linear model was adopted to generate the
variation of biological data by changing the environmental
variables. The linear regressions of the germination ratio
and growth rate were calculated using temperature and
salinity from in vivo experiments (Supplementary Figure 1A),
whereas that of the OTU distribution was generated using
the temperature, salinity, PO4-P, and NH4-N values from
monitoring (Supplementary Figure 1B). A linear regression
model explains the relationship between one response variable
and multiple explanatory variables (Montgomery et al., 2021);
therefore, these linear models used the simulated water
temperature, salinity, PO4-P, and NH4-N from EFDC to
determine the temporal and spatial distribution of biological data
(Supplementary Figure 1C). The simulation period was from
January 2017 to December 2019. These ocean physical, chemical,
and biological data were validated using observational data. The
EFDC grid was a Cartesian grid with a cell size of 200 m× 400 m.
Observations of wind direction, velocity and water surface
elevation were used to set up the EFDC model. More details of
the experiments on germination ratio, growth rate, and OTU are
presented in the Supplementary Information.

Figure 2 shows the two-step process of generating input
data to apply CNN for simulating the bloom of A. catenella: (1)
extracting the spatial–temporal distribution of the physical,
chemical, and biological information at the study site
(Figures 2A,B) and (2) converting the input data to two-
dimensional data (Figure 2C). These physical, chemical, and
biological data have three dimensions, m × m × (n + 1), and
the simulation point of A. catenella is located in the center.
Here, m is the size (i.e., height × width) of the input window
that includes the simulation point, and n is the lookback, which
indicates the number of time steps included based on the current
simulation time. For example, when m = 3 and n = 5, the data size
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FIGURE 2 | Preparation of input data for CNN—(A) physical and chemical data obtained using EFDC, (B) biological data obtained using EFDC and linear equation,
and (C) two-dimensional input data. Here, m denotes the input window (i.e., height × width), including the simulation point located at the center of input window
while n denotes the lookback size. Red boxes indicate the simulation point.

is 3 × 3 × (5 + 1). Because the CNN approach was developed
focusing on two-dimensional data (length × height) or RGB
data (length × height × 3), we converted these inputs into
two-dimensional data before applying the CNN (Shin et al., 2016;
Koundinya et al., 2018).

Simulation of Alexandrium catenella
Based on DL
The simulation layout of A. catenella is presented in Figure 3. The
simulation comprises of the following three steps: (1) optimizing
the input and CNN structures, (2) simulating the bloom of
A. catenella based on the optimal input and CNN structures,
and (3) identifying A. catenella bloom factors based on Grad-
CAM. Because these CNN structures (e.g., Resnet, GoogLeNet,
and Inception) were developed using data of size 299 × 299,
the input data had to be converted (Szegedy et al., 2016; Akiba
et al., 2017). Subsequently, the converted data are fed to the
classification and regression CNN models; the classification CNN
model decided the initiation of A. catenella, while the regression
CNN model generated the density after A. catenella was initiated.
The initiation and the density indicated the occurrence and the
number of A. catenella cells, respectively. The use of two CNNs
with different roles can prevent bias in model training, as most
of our monitoring data were zero, indicating that A. catenella
did not occur. In addition, we optimized the input window
(m), lookback (n), and CNN structures (Figure 3A) to generate
the spatial–temporal distribution of A. catenella (Figure 3B).
Using the optimal parameter values and CNN structures, we
analyzed the performance of A. catenella forecasting with

increasing forecast lead times (days) of up to seven days. Model
training was performed using Intel R© Xeon CPU E-52687W
v4 @ 3.00 GHz, 128 GB RAM, and NVIDIA GTX 1080 Ti.
CNN was implemented with the machine and deep learning
toolboxes in MATLAB. Accuracy was used for evaluating the
classification CNN model, while RMSE and R2 were used for the
regression CNN model. Relevant explanations can be found in
the Supplementary Information.

Convolutional Neural Network
Convolutional Neural Network (CNN) is a popular deep
learning model that extracts data features using convolving
filters (Deng et al., 2009). A typical CNN architecture
consists of convolutional, pooling, ReLU, batch normalization,
concatenation, normalized, and fully connected layers (LeCun
et al., 2015). Each layer has a specialized role in the architecture:
convolutional and pooling layers are used for feature extraction.
ReLU and normalization layers are used for a linear and
normalization calculation, respectively (LeCun et al., 2015).
These layers can be combined to enhance model performance
(Szegedy et al., 2016; Khan et al., 2019). Details concerning
the CNN layers can be found in the Supplementary Materials
document. Supplementary Figure 2 shows the CNN structures
employed in this study. GoogleNet and Inception v3 models
adopt parallel CNN layers (Szegedy et al., 2016). ResNet 50 and
ResNet 101 have skip connections, i.e., the information of the
output layer is transferred into the next layer, and into the earlier
layer (Szegedy et al., 2016). This structure can increase model
performance by reducing overfitting and vanishing gradient
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FIGURE 3 | Procedure of simulating A. catenella using CNN—(A) optimizing input data and CNN structures, (B) predicting bloom of A. catenella based on optimal
input and structures, and (C) identifying factors for bloom of A. catenella using Grad-CAM. Brown and blue lines indicate the processes of classification and
regression CNN models, respectively.

problems (He et al., 2016a). In our study, the softmax and mean
squared error (MSE) (see Supplementary Information for more
details) were used as the loss function for classification and
regression CNN, respectively. The loss functions were applied
for calculating the error between simulation and observation
during model training. For model training, the CNN used
hyperparameters, including epoch number, batch size, and
learning rate (Loussaief and Abdelkrim, 2018). Epoch is the
number of times the learning worked in the entire dataset,
whereas batch size is the number of samples used for training
(Robert, 2014). The learning rate controls the step size at each
iteration to minimize the loss function (Robert, 2014). The
CNN comprised 500 epochs with a mini-batch size of 32; the
applied learning rates equaled 0.001 and 0.0001 for the first 200
and remaining 300 epochs, respectively. Each epoch generated
a corresponding model, and the final model was selected to
produce the lowest validation accuracy and MSE. Our study
adopted random sampling to divide A. catenella observations
into training and validation sets. A uniform distribution was
used for the random sampling. Previous studies have also used
random sampling with a uniform distribution to divide the data
into training and validation sets (Brion et al., 2002; Caruana and
Niculescu-Mizil, 2006).

Gradient-Weighted Class-Activation
Mapping
The deep-learning model used in this study applied Grad-CAM
for identifying factors contributing to A. catenella bloom
(Figure 3C). The Grad-CAM localization map describes
the simulation results by highlighting the important regions
(Selvaraju et al., 2017). The model interpretability technique
is proposed as a strategy that enables the input-based
understanding of the results obtained because neural networks
are incapable of explaining model results (Selvaraju et al., 2017).
Several prior studies have verified the use of Grad-CAM in the

visualization of model features (Selvaraju et al., 2017; Chen
et al., 2020). This method is based on class activation mapping
(CAM) that can extract the significant features by emphasizing
the input data region. However, the use of CAM is restricted
to CNN structures that comprise a global average pooling layer
(Selvaraju et al., 2016). Grad-CAM overcomes this limitation
using gradient information from the final convolutional layer
for visualizing the important input data regions (Selvaraju et al.,
2017). A detailed description of Grad-CAM is presented by
Selvaraju et al. (2017).

RESULTS

Ocean Modeling Results
We compared the simulated and observed water elevation,
salinity, water temperature, NH4-N, and PO4-P results.
The physical and chemical simulations are illustrated in
Supplementary Figures 3, 4. The coefficient of determination
(R2) of water temperature and elevation was above 0.90 at
stations 1 and 2, while salinity was 0.26 and 0.65 at stations 1 and
2, respectively. The average root-mean-squared errors (RMSEs)
of water temperature, elevation, and salinity were 0.82◦C, 0.07
m, and 1.12, respectively. Compared to water temperature and
elevation simulations, the salinity simulation had a larger error
than observation. The average coefficient of determination (R2)
of NH4-N and PO4-P were 0.67 and 0.30, and the average
RMSE values were 0.09 and 0.01 mg L−1, respectively. Although
both NH4-N and PO4-P simulations follow the observation
trend, their values were underestimated at the peak point.
The linear regression equations of growth rate, germination
rate, and OTU are presented in Supplementary Figure 5. The
growth and germination rates were more strongly influenced by
temperature and salinity, respectively, whereas the OTUs related
to A. catenella were affected by salinity and PO4-P.
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Optimal Input Window Design
Figures 4(A.1-4,B.1-4) shows the performance of classification
and regression CNN, respectively, with respect to input window
size (m) and lookback (n). Here, m denotes the input window size
(e.g., height × width), including the simulation point that was
located at the center of the input window, and n is the number
of time steps. For example, if the input window size is three and
lookback is five, the model considers a spatial distribution with
3 × 3 grid cells and temporal information from the previous five
days to the current simulation time. In the classification model,
except GoogleNet, there existed multiple optimal designs (m, n)
in each structure; GoogleNet had an optimal design structure of
(3, 30). The model performance of other structures deteriorated
when m was above five and n was below fifteen (days). In the
regression model, Resnet 50 and Resnet 101 had a similar optimal
design of (1, 29), while GoogleNet and Inception v3 required
different (m, n) designs; the optimal design of GoogleNet was (1,
2) and that of Inception v3 was (1, 27).

Simulation of Alexandrium catenella
The model performance with optimal input design is summarized
in Table 1. Among them, GoogleNet and Resnet 101 offer the best
classification performance with an accuracy of 96.83% and RMSE
of 1.20 [log(cells L−1)], respectively. The model performance of
Resnet 50 was similar to Resnet 101 with accuracy and RMSE
of 96.29% and 1.29 [log(cells L−1)], respectively. Inception v3
(accuracy of 95.76%) and GoogleNet [RMSE of 1.66 log(cells
L−1)] presented the worst performance in classification (with
95.76% accuracy) and regression models, respectively.

The results of the regression CNN model are plotted
against observed A. catenella in Figures 4C.1-4. In Resnet
101, the simulated A. catenella showed good agreement with
observations. GoogleNet showed that the simulated A. catenella
was overestimated in the low-density cells and underestimated
in the high-density cells. The temporal-spatial distribution of
A. catenella is presented with observation using GoogleNet and
ResNet 101 because these structures showed the best performance
in classification and regression CNN (Figure 5A). The simulated
distribution substantially followed actual A. catenella blooms.
On December 17, 2016, and May 23, 2017, most areas did not
provoke A. catenella bloom in both simulated and observed
distribution, indicating that our model can simulate this
phenomenon. On March 27, 2018, A. catenella blooms were

observed in the coastal water. During this period, the simulated
distribution of blooms can describe the actual spatial features;
the eastern coast presented a relatively higher density than the
western one. The data on March 28 and April 25 of 2017
shows increasing A. catenella spring bloom in the study area.
The simulated distribution in both periods was in line with the
actual distribution; the model generated high-density cells in
the eastern coast and non-bloom near Geoje Island of the west
coast. On August 19, 2019, the model determined the non-bloom
and substantially low density on the western coast. Mismatched
results of the spatial distributions are revealed in three spaces
without observed data; the channel connected to the northern
enclosed bay on May 23, 2017, the western off sea on March
28, 2017, and the enclosed bay on August 19, 2019. Figure 5B
shows the performance of A. catenella forecasting with various
lead times. All forecast results were found to be worse than
those of nowcasting. The average accuracy of the classification
model was 95.85% for a lead of up to five days, decreasing
sharply thereafter. The average RMSE of the regression model was
1.36 [log(cells L−1)] until five forecast lead (days) and increased
sharply thereafter.

Model Interpretability for
Gradient-Weighted Class Activation
Mapping
Gradient-weighted class activation mapping (Grad-CAM)
shows the feature maps of classification and regression CNN
models with GoogleNet and Resnet 101 structures, respectively
(Figure 6). These maps were generated depending on the
outbreak of A. catenella blooms (e.g., bloom and non-bloom)
and density level (e.g., 5–25th percentile, 25–50th percentile,
50–75th percentile, and 75–95th percentile). The regions with
high values are regarded as important features in the map. In
the classification model, the important features are affiliated
with salinity, temperature, water elevation, latitude-velocity
of water, and NH4-N from 20 to 28 days of lookback when
the bloom is not provoked (Figure 6(A.1)). Among these
variables, temperature and salinity are the most influenced
variables, as evident from the high feature map values.
In contrast, the important bloom features highlighted the
variables from 3 to 12 days (Figure 6(A.2)). In the regression
CNN model, the 5–25th percentile density show salinity,
temperature, water elevation, and NH4-N from 5 to 30 days of

TABLE 1 | Model performance and optimal inputs (m and n).

Classification model Regression model

Structure m n Accuracy (%) m n RMSE [(log(cells L−1)] R2

Train Validation Train Validation Train Validation

Resnet 50 1* 16 96.87 96.29 1 29 0.93 1.29 0.93 0.84

Resnet 101 1* 19 99.32 96.29 1 29 0.72 1.20 0.92 0.85

GoogleNet 3 30 96.14 96.83 1 2 1.62 1.66 0.62 0.71

Inception v3 1* 25 100 95.76 1 27 0.74 1.27 0.94 0.84

Yellow indicates the optimum structure; * indicates that existence of multiple optimum designs.
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FIGURE 4 | Optimal input and simulation results of A. catenella—(A) optimal input (m and n) of classification CNN structures: (A.1) Resnet 50, (A.2) Resnet 101,
(A.3) GoogleNet, and (A.4) Inception v3; (B) optimal input (m and n) of regression CNN structures: (B.1) Resnet 50, (B.2) Resnet 101, (B.3) GoogleNet, and (B.4)
Inception v3; (C) simulated and observed densities of A. catenella with regression CNN structures [e.g., (C.1) Resnet 50, (C.2) Resnet 101, (C.3) GoogleNet, and
(C.4) Inception v3] with optimal input. In (A) and (B), m and n denote the input window (i.e., height × width) and lookback sizes, respectively, whereas the color
range indicates the accuracy from the lowest (blue) to the highest (red) values. In (C), the red and blue circles indicate the training and validation sets, respectively.
The observed line has a slope of 1:1.

lookback as important variables (Figure 6(B.1)). The important
variables in the 25–50th percentile were similar to the 5–25th

percentile density (Figure 6(B.2)). In the 50–75th percentile,
the lookback from 6 to 27 days is highlighted in the model,
while that in the 75–95th percentiles ranged from 4 to 22 days
(Figures 6(B.3), (B.4)) respectively).

DISCUSSION

Ocean Modeling Results
The physical and chemical simulation results showed good
agreement with the observation results (Supplementary
Figures 3, 4, respectively). However, the salinity simulation was

worse than that of water temperature and elevation. Previous
studies have also shown that salinity cannot improve model
accuracy (Hjøllo et al., 2009; Martyr-Koller et al., 2017) because
it is vulnerable to external sources (e.g., rainfall and freshwater),
increasing simulation uncertainty (Arfib and Charlier, 2016).
The simulated water temperature at station 1 was overestimated
during winter (December to February), while station 2 provided
reliable outcomes in this season. This is because the model was
limited to tracking water temperature at two different points if
the difference between them was more than 5 ◦C. Moreover, the
NH4-N simulation followed the observed trends, whereas the
PO4-P simulation was less accurate. Specifically, the simulated
NH4-N was underestimated at the peak point of observation
and the simulated PO4-P was only able to follow the variation
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FIGURE 5 | Spatial distribution of A. catenella and forecast performance with lead time—(A) spatial distribution of A. catenella on December 17, 2016, March 28,
2017, April 25, 2017, May 23, 2017, March 27, 2018, and August 19, 2019; (B) A. catenella forecast performance with lead time. In (A), the left and right figures
indicate the simulated and observed distributions of A. catenella, respectively. The color range indicates the density variation in A. catenella from the lowest (blue) to
the highest (red) value. The spatial distributions were generated using GoogleNet and ResNet 101. In (B), the blue and red curves indicate the performance of
regression and classification CNN models, respectively. The x and y (left and right) axes denote the forecast lead time (days), root-mean-square error (RMSE) of the
regression model, and accuracy of the classification model, respectively. The model with lower RMSE is considered for regression while that with higher accuracy is
selected for classification.

in observation. This demonstrated that the simulation of PO4-P
and NH4-N could not improve model accuracy because these
nutrients were observed in low concentrations, making the
model sensitive to external sources. Eilola et al. (2009) and
Feng et al. (2015) demonstrated that the simulated PO4-P was
underestimated when compared with the observed values, and
the simulated nitrogen encountered limitations when following
the peak concentration. Additionally, the validation of these

simulations is still limited by the lack of observed data. In further
research, we will collect more data from additional sites.

Optimal Input Design
In general, the optimal inputs of both the models yielded a
small window size below five and long lookback of more than
19 days (Figures 4A,B). Therefore, spatial information below 5
5 grids was sufficient for simulating A. catenella, and temporal
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FIGURE 6 | Feature heat maps of classification (A) and regression (B) CNN models obtained using Grad-CAM for the (A.1) bloom and (A.2) no-bloom conditions as
well as cases wherein the A. catenella density lies in the (B.1) 5–25, (B.2) 25–50, (B.3) 50–75, and (B.4) 75–90 percentile ranges. The x and y axes represent the
lookback and variables values, respectively. The color indicates the degree importance from the lowest (black) to the highest (white). The larger the variable value in a
given cell, the greater is its importance. VELX, VELY, WSEL, SAL, TEM, OTU1, OUT2, and OUT3 denote the longitudinal velocity, latitudinal velocity, water-surface
elevation, salinity, water temperature, microparticle-associated bacteria, nanoparticle-associated (NP) bacteria, and free-living (FL) bacteria, respectively.

information from past 30 days was adequate for improving the
simulation performance. The suitable range of grid sizes for the
spatial distribution reflected the behavioral characteristics of the
species. For the models with window sizes of seven and nine,
the simulation performances decreased sharply, indicating that
superfluous information might deteriorate the model accuracy.
Previous studies have demonstrated that needless data could
restrict the effectiveness of model training (Chulkov et al.,
2019; Cova and Pais, 2019; Xu et al., 2019). In contrast, in
the classification model, the optimal size (m, n) of the input
varied depending on the structure based on whether the CNN
structures adopted a skip connection or a parallel CNN layer
(He et al., 2016b; Szegedy et al., 2016). This demonstrated that
the model performance was affected by the structure and the
properties of the input data. In addition, a simpler structure,
such as GoogLeNet, was appropriate for classifying both bloom
and non-bloom (Figure 4(A.3)). In the regression model, Resnet

50 and 101 had similar optimal input properties, whereas
GoogleNet and Inception v3 showed lower performances than
Resnet. Among the structures, Resnet 101 was the best regression
model. This demonstrates that skip connection is appropriate
for estimating the density of A. catenella as it can directly
connect information from a previous layer to the next layer using
skipped layers (Khan et al., 2019). On the contrary, GoogleNet
and Inception v3 applied parallel CNN layers having 1 × 1,
3 × 3, and 5 × 5 filter sizes. Hence, the optimization process is
important to improve how the input data and model structures
affect model training.

Simulation of Alexandrium catenella
ResNet 101 offered the best performance in terms of simulating
the cell density of A. catenella that followed the observation
distribution, whereas GoogLeNet showed limited performance in
simulating A. catenella in low and high densities (Figure 4C).
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Specifically, the simulated A. catenella from GoogLeNet was
overestimated in the case of low density and underestimated in
the case of high density, indicating that this model was trained
with a narrower range of cell density than that of the other
models. The performance discrepancy between ResNet 101 and
GoogLeNet may be attributed to the number of layers; ResNet
101 had more layers than GoogLeNet. This demonstrates that the
number of layers could affect a model’s performance. According
to previous studies concerning CNNs (Khan et al., 2019; Baek
et al., 2020), the performance of deep learning models can
be influenced by the number of layers. However, a higher
number of layers can increase model complexity, leading to the
overfitting problem, i.e., the simulated results will correspond too
closely to the training data, thereby failing to fit the validation
data and predict future simulated results in a reliable manner
(Cortes et al., 2017). In contrast, GoogLeNet demonstrated
the attainment of a superior validation accuracy (96.83%) as
compared to other structures. This confirms that a complex
structure is not necessary to identify bloom occurrence and that
sufficiently accurate results can be obtained via cell estimation.
The simulated distribution substantially followed the feature of
actual A. catenella blooms (Figure 5A). Depending on bloom
and non-bloom, the model generated similar spatial patterns of
density with observation: on December 17, 2016, May 23, 2017,
and August 19, 2019, there were no bloom outbreaks in both
simulated and observed distributions; on March 27, 2018, the
A. catenella blooms were observed in both the distributions; on
March 28, 2017, and April 25, 2017, both distributions showed
the bloom and non-bloom area in the coast. However, on March
28, 2017, the simulated distribution was determined as blooms in
most areas, while there was no bloom of the observed distribution
in the western sea. The high uncertainty in population dynamics
could be due to in situ environmental and biological variables
heterogeneously influencing the initiation, development, and
ultimate demise of HABs (McGillicuddy et al., 2015; Brandenburg
et al., 2017). The model generated a notable density in the
specific spaces without observed data; the simulation of May
23, 2017, and August 19, 2019, presented a higher density
in the channel connected to the northern enclosed bay and
the enclosed bay, respectively. The mismatch results between
simulation and observation also increase the model uncertainty
by limiting the quantification of the exact spatial distribution
of HABs. Remote sensing can solve this by improving model
performance with the spatial distribution of physical, chemical,
biological, and atmospheric factors (Shen et al., 2020). Forecast
simulation showed lower performance than nowcasting. The
performance of the classification and regression model decreased
with increasing lead time and deteriorated sharply at a specific
date (Figure 5B). These simulation results showed that the
model performance would degrade with increasing forecast lead
time (days) because the input data might correspond poorly
with the future ocean physical and biological processes affecting
A. catenella. Prior studies have reported a decline in model
performance with increasing lead time. Chattopadhyay et al.
(2020) reported a decrease in the model performance from 73 to
47% while predicting a cold-spell class as the lead time changed
from 1 to 5 days. Pyo et al. (2020) observed the validation

accuracy to decrease with increasing lead time when simulating
Microcystis—a causative algal taxon of freshwater HAB. As
reported by Miao et al. (2019), an increase in the forecast lead
time causes an increase in model uncertainty and imperfect
representation of the extracted features. This deteriorated model
training and reduced the forecast accuracy. Therefore, this study
demonstrated the robust short-term A. catenella forecasting
ability of the DL model.

Model Interpretability for
Gradient-Weighted Class Activation
Mapping
Temperature and salinity are factors with the greatest influence
on the classification and regression models, as confirmed by
the high values observed in the feature map (Figures 6A,B).
Temperature and salinity affect cyst germination and A. catenella
growth, thereby causing the proliferation of A. catenella cells
(Itakura and Yamaguchi, 2001; Nagai et al., 2004). Ichimi et al.
(2001) reported that temperature plays a critical role in cyst
germination and algal bloom. Parkhill and Cembella (1999)
demonstrated that salinity influences A. catenella growth. NH4-
N and water elevation were also highlighted. A. catenella uses a
nitrogen source for growth and prefers ammonium uptake (Siu
et al., 1997). Collos et al. (2006) observed that the growth of
A. catenella is limited by ammonium uptake and accumulation.
Moreover, an increase in water elevation tends to weaken
and accelerate the advection and dispersion of algal blooms,
respectively (Wu and Kong, 2009). Additionally, Giddings et al.
(2014) demonstrated that the physical factors of oceans influence
HAB development. The regression CNN model identifies fewer
important features that increase the density of A. catenella.
In particular, factors, such as the salinity, temperature, and
NH4-N concentration over a 5–30-day lookback period were
highlighted in the 5–25th percentile while higher densities were
simulated considering variables over 6–22-day lookback period.
The results can be related to the initiation for bloom development
of a given inoculum size at a suitable time. The Grad-CAM
result reveals that the proposed model generates cell density by
changing the highlighted variables. This is because the variables
of influence differ depending on the life cycle A. catenella.
The water temperature and salinity initiate the development of
A. catenella while the nutrient and retention time accelerate its
growth (Itakura and Yamaguchi, 2001; Nagai et al., 2004; Armi
et al., 2011). Previous studies have reported the transitions in
the highlighted region as change input. Panwar et al. (2020)
adopted Grad-CAM to identify important areas of COVID-
19 detection and demonstrated the change in the highlighted
area as an input image. Cheng et al. (2019) extracted hip-
fracture features using Grad-CAM and X-ray images. This
study estimates the spatiotemporal distribution of A. catenella
using CNN and determines the cause of bloom using Grad-
CAM. Most previously reported algal simulations have focused
on inland water species, such as cyanobacteria, green algae,
and diatom. However, only few studies have addressed HAB
modeling in seawater and only analyzed limited species (e.g.,
A. fundyense). HAB modeling in marine ecosystems should
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consider several environmental factors, such as the temperature,
salinity, and velocity of water as well as symbiosis among different
species. The paucity of relevant research in this domain could
be attributed to the need for the use of complex modeling
techniques and availability of limited observations (Ralston and
Moore, 2020). This study overcomes this limitation via successful
application of deep learning for simulating A. catenella HAB
using an ocean model. Further research can be performed
considering other species (e.g., Cochlodinium and Karenia) with
additional monitoring. The findings of this research are expected
to improve the applicability, expendability, and accuracy of
HAB modeling using the deep learning models. Therefore, the
proposed approach can be considered useful in establishing HAB
management in marine environments.

CONCLUSION

This study applied regression and classification using CNN
models for simulating spring blooms of A. catenella. The
classification was used to analyze the initiation of A. catenella,
while the regression generated the density of the genera.
GoogLeNet and Resnet 101 were identified as the best deep
learning structures for classification and regression using CNNs,
yielding an accuracy and RMSE of 96.8% and 1.20 [log(cells
L−1)], respectively. Using Grad-CAM, the salinity, temperature,
and NH4-N were found to be significant variables that influence
the bloom of A. catenella. In particular, factors such as the
salinity, temperature, and NH4-N concentration over a 5–30-
day lookback period were highlighted in the 5–25th percentile,
while higher densities were simulated considering variables over
the 6–22 day lookback period. The results can be related to
the initiation for bloom development of a given inoculum size
at a suitable time. As per the authors, the study makes a
significant contribution to the literature because understanding
and mitigating harmful algal blooms (HABs) are important
for reducing economic losses and public health damages.
In contrast to modeling methods that can only measure
simulation performance, the proposed model can simulate the
initiation and growth of HABs based on influencing factors.
However, to establish an AI-based HAB modeling system, the

following challenges remain: (1) additional monitoring that
includes environmental variables (NH4-N and PO4-P) and
target species (A. catenella) is required, and (2) models should
be trained using observations from various sites to improve
model adaptability. Further research can improve the models
via continuous data acquisition. Hence, the suggested models
could be useful in establishing HAB management systems for
aquatic environments.
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