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Unusual environmental events can push marine animals outside their physiological
tolerances through changes in trophic and/or thermal conditions. Such events typically
increase the risk of stranding. Rescue Centers offer a unique opportunity to report
animals in distress and satellite track rehabilitated individuals to identify potential new
habitats and support an effective conservation of these endangered species. By
combining sightings (1988–2020) and tracking data (2008–2020) collected along the
French Atlantic and English Channel coasts, our study assessed if the Bay of Biscay is
an ecological trap or a favorable habitat for immature sea turtles. The largest tracked
individuals migrated westward to pelagic waters, likely toward their natal beaches, while
smaller individuals remained within the Bay of Biscay (BoB) and crossed colder (mean:
17.8 ± 3.0◦C) but more productive waters. The turtles’ directions differed from the
ones of ocean currents, excluding a passive advection to these unexpected habitats.
Although the BoB might be thermally unsuitable in winter, the higher micronekton
biomass predicted in this region could offer a productive foraging habitat for immature
turtles. However, the majority of the sightings referred to individuals stranded alive (75%),
suggesting this area could also act as an ecological trap for the smallest individuals that
are mostly reported in winter suffering cold-stunning. Assumed to be outside the species
range, our results reveal a potential foraging ground in the North-East Atlantic for these
young turtles, confirming the crucial role of the rehabilitation centers and the need to
continue prioritizing conservation of these endangered species, particularly vulnerable
at this stage and at such temperate latitudes.

Keywords: Bay of Biscay, loggerhead turtle, green turtle, micronekton, sea surface temperature, Kemp’s ridley
turtle

INTRODUCTION

Unusual environmental conditions can push marine animals outside their physiological tolerances
through changes in trophic and/or thermal conditions. In sea turtles, such events are commonly
caused by a drop in sea surface temperature (SST) below 10◦C, making individuals lethargic and
floating at the sea surface. The risk of stranding is inevitably increased during such cold-stunning
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events (George, 1997; Spotila et al., 1997). Rescue Centers
offer a unique opportunity to satellite track the rehabilitated
individuals to identify potential new habitats (assumed to be
unfavorable due to extreme thermal conditions), and redefine
Regional Management Units to ensure the conservation of these
endangered species. Hypothermia of sea turtles induced by cold
weather episodes have been reported in the North-West Atlantic
(Burke et al., 1991; Still et al., 2005; Roberts et al., 2014; Griffin
et al., 2019; Innis et al., 2019), Gulf of Mexico (Foley et al., 2007;
McMichael et al., 2008; Avens et al., 2012; Shaver et al., 2017),
Mexican coast (Koch et al., 2013; Salinas-Zavala et al., 2020) and
Western Europe (Davenport, 1997; Witt et al., 2007; Bellido et al.,
2008, 2010; Monzón-Argüello et al., 2012; Nicolau et al., 2016),
affecting three main species, i.e., the green, the Kemp’s ridley and
the loggerhead turtles.

The loggerhead turtle (Caretta caretta) is the most studied of
the seven sea turtle species (Hays and Hawkes, 2018) and has
a complex life cycle, being distributed in oceanic waters during
its juvenile stage before recruiting to coastal habitats (Bolten,
2003). The movements and habitat use of immature individuals
directly caught at-sea at their developmental habitats have been
largely documented in the Mediterranean Sea (Cardona et al.,
2005; Revelles et al., 2007; Casale et al., 2012; Abalo-Morla et al.,
2018; Chimienti et al., 2020), Pacific (Polovina et al., 2001, 2004,
2006; Kobayashi et al., 2008; Briscoe et al., 2016b, 2021), Indian
(Dalleau et al., 2014; Bousquet et al., 2020), and Atlantic Oceans
(Mansfield et al., 2009, 2014; Varo-Cruz et al., 2016; Chambault
et al., 2019). However, the spatial patterns of individuals after
rehabilitation in unusual habitat (outside their geographical
range-limit) remain undocumented in most regions, in particular
in Western Europe.

Stranding events of sea turtles occur annually along the
Western European coasts, including the Spanish (Bellido
et al., 2010; Orós et al., 2016), Portuguese (Nicolau et al.,
2016), British (Botterell et al., 2020) and French coasts (Witt
et al., 2007; Morinière and Dell’Amico, 2011). Genetic analysis
have demonstrated that immature loggerhead turtles stranded
along the French Atlantic and English Channel coasts mostly
originate from the North-East American coast (51%), and
to a lesser extent to Cape Verde (26%) (Monzón-Argüello
et al., 2012). Hatchlings emerging from Florida rookeries are
known to perform a transatlantic oceanic migration toward
several developmental habitats located in the Azores, Madeira,
Cape Verde, and Canary Islands (Bolten et al., 1998). But
despite the large number of stranding events observed each
year (Witt et al., 2007; Bellido et al., 2010; Morinière and
Dell’Amico, 2011; Nicolau et al., 2016; Orós et al., 2016;
Botterell et al., 2020), no favorable developmental habitat
has been identified yet along the continental European coast
due to potentially unfavorable thermal conditions and the
high latitudinal location of this areas, assumed to be outside
the species usual range (Wallace et al., 2010). In addition
to loggerhead turtles, green (Chelonia mydas) and Kemp’s
ridley sea turtles (Lepidochelys kempii) originating from North-
West Atlantic, Caribbean, and Gulf of Mexico (Manzella
et al., 1988; Marquez, 2001; Wallace et al., 2010) are, two
species rarely seen in European waters, annually gathering

in lower proportions along the French Atlantic coast and
English Channel coasts.

In 2010, Wallace et al. (2010) delineated 58 Regional
Management Units (RMUs) based on published satellite tracks,
tag returns and demographic and genetic data collected from
nesting populations for the seven sea turtle species worldwide.
However, these units have not incorporated some sites of
immature turtle aggregation, in particular in the North-East
Atlantic where immature loggerheads, greens and Kemp’s ridleys
are frequently observed (Bellido et al., 2010; Morinière and
Dell’Amico, 2011; Monzón-Argüello et al., 2012; Nicolau et al.,
2016; Orós et al., 2016; Botterell et al., 2020). Satellite tracks
and stranding reports collected from European waters therefore
provide a unique source of data to update these RMUs and design
more appropriate units of protection taking into account juvenile
sea turtle habitats.

By combining sightings (1988–2020) and tracking data
(2008–2020) collected by the CESTM (Center d’Études et
de Soins pour les Tortues Marines) of the Aquarium La
Rochelle along the French Atlantic and English Channel coasts,
our study aims to assess if the Bay of Biscay could be a
favorable habitat or rather an ecological trap for immature
sea turtles. Depending on their size, we expect that the
rehabilitated immature individuals will either: (i) remain in
the North-East Atlantic ecoregion (smaller individuals) or
(ii) migrate toward their natal beaches located along the
North-Eastern American coast or Cape Verde islands (larger
individuals). Our study provides the first evidence of new
habitats for rehabilitated immature sea turtles across the
North-East Atlantic. Our findings will support the use of sea
turtles as bioindicators in the context of the European Marine
Strategy Framework Directive (MSFD) and will help redesigning
the Regional Management Units (Wallace et al., 2010) to
prioritize conservation of these endangered species, particularly
vulnerable at this stage.

MATERIALS AND METHODS

Sightings
Sightings of sea turtles are reported throughout the year
to the CESTM from the English Channel-North Sea to the
Bay of Biscay-Iberian Coast (Figure 1A). This large dataset
covering 33 years of sightings (1988–2020) complements
the work of Witt et al. (2007) to investigate the temporal
variability of the turtle size throughout the year, over a longer
period. These sightings gather individuals stranded, bycaught
in fishing nets or drifting at sea. Initiated in 1988 and
compiling data from the four species found along Western
Europe (leatherback, loggerhead, Kemp’s ridley and green), this
dataset has been partly published (Witt et al., 2007; Morinière
and Dell’Amico, 2011). To be consistent with the tracking
analysis, we restricted this dataset to the three species satellite
tracked in our study, i.e., the loggerhead, the Kemp’s ridley
and the green turtle. The sightings located outside the three
marine ecoregions defined by the MSFD were also discarded
from the analysis.
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FIGURE 1 | Locations of (A) the sightings recorded between 1988 and 2020 and (B) the immature sea turtles rescued and satellite tracked by the CESTM between
2008 and 2020. In (B), the three ecoregions as defined in the MSFD are represented in the background: the Greater North Sea, the Celtic Seas and the Bay of
Biscay and Iberian coast.

Ethics Statements
This study meets the legal requirements of the country and the
Rescue Center where this work was carried out, and follows
all institutional guidelines. The Prefectoral Order N◦2004-1104
approved the opening of the CESTM and delivered to Mrs.
Florence Dell’Amico a certificate (n◦2017 02173) to conduct
care practices on non-domestic animals. The protocol was
approved by the French “Regional environment, planning and
housing” agency (DREAL, permit number: DREAL/56-2020),
authorizing the transportation, tag deployment and release of
endangered species. The Ministerial Order (30/12/2020) acts as
an exception to the strict protection of species, authorizing the
manipulation of protected species when found bycaught, drifting
at sea or stranded.

Rescue and Rehabilitation
Between 2008 and 2020, 66 immature sea turtles were rescued
and rehabilitated by the CESTM of the Aquarium La Rochelle.
Among these 66 individuals, 28 were then equipped with satellite
transmitters. The rescued individuals (one rescued twice) were
found stranded (n = 17), bycaught (n = 8) or drifting at
the sea surface (n = 3) within the three regions defined by
the MSFD along the Atlantic French and English Channel
coasts: the Greater North Sea, the Celtic Seas and the Bay
of Biscay and Iberian coast. The majority of the rehabilitated
individuals were loggerhead turtles (n = 23), but some were
also Kemp’s ridley (n = 4) and green (n = 1) sea turtles.
When rescued, each individual was measured (minimum Straight
Carapace Length, hereafter SCLmin) and weighed. The same
morphometric measures were also taken before attaching the tag,
a few days before release.

Tag Deployment
Different tags types were used between 2008 and 2020. They
all recorded Argos locations. In 2008, a KiwiSat R© Argos tag
(SirTrack manufacturer) was deployed on the first individual
after rehabilitation using the attachment procedure described in
Balazs et al. (1996) for the biggest individuals. The 27 remaining
tags (two SPLASH and 25 SPOT) deployed between 2009 and
2020 were provided by Wildlife Computers R© and attached using
the procedure developed by Seney et al. (2010) for the smallest
individuals. This technique incorporating a neoprene layer takes
into account the rapid growth of immature individuals to
prevent the tags to detach too quickly, extending therefore the
tracking duration. The complete list of deployed tags is given in
Supplementary Table 1.

Data Prefiltering
Location data were obtained from the Argos Data Collection and
Location System. The Least Square positioning algorithm was
used for tags deployed before 2011 and the improved Kalman
filtered positions were obtained for the other tags (Lopez et al.,
2014). All statistical analyses were performed using R software
version 4.0.2 (R Core Team, 2021). We restricted our dataset
to positions associated with a travel speed lower than 10 km/h
(Fossette et al., 2010). Locations on land and those associated with
a location class Z were also discarded.

Movement Analysis
The individual tracks were then predicted daily using the
foieGras package with a simple continuous-time random walk
algorithm (Jonsen and Patterson, 2020; Jonsen et al., 2020).
The algorithm accounted for the Argos quality to predict the
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daily locations using Argos error ellipses for the tags deployed
after 2011, while the location classes (0, 1, 2, 3, A or B) were
used for the remaining tags. Following Hays et al. (2021) and
Hart et al. (2021), assessment of tag failure was conducted on the
data available using the three following metrics: battery voltage,
wet/dry switches and the number of Argos transmissions.

To identify turtle aggregation and hotspot habitats, we
generated hexagonal maps by summing the number of predicted
locations (from the random walk) in each grid cell of 0.5 and 0.1
degrees, respectively. To reduce tagging location and track length
biases, the first week of tracking was removed for each individual.

Spatial patterns were visually identified based on the
geographic difference between the last position recorded for
each individual and the release site. Intrinsic (morphometric
measurements) and extrinsic factors (environmental conditions
encountered) were then compared according to the spatial
pattern. The effect of rehabilitation time on the spatial pattern
was tested using a Kruskal-Wallis test.

In order to assess if the behavior of the turtles was typical,
we then compared the movement characteristics (tracking
duration, swimming speed and distance traveled) of the injured
individuals that were amputated (n = 4, Table 1, IDs with the
asterisk) to the “not injured” turtles. The interaction between
distance traveled and tracking duration was also tested. This
was conducted using a Generalized Linear Model with a
binomial distribution, and the state (injured vs. not injured) as
a response variable.

Environmental Drivers
To assess the habitat used and selected by the turtles, a series of
environmental variables were then extracted at each predicted
daily location. Three oceanographic variables were extracted
daily from E.U. Copernicus Marine Service Information1 at
a resolution of 0.08 decimal degree: the zonal component
of the surface currents (U, positive eastward), the meridional
component of surface current (V, positive northward) and the Sea
Surface Temperature (SST). Two products were used depending
on the period: the Global Ocean Physics Reanalysis Glorys
S2V4 (PHYS_001_024, after 2016) and the Global Ocean Physics
Reanalysis Glorys12v1 (PHY_001_030, before 2016).

Predicted daily positions were used to compute the daily
ground speeds of each turtle. The swimming speed of each
individual was then calculated by subtracting the modeled ocean
current velocity from the ground speed (Gaspar et al., 2006).
Turtles and ocean currents headings were then estimated at
each position. To assess if the habitats experienced by the
turtles were productive, two low and mid-trophic level (LMTL)
variables were also extracted daily from the Spatial Ecosystem and
Populations Dynamics Model (SEAPODYM) at a 0.08 decimal
degree (Lehodey et al., 2010): the mesozooplankton biomass
(200 µm to 2 cm) and the epipelagic micronekton biomass
(2–20 cm). Unlike primary productivity or chlorophyll a that
are commonly used to predict the distribution of megafauna
species, micronekton and zooplankton refer to mid-trophic levels
encompassing the potential prey of sea turtles. Micronekton

1https://resources.marine.copernicus.eu

group gathers organisms of different taxa (e.g., fish, cephalopods,
crustaceans) and these model outputs are made available through
the CMEMS web portal (BGC_001_033). Due to the dive
behavior of immature turtles of this size, we restricted our
analysis to the epipelagic layer.

Habitat Modeling
The geographic space available to each animal was assessed
by simulating a series of tracks for each individual using the
availability package (Raymond et al., 2021), i.e., n = 50 simulated
tracks per individual as suggested by Hindell et al. (2020). Using
the mgcv package (Wood, 2017), the habitat selected by the turtles
was then characterized using a Generalized Additive Model to
relate the presence of the turtles to a series of environmental
factors, i.e., SST, zooplankton biomass, micronekton biomass,
ocean current velocity, zonal and meridional components of
ocean currents and sea surface salinity. The turtle’s presence was
used as a binary response variable (real track vs. simulated tracks).
All numeric variables were first checked for collinearity using the
VIF function from the usdm package (Naimi et al., 2014). To
account for the inter-individual variability, turtle ID was added
as a random factor. An autocorrelation term was also added to
the model to account for the correlation structure in the data.
A threefold cross-validation was used by partitioning the dataset
into the training (2/3 of the data) and the validation dataset (1/3).
Model evaluation was then done on the validation dataset using
four performance metrics calculated for each model: the area
under the curve (AUC), the sensitivity, the specificity and the true
skill statistics (TSS).

To test the influence of the spatial pattern on the thermal
and biological habitat used by the turtles, a generalized logistic
model was performed using the mlogit package (Croissant, 2020)
using the data collected along the entire route for each individual.
The response variable was the spatial pattern with the four
modalities, and the explanatory variables the environmental
conditions encountered by the individuals: SST, zooplankton and
micronekton biomasses.

RESULTS

Sightings (1988–2020)
The sightings were reported throughout the year between 1988
and 2020 along the French Atlantic and English Channel
coasts (Figure 1A). A total of 449 sightings of immature
sea turtles were reported, including a majority of loggerhead
turtles (n = 353), followed by Kemp’s ridleys (n = 75) and
greens (n = 21). No green turtle was observed in spring
and summer while a very few Kemp’s ridley were seen
in April and late summer. The majority of the sightings
referred to individuals stranded alive (65.5%), followed by
stranded dead (23%), captured alive (6.9%), drifting alive (2.7%),
captured dead (1.3%), drifting dead (0.4%) and observed in the
water alive (0.2%). A larger proportion of sightings occurred
during late autumn and winter, with a peak in February and
March, representing 39% of the sightings (Figure 2A). The
smallest individuals (≤32 cm) were mostly observed between
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TABLE 1 | Characteristics of the rescued turtles and after release with the satellite tags.

ID Species Obs. Rehab. Haplotype Track start Track end Distance Duration Duration
BoB

Speed Swim
speed

(km) (days) (days) (m/s) (m/s)

ANTIOCHE Caretta caretta Stranding 257 CC-A10.1 29/07/2008 16/11/2008 960 110 110 0.1 0.13

ANTIOCHE 2 Caretta caretta Stranding 101 CC-A10.1 24/09/2009 16/06/2010 3,600 265 67 0.15 0.20

BAMBI Caretta caretta Drifting 49 CC-A1.1 25/09/2009 01/04/2010 2,100 188 188 0.12 0.13

BELINE Caretta caretta Stranding 194 CC-A1.3 09/07/2009 30/09/2009 1,100 83 79 0.14 0.17

BOUTON D’OR Caretta caretta Stranding 99 CC-A2.1 09/07/2009 31/10/2009 1,700 114 63 0.16 0.17

BULLE Caretta caretta Bycatch 287 CC-A1.1 09/07/2009 31/07/2009 270 22 22 0.13 0.16

CHACAHE Caretta caretta Bycatch 209 05/07/2011 23/07/2011 470 18 18 0.30 0.28

DANAE Lepidochelys kempii Bycatch 210 10/07/2012 18/09/2012 250 70 70 0.05 0.08

DELTA Lepidochelys kempii Bycatch 46 10/07/2012 03/09/2012 300 55 55 0.06 0.12

DOMINO Caretta caretta Stranding 188 10/07/2012 12/11/2012 1,600 125 125 0.14 0.14

ECUME Caretta caretta Drifting 102 24/09/2013 29/09/2013 160 5 5 0.37 0.36

FLAMME Caretta caretta Stranding 122 02/07/2014 01/10/2014 2,200 91 23 0.28 0.25

FLOT Chelonia mydas Bycatch 253 02/07/2014 07/08/2014 190 36 36 0.06 0.13

FRANCESCA Caretta caretta Stranding 79 02/07/2014 04/08/2014 1,100 33 23 0.39 0.33

FUTE Lepidochelys kempii Stranding 551 17/08/2015 03/10/2015 920 47 21 0.22 0.21

GLOBE-HELENA Caretta caretta Bycatch 83 08/07/2016 04/11/2017 6,900 484 319 0.16 0.16

HORIA Caretta caretta Stranding 428 08/08/2017 27/11/2017 1,800 111 18 0.18 0.19

ICARE* Caretta caretta Stranding 177 29/06/2018 08/05/2020 11,000 679 31 0.19 0.16

IDOLE Caretta caretta Stranding 203 29/06/2018 09/01/2019 2,100 194 38 0.12 0.19

ILE DE RE Caretta caretta Drifting 319 29/06/2018 27/01/2019 1,800 212 212 0.09 0.13

INDIGO Caretta caretta Stranding 94 30/06/2018 25/11/2018 1,900 148 148 0.14 0.14

IODEE* Caretta caretta Stranding 87 29/06/2018 13/11/2018 2,700 137 48 0.22 0.19

JUPITER Lepidochelys kempii Stranding 207 04/07/2019 19/11/2019 3,900 138 53 0.33 0.30

KAROLINA Caretta caretta Stranding 30 22/07/2020 17/08/2020 610 26 26 0.26 0.27

KAWAI Caretta caretta Bycatch 371 23/06/2020 08/10/2020 760 107 107 0.08 0.11

KEMEN* Caretta caretta Stranding 180 23/06/2020 15/06/2021 5,700 357 32 0.18 0.14

KERCAMBRE* Caretta caretta Stranding 128 23/06/2020 30/08/2020 1,400 68 25 0.23 0.2

2,129 ± 1,562 145 ± 101 73 ± 52 0.61 ± 0.43 0.17 ± 0.11

“Obs.” stands for the type of observation, “Rehab.” is the rehabilitation time (in days) spent at the CESTM (in parentheses is the total duration between rescue and release).
Speed refers to the average travel speed (not corrected from ocean currents) in m/s (in parentheses is the maximum speed). IDs with an asterisk are injured turtles.

January and April, while largest turtles (>40 cm) were found
year-round (Figure 2B).

Rehabilitation and Tracking Data
(2008–2020)
Among the 28 satellite tracked turtles, one was removed from
the analysis due to a very short tracking duration and only a few
locations transmitted (Ino). This turtle was found stranded dead
with the tag still attached only 10 days after release, so the end of
transmission was not due to battery exhaustion (Supplementary
Figure 1A). Among the 27 remaining turtles, four were
amputated (Icare, Iodée, Kemen, and Kercambre). These injured
individuals behaved similarly (in terms of swimming speed,
tracking duration and distance traveled) compared to the
“not injured” turtles (generalized linear model: all p > 0.05).
Rehabilitation time had no effect on the spatial pattern (Kruskal-
Wallis rank sum test, p > 0.05).

Sightings occurred throughout the year but there was a
peak in fall and winter, representing 64% of the observations.
The individuals were either found stranded (n = 17), bycaught
(n = 7) or drifting at sea (n = 3) along the French Atlantic
coast, from Bretagne to the Spanish border (Figure 1B). The
duration between the observation and the release lasted between

32 (Karolina) to 4239 days (Francesca), and on average (± SD)
373 ± 771 days (Table 1). Most individuals were rehabilitated
at the CESTM, but one turtle remained in another center for
12 years before being transferred to the CESTM for release with a
satellite tag. The rehabilitation time spent at the CESTM varied
between 30 and 551 days for an average of 190 ± 122 days.
When released, the turtles measured between 21.5 and 87.5 cm in
SCLmin (mean ± SD: 41.6 ± 16.6 cm), for a body mass ranging
from 1.8 to 93.2 kg and a mean of 17.7 ± 21.6 kg.

Among the 27 satellite tracked turtles, one was found stranded
again a few months after release (Antioche), and then equipped
a second time in 2009 (Antioche 2). The average tracking
duration was 145 ± 152 days, for an average traveled distance
of 2,129 ± 2,409 km (range: 160–11,000 km) (Table 1). The time
spent within the BoB varied between 5 and 319 days (mean ± SD:
73 ± 52 days). The total travel speed (including ocean currents)
was 0.17 ± 0.12 m/s (max: 0.9 m/s). The haplotype was available
for six individuals (Table 1) and have been previously published
in Monzón-Argüello et al. (2012). The natal origin of five
individuals could be determined and have already been published
in Monzón-Argüello et al. (2012): one originates from Cape
Verde, one from Dry Tortugas, Mexico or South Florida, and
three could have multiple origins (e.g., Florida, Dry Tortugas,
Mexico, Cape Verde).
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FIGURE 2 | (A) Histogram of the number of sightings according to month and species. (B) Distribution of the SCL (SCLmin or SCL in cm) of the sightings over
month. In (B), the dots refer to the monthly means and the bars to the standard errors.

Assessment of tag failure was conducted over the 27
individuals, and for only four turtles, the drop in battery
voltage below 3.0 V was indicative of battery exhaustion at the
end of the tracking (Supplementary Figure 1A). Data on the
wet/dry switches was available for only 13 individuals. Except
for Antioche 2, the clear difference between “dry” and “wet”
states suggested biofouling was not the reason for the cessation
of transmissions (Supplementary Figure 1B).

Spatial Patterns
The 26 turtles dispersed largely from the European west coast to
Bermuda, passing near the Azores and Canary Islands (Figure 3).
Among the four Kemp’s ridleys, two migrated northward while
the last two remained within the BoB. The only green turtle
satellite tracked (Flot) remained within the BoB during the
entire tracking duration (36 days). According to the last position
recorded for each individual compared to the release site, four
different spatial patterns were identified: Bay of Biscay, North,
South and West (Figure 3). The Bay of Biscay pattern refers to
11 resident individuals that remained within this region along
the French Atlantic coast. The North pattern includes three
individuals that migrated north toward United Kingdom, the
Netherlands and Norway, crossing the English Channel and the
North Sea. Among the three North individuals, two were Kemp’s
ridley turtles. The South group (n = 3) headed toward Portugal,
the Mediterranean Sea and Western Sahara, while the West
group (n = 10) migrated westward within the North Atlantic
in the open ocean, targeting the Azores, the Canary Islands
or even Bermuda.

Figure 4A shows a heatmap over the entire study region,
highlighting the habitats of interest located mainly in the Bay
of Biscay. This map confirms that the individuals crossed both
international waters and numerous Exclusive Economic Zones
(16 ZEEs), e.g., Spain, France, Portugal, Western Sahara. At a

finer scale, the heatmap in Figure 4B confirms that the area of
turtle aggregation is located close to the shoreline near the release
site, and is included into the Gironde estuary and sea of Pertuis
Marine Natural Park.

The SCLmin and body mass varied significantly according
to the spatial pattern (Figure 5). The SCLmin was significantly
larger for individuals migrating westwards (mean ± SD:
53.1 ± 14.9 cm) and northwards (mean ± SD: 61.9 ± 13.5 cm),
and minimum for the resident turtles that remained in the
Bay of Biscay (BoB, mean ± SD: 32.7 ± 9.3 cm) and the
South group (mean ± SD: 44.9 ± 10.1 cm, Kruskal-Wallis
rank sum test, p < 0.001). Similarly, body mass differed
significantly with the spatial pattern (Kruskal-Wallis rank sum
test, p < 0.001). Body mass was maximum for the North
(mean ± SD: 39.4 ± 19.9 kg) and West (mean ± SD:
31.3 ± 19.8 kg) groups and minimum for the BoB (mean ± SD:
7.7 ± 6.5 kg) and South (mean ± SD: 17.7 ± 16.0 kg) groups,
being below the average values (mean ± SD: 41.6 ± 16.6 cm and
17.7 ± 21.6 kg).

Active Swimming or Passive Advection?
We found differences between directions of ocean currents
and those of the turtles across the four patterns (Figure 6).
For the Bay of Biscay group, ocean currents flowed mainly
south-eastwards while the individuals headed north-west in the
opposite direction (Figures 6A,B). For the South and the West
group, ocean currents flowed south-west and south-east, while
the turtles swam mainly west for both groups (Figures 6C–F).
The North individuals headed northwest and northeast and the
ocean currents mainly west and north-east (Figures 6G,H). The
swim speeds of the turtles were significantly faster (mean ± SD:
0.17 ± 0.11 m/s) than the speed of ocean currents (mean ± SD:
0.10 ± 0.08 m/s, Mann-Whitney U-test, p < 0.001). The turtle
swimming speed was positively correlated to the velocity of ocean
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FIGURE 3 | Satellite tracks of the immature turtles according to their spatial pattern: (A) North (n = 3), South (n = 3) and West (n = 10) and (B) Bay of Biscay (n = 11).
The names of the countries are indicated in capital letters: NOR (Norway), UK (United Kingdom), FR (France), SP (Spain), and WS (Western Sahara).

FIGURE 4 | Density plots of the 26 sea turtles (A) over the entire study region and (B) a focus over the French Atlantic coast and English Channel. The counts refer
to the total number of locations recorded in each grid cell. The first week of tracking was removed to discard the potential effect of the release site and atypical
behavior after release. Exclusive Economic Zones were overlaid (in purple, left) and Marine Protected Areas (in pink, right) in (A,B), respectively.

currents and to the zonal component of the currents U (LMM,
p < 0.001).

Habitat Selection
The explained deviances derived from the GAMs ranged
between 23.1 and 23.4%, and the seven predictors were highly
significant (p < 0.001). The performance of the models was
high and negligible variability was noticed across the models:
0.270 < R2 < 0.273, 0.79 < AUC < 0.80, 0.68 < sensitivity < 0.69,
0.740 < specificity < 0.741 and 0.42 < TSS < 0.43.
Current velocity and SSS had a negative relationship with the
turtle’s presence, while micronekton and zooplankton biomasses
increased with the probability to find a turtle (Figure 7). Turtle’s
presence was at its highest for low and high values of U and
V currents. The GAM indicated an optimum SST around 17–
18◦C, showing lower probabilities of turtle’s presence at both

low and high sea temperatures. The SST extracted at turtle’s
locations varied between 8 and 27.6◦C for an average temperature
of 18.4 ± 3.3◦C (Supplementary Table 2). The SST varied
significantly according to the spatial pattern, being minimum for
the North group (16.1 ± 3.8◦C, logistic model estimate: −0.28,
p < 0.001) and maximum for the West group (19.8 ± 2.7◦C) (see
Figure 8A, logistic model estimate for BoB = −0.30, p < 0.001
and south = −0.16, p < 0.001).

When all individuals and the four patterns were pooled
together, the seasonal trend was also observed and differed
according to the size of the turtles with the smallest individuals
(SCLmin ≤ 29 cm) exploiting waters generally colder
(17.2 ± 2.6◦C) than the largest individuals (SCLmin ≥ 41 cm,
18.9 ± 3.7◦C) (see Figure 8B). Nearly half of the locations
recorded (49%) were associated with waters between 15 and
20◦C, and only 18% below 15◦C (Supplementary Figure 2).
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FIGURE 5 | Density distributions of the (A) SCLmin and (B) body mass at release according to the spatial pattern. The density distributions are color-coded by
spatial pattern, with a cloud of points below. The dotted lines refer to the average SCLmin and body mass considering the 26 tracked individuals (Francesca was
removed because unrepresentative of the sample size). The black dots stand for the mean and the bars the standard deviation for each group.

FIGURE 6 | Rose diagram frequency distributions of ocean currents (in green) and turtles (in red) orientation and velocity (in m/s) for the four spatial patterns: Bay of
Biscay (A,B), South (C,D), West (E,F) and North (G,H). The currents were extracted at each turtle location.
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FIGURE 7 | Relationships between turtle’s presence (y-axis) and their associated environmental variables obtained from the GAMs. The solid black line in each plot
is the smooth function estimate and the shaded regions refer to the approximate 95% confidence intervals. The y-axis represents the response variable expressed in
log scale. Positive values on the y- axis indicate a high probably of turtle’s presence, and conversely. The horizontal dotted lines indicate the probability of turtle
presence is not significantly positively or negatively influenced by the predictor. SSS refers to Sea Surface Salinity.

The zooplankton biomass varied between 0.10 and 9.0 g.m−2

for an average biomass of 2.3 ± 1.4 g.m−2 (Figure 8C and
Supplementary Table 2). The zooplankton biomass varied
significantly according to the spatial pattern (logistic model
estimates: BoB = 0.32, north = 0.60, south = 0.23, p < 0.001),
being minimum for the West group (1.4 ± 1.1 g.m−2) and
maximum for the North group (3.7 ± 1.5 g.m−2). The
micronekton biomass varied between 0.48 and 49.9 g.m−2 for
an average biomass of 6.4 ± 4.9 g.m−2. The micronekton
biomass varied significantly according to the spatial pattern
(logistic model estimates: BoB = 0.60, north = 0.66, south = 0.12,
p< 0.001), being minimum for the West group (3.3 ± 2.5 g.m−2)
and maximum for the North group (12.9 ± 7.4 g.m−2) (see
Figure 8D).

DISCUSSION

By compiling the sighting data from three species together with
the first dataset on rehabilitated individuals satellite tracked
from the French Atlantic coast, our study sheds light on
contrasting spatial patterns driven by individual size, and
provided evidence that the Bay of Biscay might act as an
ecological trap for the smallest individuals in winter due to

low sea temperatures, but also as a potential foraging habitat in
summer and autumn.

Spatial Pattern Driven by Turtle Size
The four spatial patterns identified seemed mainly driven by
the size of the individuals, with the smallest turtles remaining
in close proximity to the release site in the Bay of Biscay,
while the largest turtles migrated either northwards or performed
long westward migration in pelagic waters. The majority (51%)
of the immature loggerhead turtles frequently observed along
the French Atlantic coast originate from Florida (Monzón-
Argüello et al., 2012), suggesting that the largest turtles heading
westward in our study were targeting their natal beach as
observed for other sea turtles species in the Indian Ocean
(Dalleau et al., 2014) and the Caribbean (Chambault et al.,
2018). The size of mature individuals in loggerhead turtles
(80–90 cm, Wyneken et al., 2013) is larger than any in the
West group of oceanic turtles tracked in our study (SCLmin:
52.2 ± 14.6 cm). However, these immature individuals might
well initiate their return journey early, possibly stopping at an
intermediate foraging site to develop and reach sexual maturity.
Similar to some immature loggerhead turtles satellite tracked
from the North-East American coast (Mansfield et al., 2014),
one of our individuals reached Bermuda where the tag stopped
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FIGURE 8 | (A) Smooth lines of the SST at turtle’s locations according to days of the year and SCLmin classes (in cm). Density distributions of the (B) SST, (C)
zooplankton biomass and (D) micronekton biomass extracted at the turtle’s locations according to the spatial pattern. The density distributions are color-coded by
spatial pattern, with a cloud of points below. The dotted lines refer to the average zooplankton and micronekton biomasses considering the 26 tracked individuals.
The black dots stand for the mean and the bars the standard deviation for each group.

emitting. Located 1,600 km from Florida, these oceanic islands
could be a stopover before reaching the nesting beach in Florida
or a permanent foraging ground, as it has been evidenced in
immature loggerhead turtles originating from Florida (Mansfield
et al., 2009). The clear westward heading of the turtles in the
West group, independently of the current direction also confirms
that these turtles are willingly migrating westwards. Furthermore,
the haplotypes of five of the 26 satellite tracked turtles were
available, showing that these turtles mainly originated from
Florida, Dry Tortugas or Mexico. Among the satellite tracked
turtles, only Beline originated from Cape Verde. Genetic samples
were collected from all the satellite tracked individuals, allowing
in the near future the comparison between their natal origin
and their trajectory to confirm this natal homing hypothesis
(Meylan et al., 1990).

Among the largest individuals tracked in our study
(SCLmin > 45 cm), three turtles headed northwards in
critically unsuitable habitats due to a strong thermal constraint
in winter (SST < 8◦C). It is worth noting that among these three
turtles, two were Kemp’s ridley turtles, a species originating from
the Gulf of Mexico and the Atlantic coast of the United States
(Manzella et al., 1988; Marquez, 2001). The reasons for this
surprising northward migration of this species remain unclear

but could be due to either a disorientation or unusually
productive and/or warm waters masses, channeling turtles
out of their common range (Griffin et al., 2019). The higher
micronekton and zooplankton biomasses found along the
tracks of these three individuals compared to the three other
spatial patterns reinforce the assumption that they were actually
targeting productive waters. The low bathymetry and the narrow
strip characterizing the English Channel and North Sea could,
however, be responsible for the underestimation of the coastal
circulation in this region in the framework of the SEAPODYM
model, possibly resulting in an overestimation of the primary
productivity by remote sensing. Consequently, zooplankton and
micronekton biomasses might be slightly overestimated in this
area (Conchon, personal communication). More Kemp’s ridley
turtles need to be satellite tracked from the French Atlantic
waters in order to elucidate these unexpected movements toward
higher latitudes.

The coastal behavior of the smallest individuals was surprising
and against the main hypothesis that the rehabilitated turtles
would migrate back to the open ocean after release. The majority
of immature loggerhead and green turtles are known to spend
many years in the open ocean to grow and avoid predators,
before swimming back to coastal habitats (Bolten, 2003). Coastal
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migrations have also been observed in some juveniles loggerheads
(Mansfield et al., 2009), but only in much larger individuals
(SCL: 64.8 ± 10.9 cm) than the ones remaining in European
coastal waters (SCL: 32.9 ± 9.6 cm). The location and the date
of the release might partly influence the individuals’ movements.
Similar to a recent study conducted in Australia (Robson et al.,
2017), future work should focus on simulating the active dispersal
of turtles (size of the rehabilitated individuals) to confirm that
the location and date of release are optimal for the rescued
individuals, but also to determine if this coastal behavior is the
result of environmental variability.

Resident Behavior in European Coastal
Waters
Forty-one percent of the satellite tracked individuals exhibited a
coastal behavior in the French Atlantic waters during the entire
tracking duration, with a strong aggregation close to the release
site off La Rochelle that could be partly attributed to the release
location. Release sites are voluntarily located in close proximity
to the CESTM (< 1 h) to prevent a stress induced by a long
transportation of the rehabilitated turtles to be released (Hunt
et al., 2019). The timing of the release is also strongly based
on tidal cycles (during ebb tides, strong coefficients) to help the
individuals swimming away from the shore. Despite a similar
behavior has been observed in other taxa such as birds (Giunchi
et al., 2003; Wallraff and Wallraff, 2005), this aggregation close
to the release site is probably more intentional and indicative
of a productive and favorable area, likely due to the presence of
several river plumes acting as nursery grounds for a wide variety
of fish (Yamashita et al., 2000; Le Pape et al., 2003). Alternatively,
these small individuals might not be strong enough to swim
away from the shore and migrate back to oceanic waters. But
given their good condition after rehabilitation and the relatively
small size of several turtles migrating westward to the open
ocean, this hypothesis is unlikely. Among the 11 turtles that
used the BoB the entire tracking duration, tag failure could be
assessed for three of them, and evidence of battery exhaustion
was only demonstrated for one turtle (Indigo). For two other
individuals, biofouling was not indicative of tag failure, but the
decrease in swimming speed might suggest that the turtles could
have died due to cold-stunning in winter. The rapid growth
of immature loggerhead turtles could also explain a premature
tag detachment (Hays et al., 2021), leading to a shorter tag
life (mean: 145 ± 152 days, range: 18–679 days) compared to
other studies based on adult individuals, e.g., loggerheads retain
50% of their tags for 584 days (Hart et al., 2021). For future
deployments, we recommend a careful battery management
based on a severe duty cycling to extend tag life in immature
individuals (Christiansen et al., 2016).

Although these results are in agreement with a previous study
based on aerial surveys (Darmon et al., 2017), this finding is
surprising because our individuals were relatively small (SCL:
32.9 ± 9.6 cm), a range of size at which they are thought to be
fully pelagic (Bolten, 2003). Also, a recent study has demonstrated
that European waters were not a suitable habitat for immature
loggerhead turtles (Harrison et al., 2021). The authors restricted

the model simulations to a passive dispersal of neonate turtles
during the first year at sea, rather than simulating the active
movements of immature turtles, probably explaining why the
BoB was not identified as a suitable habitat for this species. New
simulations using recent active dispersal models (Gaspar and
Lalire, 2017; Lalire and Gaspar, 2019), should be performed to
verify if loggerheads born in Florida might reach the BoB and
find there suitable habitats, at least during part of the year.

Tidal currents are indeed known to play an important
role in the coastal circulation of the BoB (Karagiorgos et al.,
2020). A higher resolution regional ocean reanalysis including
tidal forcing (IBI: Atlantic-Iberian Biscay Irish Ocean Physics
Reanalysis, Sotillo et al., 2015) is available from the Copernicus
Marine Service, but was not used as this reanalysis does not
cover our entire tracking period at the finest resolution (1/36◦

decimal degree). Further work with the fraction of our tracking
data covered by the IBI reanalysis should be conducted in the near
future to more precisely investigate the role of tidal currents on
turtles’ movements within the BoB.

The BoB is a highly dynamic ecosystem characterized by
several currents flowing in opposite directions. There is also
a seasonal inversion, with the main slope current flowing
northwards in winter while toward the equator in summer and
fall (Michel et al., 2009), making this region highly variable in
terms of oceanic circulation. Together with the main oceanic
circulation in fall, the Iberian shoreline might also act as a
physical barrier, preventing the southward migration of these
individuals at this period. That might explain why no seasonal
north-south pattern was observed for the resident turtles, unlike
their conspecifics in the Pacific (Polovina et al., 2001; Briscoe
et al., 2016b) and Atlantic (Mansfield et al., 2009). The active
swimming in young turtles has recently been detected by
numerous studies (Gaspar et al., 2012; Briscoe et al., 2016a;
Putman et al., 2016). Chambault et al. (2019) observed that
large immature loggerheads (SCL: 36.3–61.1 cm) tracked around
the Azores were clearly active. Our results confirmed that
active swimming behavior is already present in the smaller
individuals tracked in this study. Our findings therefore exclude
the hypothesis that the turtles remained in their habitats due to
ocean currents transport after release, but rather suggest a real
habitat use (at least during summer and autumn), indicating that
the Bay of Biscay might provide a suitable habitat in terms of both
thermal and trophic conditions. This hypothesis was supported
by two turtles from the BoB group which transmitted data until
the next winter and even the next spring.

Trophic and Thermal Constraints
Mid-trophic level models (zooplankton and micronekton)
confirmed the high productivity of the BoB, suggesting that
coastal turtles could be feeding during the tracking period.
Indeed, the BoB hosts all-year-round a wide variety of marine
megafauna species, from seabirds to cetaceans (Lambert et al.,
2017). The highest zooplankton and micronekton biomasses
found in this area compared to the three other spatial patterns
confirmed that this presumably unsuitable habitat could be used
as an important feeding ground for immature sea turtles. The
lack of seasonality for micronekton biomass also suggests this
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area is a favorable foraging ground for these species throughout
the year. The analysis of stomach contents from necropsied
individuals found along the French Atlantic coast also confirms
that some turtles were feeding in proximity to their stranding
site (Dell’Amico, personal communication). The numerous river
plumes along the French Atlantic coast (Gironde, Charente,
Loire) could also contribute to the high productivity of this
area, and constitute a critical habitat for many species (Lambert
et al., 2018). Unlike other marine species that use the shelf edge
and the abyssal margin of the BoB, the tracked turtles remained
in close proximity to the shore (75% of the locations < 100
m isobaths) and occasionally exploited river plumes, with two
individuals using the Gironde Estuary. The importance of
the BoB as a critical habitat or an ecological trap should be
further investigated using longer tracking durations, additional
individuals and model simulations. But so far, the 449 sightings
collected over 33 years by the CESTM tend to show that immature
individuals from the three species use these waters year-round,
including the smallest ones mostly in winter, probably due
to cold-stunning.

While a suitable habitat should be productive, it also
needs to be thermally optimal or at least acceptable for the
species to survive. Similarly to other ectotherm species, ambient
temperature plays a crucial role in reptile development and
survival (Angilletta et al., 2002), driving the at-sea distribution
of sea turtles. For this reason, immature loggerhead and green
turtles during their pelagic phase generally target the 17–18◦C
isotherms (Polovina et al., 2000; Mansfield et al., 2014, 2021;
Patel et al., 2021), and are rarely seen in habitats colder than
14◦C (Robinson et al., 2020). Ten percent of our dataset was,
however, associated with such cold waters, including 26% of
the individuals remaining in these unsuitable areas for weeks
or even months (range: 5–128 days, mean: 53 days). Similar to
other loggerheads populations, smaller individuals experienced
colder waters compared to larger ones (Abecassis et al., 2013),
which could be related to increasing diving capacities with
increased size. The larger turtles could target deeper, richer
but colder layers, and therefore need to rewarm at the sea
surface. Similar thermoregulation behaviors have been evidenced
in other marine ectotherms (Di Santo and Bennett, 2011). The
colder temperature range experienced by the smaller individuals
could also partly explain why five of these small turtles (range:
3.3–8.7 kg) were found dead (n = 4) or stranded again alive
(n = 1) during the following winter after release in European
waters, possibly due to cold-stunning. This phenomenon is not
uncommon as in Australia, 8.6% of the rehabilitated turtles were
recaptured (Flint et al., 2017). This raises a serious concern
regarding the thermal favorability of the BoB, where satellite-
derived SSTs range between 10 and 20◦C (Huret et al., 2018).
Water temperatures can even drop below 10◦C in very coastal
areas used by the resident turtles. All the rescued turtles were
in distress when found, suggesting that the BoB might act as an
ecological trap for these young individuals in winter.

It is worth mentioning that the European waters are also
commonly used by sub-adult and adult leatherback turtles (Witt
et al., 2007; Nicolau et al., 2016), especially in summer, likely
due to large aggregations of jellyfish (Houghton et al., 2006).

Unlike the hard-shelled species (loggerhead, Kemp’s ridley and
green turtle), leatherback strandings occur mainly during fall
when weather conditions favor carcasses to drift to the shore
before being stranded. Although the cause of mortality is in most
cases difficult to determine, due to the level of decomposition,
the endothermic ability of this gigantotherm species should make
them less vulnerable to cold temperatures in such temperate
habitats. But in response to global warming, these temperate
habitats might become more and more thermally suitable as SST
is expected to increase in the future, e.g., 0.23◦C/decade in the
Western English Channel coastal waters (L’Hévéder et al., 2017).
As it has already been predicted for many species (Walther et al.,
2002; Parmesan and Yohe, 2003), immature sea turtles might
therefore experience a northern shift toward new habitats in
response to global warming (Patel et al., 2021). However, the
rise of temperature could be associated with a decrease in ocean
productivity, leading to a trade-off between a more thermally
favorable habitat but less abundant resources.

Conservation Implications
The identification of a species geographical range is crucial
to implement effective management of endangered species,
reinforcing the interest of our findings. All sea turtle species
inhabiting the North Atlantic are listed on the IUCN Red list,
with status vulnerable (loggerhead turtle), endangered (green
turtle) and critically endangered (Kemp’s ridley turtle, Wibbels
and Bevan, 2019). The French East Atlantic sea turtle network
(RTMAE), coordinated by the CESTM of Aquarium La Rochelle,
therefore provides an unprecedented dataset to confirm the
turtle presence in the BoB. It is worth mentioning that all
the satellite tracked turtles were found in distress (stranded,
bycaught or drifting at the sea surface), supporting the idea
that without the rescue center and rehabilitation, these turtles
may have likely died. Given the number of rescued individuals
per year is relatively low, it is hard to estimate the real
proportion of immature sea turtles inhabiting the European
waters, especially in winter. Future work should therefore be
dedicated to genetic analysis and model simulations to assess
if the BoB is either an ecological trap or an important habitat
used by these immature sea turtles year-round. Such results
will undoubtedly support conservation measures, especially the
update of the RMUs by potentially including the BoB as an
important habitat for loggerhead turtles. As RMUs are population
specific, the dataset of the two other species (Kemp’s ridley
and green turtles) need to be first augmented to draw reliable
conclusions regarding their distributions. Alternative approaches
such as aerial surveys are available to asses marine megafauna
species distribution in the BoB and English Channel (Darmon
et al., 2017; Lambert et al., 2018), but such observations generally
miss small individuals like immature sea turtles, preventing the
identification at the species level, and inevitably leading to an
underestimation of the population. Our findings also confirm the
importance of the Marine Protected Areas, including the small
MPA located off the CESTM (Gironde estuary and the Sea of
Pertuis Marine Natural Park), where a large proportion of the
tracked individuals aggregated.
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Although some individuals were found in bad condition (four
were amputated), they showed no sign of atypical behavior
after release, which is in agreement with other immature turtles
satellite tracked from North-East America (Robinson et al.,
2020). Among these four injured individuals, the longest tracking
duration was even recorded for one of them (679 days), a sub-
adult loggerhead turtle describing a typical trajectory despite
being amputated from the left pectoral flipper, probably due to
vessel collision or entrapment in fishing gear. Even though sea
turtles are not the main marine megafauna species bycaught in
the North East Atlantic (Bonanomi et al., 2019; Peltier et al.,
2021), 29% of our rehabilitated and tracked individuals were
found bycaught dead or alive (n = 3), stranded alive (n = 1)
or stranded dead (n = 4) only few weeks after release. Indeed,
the BoB hosts large populations of heavily small pelagic fishes
(anchovy, sardine), in particular along the Spanish Atlantic coast
(Ruiz et al., 2021), where several turtles aggregated. This clearly
increases the entrapment risk in fishing nets.

In addition to bycatch, sea turtles face many other threats at
sea such as marine debris (entrapment or ingestion) and organic
pollutants, which are two of the 11 Descriptors listed in the Annex
I of the European Marine Strategy Framework Directive (MSFD,
2008/56/EC), aiming to determine the Good Environmental
Status (GES) of the EU’s waters by 2020. Among other marine
megafauna species (e.g., cetaceans, seabirds), sea turtles are
used as bioindicators of the ocean health to reach the good
environmental status. The work carried out by Rescue Centers
such as the CESTM of Aquarium La Rochelle is therefore critical
and should be supported since they offer the unique possibility
to collect a wide variety of data from both rescued and dead
animals, e.g., satellite tracking for movement analysis (Descriptor
1), tissue sample for genetics (Descriptor 1), pollutants analyses
(Descriptor 8) and interactions with marine litter from necropsies
(Descriptor 10).
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Supplementary Figure 1 | Metrics used to assess tag failure: (A) battery voltage,
(B) Wet-dry switches (dry state in red and wet state in blue) and (C) the total
number of Argos transmissions over time. For (A), the red lines (3.0 V) refer to the
threshold below which there was a drop in battery voltage indicative of battery
exhaustion. In (B), no data regarding wet-dry states was available for 15
individuals. In (C), the red lines refer to the threshold before battery exhaustion
(26,688 transmissions) calculated from Horia based on the battery voltage graphic.

Supplementary Figure 2 | Individual tracks colored by the SST for the (A) North,
(B) South and (C) Bay of Biscay groups. The black triangles refer to the last
location recorded.

Supplementary Table 1 | Summary of the types of tag deployed on the 28
immature turtles.

Supplementary Table 2 | Characteristics of the habitat used (thermal and
trophic) for each individual. The column SST refers to the mean ± SD and the
numbers in parentheses to min and max in ◦C. Zooplankton and micronekton
biomasses are expressed in g.m−2.
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