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The genetic polymorphism and phenotypic variation are key in ecology and evolution.

The morphological variability of the contour of fish otoliths has been extensively used for

the delimitation of stocks. These studies are conventionally based on average phenotype

using elliptic Fourier analysis and lineal discriminant analysis as classifier. Considering new

analytical options, such as the wavelet transform and non-parametric algorithms, we here

analyzed the otolith shape of Trachurus picturatus (blue jack mackerel) from mainland

Portugal, Madeira, and the Canaries. We explore the phenotypic variation throughout

a latitudinal gradient, establish a hypothesis to explain this variability based on the

reaction norms, and determine how the use of average phenotype and/or morphotypes

influences in the delimitation of stocks. Four morphotypes were identified in all regions,

with an increase of phenotypes in warmer waters. The findings demonstrated that stocks

were clearly separated with classification rates over 90%. The use of morphotypes,

revealed seasonal variations in their frequencies and per region. The presence of shared

phenotypes in different proportions among fishing grounds may open new management

approaches in migratory species. These results show the importance of the phenotypic

diversity in fisheries management.

Keywords: otolith contour analysis, wavelets, medium pelagic fish, stocks, North and Central East Atlantic

1. INTRODUCTION

Life cycles of small and medium-size pelagic fish (SMPF) show high dispersion and mobility
in marine environments. SMPF show different migration strategies, with cycles covering from
the spawning grounds to feeding and overwintering areas (“migration triangles”; Harden-Jones,
1968; Abaunza et al., 2008), or display different patterns (contingents) during that migration
(Levins, 1969; Gerlotto et al., 2012). Migratory processes are enhanced by the high phenotypic
variation—capacity of a genotype to produce several phenotypes depending upon the environment
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(Forsman, 2015; Lind et al., 2015). This variability is considered
an evolutionary strategy to better adapt to environment
fluctuations (Peck et al., 2013; Schickele et al., 2021). It
affects multiple morphological, physiological, behavioral, and
reproductive life-history traits directly involved in migration
and dispersion processes (Lande and Arnold, 1983; Bloom
et al., 2018). For instance, the capacity to perform larger
migrations is positively linked to fish body-length (Brochier
et al., 2018), slower growth rate, larger size-at-maturity, and
changes in morphological traits (e.g., body shape and swimming
performance) (Tamario et al., 2019). This adaptive phenotypic
variation may occur at different spatial scales; and hence, the
production of local phenotypes non-randomly distributed is
expected (Lind et al., 2015). The phenotypic variation of one
genotype across a spatial distribution with enough environmental
variations can be illustrated by local mean phenotypes as a
reaction norm (Donohue, 2016). However, studies have also
demonstrated that the source of variation can stem from local
differences at loci (genetic polymorphism) underlying ecological
adaptation (Catanese et al., 2017), coined as ecotypes (Turesson,
1929; Turrill, 1946). In this case, different genotypes display
contrasting phenotypic responses to environmental change or
crossing norms of reaction (Pigliucci et al., 2001; West-Eberhard,
2003). To elucidate which traits reflect phenotypic variation
and which ones represent genetic polymorphism is essential to
achieve reliable population structure of the exploited species,
and hence, for fishery management (Waples and Naish, 2009).
Indeed, geneticists have urged the need for genome-wider
approaches, beyond mtDNA, using nuclear SNPs and temporal
sampling to better resolve the connectivity and structure of
SMPF populations (Hemmer-Hansen et al., 2014; Baltazar-Soares
et al., 2021). Complementary to genetic approaches, several
tools and body characters or elements have been extensively
used to explore phenotypic variation such as, morphometry,
pigmentation, otoliths, among others.

The shape of earbones or fish otoliths—calcium carbonate
structures located in the inner ear of bony fishes and involved
in audition, mechanoreception and equilibration (Popper and
Coombs, 1982; Popper et al., 2005)—have been commonly
used as phenotypic traits for distinguishing populations and
stocks (Abaunza et al., 2008; Cadrin et al., 2013). In marine
species, the sagittae are the most commonly used otoliths
due to its size and high variability to environmental changes
(Lombarte and Lleonart, 1993; Cardinale et al., 2004) and even
distinct ecotypes may also show variations (Bardarson et al.,
2017), including SMPF species (Khemiri et al., 2018). In this
context, slight variations in the otolith shape can be highly
relevant for migratory species driving different phenotypes,
which can be positive for the dynamic population balance in
distinct environments. It is also linked the otolith shape with
other phenotypic traits involved in fish migration, dispersion,
and even predation. In turn, more oval otolith characterizes
to faster-growing fishes intaking more prey, reaching more
quickly age/size at maturation and achieving higher recruitment
(Tuset et al., 2004; Gillanders et al., 2015). Consequently, the
production of different phenotypes is positive for the dynamic
balance between individual fitness in varying environments.

However, the local assumption premises about the normality
of the otolith phenotypes distribution and its consideration as
fingerprints ignores the presence of different contingents and
their movements (Burke et al., 2008). In addition, although many
efforts have been performed in some geographic areas, such as
upwelling systems and important coastal pelagic fishing grounds
(Corten et al., 2012), the connectivity of SMPF stocks within and
between oceanic archipelagos remains unknown (Vasconcelos
et al., 2017b, 2018).

A new viewpoint on the population structure of the blue
jack mackerel, Trachurus picturatus, in the Canary Islands
was shown by Tuset et al. (2019) where the phenotypic
variability in the otolith contour was quantified with three
well-defined otolith phenotypes found in similar proportions.
This reinforces the importance of awareness on the diversity
of morphotypes in any scenario of fisheries management. Our
study is part of an emerging effort to better comprehend
geographic variation of phenotypes and to explore the possible
population dynamics by using all the individuals as a single
pool instead of the conventional average phenotypes analysis,
that a priori aggregates individuals by region. This is a new
methodological approach based on the existence of ecotypes and
phenotypes previously described for some fish species. In this
essay, analyzing a higher resolution sample by origin we expect
to identify different phenotypes in the single pool and their
feasibility to explore the variation among geographic regions
by improving the classification success. For the case study we
chose an economically important pelagic species in the North
Central East (NCE) Atlantic, the blue jackmackerel,T. picturatus,
one of the most landed species in the Macaronesia (Azores,
Madeira, and the Canary Islands), and to a lesser extent, along
the coast of mainland Portugal and Africa (Vasconcelos et al.,
2018; Moreira et al., 2019b). Information needed to properly
delineate stock units of T. picturatus in the NCE Atlantic is
still a debate (Vasconcelos et al., 2017b, 2018; Moreira et al.,
2018, 2019a,b, 2020). So far, studies have focused on quantitative
analyses of populations defined a priori at a local or regional
spatial scale and the description of the average phenotype (Tuset
et al., 2003; Vasconcelos et al., 2018; Moreira et al., 2019b). The
new perspective of shared phenotypes in different proportions
among adjacent fishing grounds may open new management
approaches in migratory species.

2. MATERIALS AND METHODS

2.1. Study Areas
For this study three origins where T. picturatus is an important
fishing resource were considered, two within the Macaronesia
ecoregion (the Canary Islands and Madeira Islands) and
mainland Portugal (Figure 1). Macaronesian archipelagos are
characterized by several oceanographic currents (e.g., the North
Atlantic Current, Azores Current, and the Canary Current)
(Sala et al., 2013), distinct habitat discontinuities and seasonal
upwelling processes (Stefanni et al., 2015).

The Canary Islands Seamount Province (CISP), an oceanic
area off Northwest (NW) Africa includes 16 main seamounts,
the Canary archipelago and the Selvagens subarchipelago (Rivera
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FIGURE 1 | Map showing the geographical areas where Trachurus picturatus was sampled off the north and central eastern Atlantic Ocean. The dashed lines indicate

the limit of the exclusive economic zones (EEZs). Source: Regional Directorate of the Sea.

et al., 2016). In the Canary Islands, the characteristic oligotrophic
waters (González-Dávila et al., 2006) are affected by intense
mesoscale eddies that create a significant nutrient supply to
the euphotic zone in oligotrophic areas (González-Dávila et al.,
2006; Vélez-Belchí et al., 2017). This regional activity results
from the joint effects of the disturbance in the South-westward
flow of the Canary Current and the trade winds along with
the frequent development of upwelling filaments associated
with the upwelling system off NW Africa (Borges et al.,
2004; González-Dávila et al., 2006). Another important feature
described for the Canaries is the occurrence of late winter
bloom characterized by an increase in the primary production
and chlorophyll concentration, considered the most productive
season in these waters. During this period (February–March) the
sharp thermocline is affected by cooling of surface waters causing
the pumping of nutrients into the upper layers, promoting
an enhancement in the primary production and chlorophyll
concentration (Moyano et al., 2009; Brochier et al., 2011). The
Madeira archipelago, located at 500 km north of the Canary
Islands and about 1,000 km southwest of mainland Portugal

(Spalding et al., 2007), is also affected by multiple oceanic
and coastal currents (e.g., the Canary, the Azores, and the
Portugal currents) leading the cold temperate waters from the
north to mix with the warm tropical waters from the south
(Caldeira et al., 2002). A number of seamounts extends from the
Madeira archipelago (33◦N latitude) to the Portuguese mainland
exclusive economic zone (EEZ, 38◦N) defined as the Madeira-
Tore geologic complex (Morato et al., 2008). This complex
provides appropriate conditions for the occurrence of distinctive
and diverse benthic communities (Lobo et al., 2016) and provides
spawning locations to bentho-pelagic species, as is the case of
T. picturatus (Pakhorukov, 2008; Menezes et al., 2009). The
Portuguese coast, that extends along the south-western region
of the Iberian Peninsula, includes particular oceanographic and
environmental attributes, like the Iberian Poleward Current,
the Western Iberia Buoyant Plume, with different processes
linked to bathymetry, wind regimes and upwelling filaments
(Bettencourt et al., 2004; Santos et al., 2007). Due to the
position in a biogeographic transition zone between temperate
and subtropical waters (Change, 2001), the Portuguese coast
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can be divided into three regions: a northwest region with a
temperate climate, and two other regions, the southwestern and
southern coasts displaying a Mediterranean climate (Bettencourt
et al., 2004; Santos et al., 2007). Along these regions, Sea Surface
Temperature (SST) varies regionally (Baptista et al., 2018) and
has been steadily increasing over the last century (Change, 2001).

Additionally, the monthly average SST (◦C) of
each study region was obtained from different sources
(Supplementary Figure 1): literature for Peniche (mainland
Portugal, MIP) (Baptista et al., 2018), Madeira archipelago
(MAD) from the database GISS Surface Temperature Analysis
(GISTEMP v4) from NASA, with a 4× 4 km resolution (Lenssen
et al., 2019; GISTEMP-Team, 2020) and the Canary Islands
(CAN) from the database IGOSS-IRI (Reynolds et al., 2002).

2.2. Otolith Collection
Samples of blue jack mackerel were collected off Peniche waters,
Madeira archipelago and the Canary Islands. Specimens were
obtained from the commercial landings using trawling (MIP)
or purse seine (MAD and CAN), between 2005 and 2018. Each
individual was measured for total length (TL, 0.1 cm) and a
correction factor applied to avoid size loss by freezing process
in the CAN and MIP samples (Jurado-Ruzafa and Santamaría,
2013). Only individuals with TL > 17 cm (the smallest mature
individuals based on Jurado-Ruzafa and Santamaría, 2013)
were considered to avoid ontogenetic changes between juvenil
and adult stages. A total of 670 sagittae (hereafter otoliths)
were extracted, cleaned, and stored dry in labeled vials for
morphological studies (Table 1).

2.3. Otolith Shape Contour Analysis
The left otoliths were positioned and photographed with the
sulcus acusticus facing downward and the rostrum to the left
on the horizontal plane to reduce distortion errors in the
normalization process. Usually, we recommend the photographic
record to be performed with the sulcus facing upward (Tuset
et al., 2008). However, the images used were taken for the
purpose of aging and the material is not currently available.
High-contrast digital images were captured using digital cameras
coupled to stereomicroscopes with the magnification adjusted
to 10x using NIS-Elements F© imaging software (Instituto
Español de Oceanografía, IEO - Canaries) and Leica Application
Suite X Core, version 4.5. (Direção Regional do Mar, DRM
- Madeira). ImageJ 1.50i (http://imagej.nih.gov/ij) and Leica
Application Suite X Core, version 4.5 (Leica Microsystems,

TABLE 1 | Number (N) of individuals and fish (TL, cm) and otolith (OL, mm) mean

lengths (± standard deviation, SD) of Trachurus picturatus sampled off the north

and central eastern Atlantic Ocean.

Locality N TL OL

Mean ± SD Min.–Max. Mean ± SD Min.–Max.

Mainland Portugal 120 28.4 ± 3.61 22.3–37.6 7.08 ± 0.982 5.34–0.7

Madeira 260 22.7 ± 3.11 17.3–30.9 5.85 ± 0.646 4.22–8.24

Canary Islands 290 22.04 ± 3.27 17.1–31.9 6.50 ± 0.809 4.80–8.67

Wetzlar, Germany) were used to measure otolith lengths
(OL, 0.01 mm). Both MAD and MIP samples were analyzed
in Madeira. The terminology used for the orientation and
anatomical description of the otoliths was in accordance with
Tuset et al. (2008).

Otolith shape analysis was based on wavelet functions.
This procedure, contrarily to other contour analyses, enables
the identification of single focal points located on the x-
axis along the otolith contour favoring the identification of
specific zones among specimens (Parisi-Baradad et al., 2005,
2010). A total of 512 equidistant cartesian coordinates on
each orthogonal projection of the otolith were extracted using
the rostrum as origin (Tuset et al., 2019). Image processing
was performed by the image analysis software Age&Shape
(v1.0; Infaimon SL©, Barcelona, Spain). From each contour
nine wavelets were derived according to the degree on otolith
detail. The 4th wavelet was selected for further analyses since
it defines with enough details the otolith silhouette for the
identification of intra-specific populations or morphotypes
(Abaad et al., 2016; Tuset et al., 2019).

2.4. Data Analysis
A principal component analysis (PCA) built on the variance-
covariance matrix was performed to reduce the wavelet functions
with no loss of information on the otolith shape (Sadighzadeh
et al., 2012; Tuset et al., 2019, 2021). Significant eigenvectors were
detected by plotting the percentage of total variation explained
by the eigenvectors vs. the proportion of variance expected
under the “broken stick model” (Gauldie and Crampton, 2002).
As intraspecific differences might be associated to allometry,
Pearson’s correlations were tested between otolith length and
the principal components (Stransky and MacLellan, 2005; Tuset
et al., 2019). Then, the effect of otolith length was removed by
using the residuals of the common within-group slopes of the
linear regressions of each component on otolith length, building
a new PCA matrix. The optimal clustering algorithm and the
number of phenotypes (also named “morphotypes” or “M”) were
determined using the optCluster package (Sekula et al., 2017) in
R (R Core Team, 2020). This package allowed the evaluation of
several clustering algorithms (hierarchical, diana, k-means, pam,
clara, model-based, som, and sota) using Manhattan distance
(and Ward method for hierarchical clustering option) with
multiple validation measures (internal and stability) to elucidate
the most appropriate clustering partition using the cross-entropy
Monte Carlo algorithm and Spearman to measure the similarity
between ordered lists in rank aggregation.

The phenotypic variation of each morphotype was
established from permutational multivariate analysis of variance
(PERMANOVA, Anderson, 2001) with 9,999 permutations using
the Manhattan distance and Bonferroni correction for post-hoc
pairwise multiple comparisons. The average phenotype of the
first component of PCA was also compared among origins
(O’Dea et al., 2019). The selection of this first component
was based on the highest variability explained (see section 3).
Normality and homogeneity of variance of PC1 were tested
using Shapiro and Bartlett tests. Depending on these results,
a parametric Student t-test was applied (two samples), or a
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non-parametric Kruskal-Wallis test (more than two samples)
were performed to evaluate the mean differences and Nemeyi
tests as post-hoc for multiple comparisons. These analyses
were only performed if the amount of data by region and
phenotype was >10 to avoid bias in the results. Variations of
each morphotype through the lifespan in each region were
analyzed using a statistical test of independence χ

2. The
Fisher’s exact test was an alternative for contingency tables with
observed values below 5. Although this test is common for 2
× 2, it can be also applied for r x c tables using 9,999 Monte
Carlo permutation tests (Mehta and Patel, 1996). The adjusted
Pearson residuals were estimated to find the values driving the
significance of these tests. The biological annual cycle was split
into three periods following biological information available
for the species (Jurado-Ruzafa and Santamaría, 2011, 2013;
Vasconcelos et al., 2017a) and models proposed to Trachurus
spp. (Gerlotto et al., 2012; Tuset et al., 2019): breeding (January–
April), feeding/ breeding-recovery (May–July), and recruitment
(August–December).

Among the different non-parametric classification algorithms,
artificial neural network (ANN) was selected for the comparison
of phenotypes among origins due to its high accuracy and
commonly used in otolith studies, such as fish classification
(El Habouz et al., 2016; Tuset et al., 2021), aging (Robertson and
Morison, 1999; Moen et al., 2018), and microchemistry (Hanson
et al., 2004; Mercier et al., 2011). This classifier is based on
a network architecture, where the smallest unit is the neuron.
Thus, the network is composed by three neuron layers: input
layers groups—input layer (morphological variables), hidden
layers (nodules from i = 1...n), and output layer (species).
We used a multi-layer perceptron (MLP) architecture and a
back-propagation gradient algorithm to calibrate it (El Habouz
et al., 2016; Ciaburro and Venkateswaran, 2017). Given that
the number of specimens by phenotype was not high in
some cases, a strategy based on leave-one-out cross-validation
(LOOCV) was used (Marti-Puig et al., 2016, 2020), where all
observations are considered for both training and validation,
and each one is used once for validation. The validation method
was repeated 1,000 times for each analysis. The classifications
were performed using the caret (Kuhn, 2008) and RSNNS
(Bergmeir and Benítez Sánchez, 2012) packages in R. The optimal
hyperparameters (hidden units) were defined during preliminary
tuning (Supplementary Figure 2). These analyses were only
performed for samples > 25 individuals.

3. RESULTS

3.1. Phenotypic Diversity
The first 27 principal components of the PCA analysis
represented the expected variance by chance alone (78.2%)
(Supplementary Table 1). However, the variance explained by
the first PCs was low due to high morphological variability.
Considering these PCs, the SOTA (Self-organizing Tree
Algorithm) method and the identification of four phenotypes
(M1-4) was the most robust option on validation parameters
(Supplementary Table 2). The PC1 axis (8.4% of variance
explained) represented the variability of the antirostrum region:

rounded or flattened with a higher convexity of the antero-
dorsal margin and enlarged rostrum for positive values (M1,
Figures 2 and 3), and small peak or absent with a flattened
antero-dorsal margin and shorten rostrum for negative records
(M3, Figures 2 and 3). Both phenotypes showed an elliptic
shape and a unimodal density distribution separated by two
intermediate positive skewed distributions, partially overlapping
each other and mainly with M3 (Figure 2). The PC2 axis (4.8%
of variance total) allowed the separation of morphotypes M2
and M4, both with lanceolate shape. The density distribution of
all morphotypes exhibited a more overlapped unimodal pattern
with a higher variance for M1 (Figure 2). The positive and
negative values mainly described the morphology of posterior
margin and rostrum size: rounded-oblique drawing a double
peak and enlarged rostrum (M2) and rounded with only one
point as maximum distance and shorter rostrum (M4) (Figures 2
and 3). The morphological comparison of average wavelets of
each morphotype between origins showed similarities between
MAD and CAN, and different for MIP, showing always major
variations in the antirostrum region.

3.2. Phenotypic Variation
The proportion and type of phenotypes varied among origins:
M1 was the most abundant in the MIP area (78.3%) followed by
M2 (16.7%), whereas M3 (1.7%), and M4 (3.3%,) were rare. The
same pattern occurred in theMAD sample, although with a lower
proportion of M1 (57.7%), and a slight increase of M2 (28.1%),
M3 (4.6%), and M4 (9.6%). In the CAN region, M2 (43.5%) and
M3 (30.4%) were the most abundant morphotypes, followed by
M4 that reached up 18.6% whereas M1 barely reached 8%. Due
to the low number of M3 and M4 in MIP (n = 2 and n =

4, respectively) these data were not considered in this section.
Overall, a clear trend was detected in the morphotypes frequency
throughout the latitudinal gradient in the NCE Atlantic, with an
evident increase in the presence of phenotypes southwards, in
warmer waters.

For each morphotype, the PERMANOVA revealed significant
differences between origins (Supplementary Table 3). Similar
results were obtained using the median value of PC1, which
reinforced the idea of its suitability to assess the phenotypic
variation in otoliths. In fact, the median values of M2, M3,
and M4 showed a geographical tendency with the MAD values
between MIP and CAN. Significant differences were obtained
between MIP/MAD and CAN for M2, M3, and M4. M1 showed
an alternative pattern where the MIP and CAN phenotypes
were more concurrent (Figure 4; Supplementary Table 4). A
noticeable overlap occurred between modes in MAD and CAN
phenotypes distributions for M2, M3, and M4.

3.3. Seasonal Variability of Phenotypes
For the MIP sample, no seasonal changes were observed in
the relative frequencies of each morphotype (χ2

= 3.583, df
= 3, p = 0.336), with the residuals normally distributed (p
= 0.733) (Figure 5A). In contrast, a significant variability was
detected in the two oceanic regions (χ2

= 26.020, df = 6,
p < 0.001 for MAD; χ

2
= 21.458, df = 6, p = 0.0029

for CAN), with slight differences between them. During the
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FIGURE 2 | Scatterplot of the first and second axes of the PCA and marginal density distribution plots of the four morphotypes found in Trachurus picturatus from the

north and central eastern Atlantic Ocean. CAN, Canary Islands; MAD, Madeira; MIP, mainland Portugal. Color circles indicate the centroid of each morphotype.

breeding season, the MAD sample was mainly represented by
M1 (67.8%), followed by M2 (26%). In the feeding season, the
number of specimens (not the frequency) decreased markedly.
During the recruitment, the number of individuals increased
but in unexpected frequencies: M1 increased only to 40.7%,
whilst M4 exceeded its previous values (19.8%). These shifts
displayed a clear asymptotic distribution of residuals (p < 0.001)
(Figure 5B). Finally, the CAN sample showed a similar seasonal
pattern in the four morphotypes, decreasing their percentage
mainly in the recruitment season. However, the presence of the
highest values of M4 during the recruitment (44.4%) led to an
asymptotic distribution of residuals (p= 0.002; Figure 5C).

3.4. Identifying Phenotypic Stock
Considering the average phenotype for all otoliths, the
classification accuracy of regional populations attained

88.5% and the Cohen’s kappa (κ) was 0.821, indicating that
the classification efficiency was 82% better than would have
occurred by chance alone (Table 2). The accuracy was very high
for the MIP (100%) and CAN (93.1%) populations, whereas
the misclassification was noticeable in the MAD (21.9%)
population. When the analysis was performed per morphotype,
the classification models for the morphotypes M1, M2, and
M4 attained great accuracy values (89.95, 98.4, and 98.7%,
respectively; Table 2).

4. DISCUSSION AND CONCLUSIONS

The present study help unveil current unknowns in otolith
phenotypic variability of T. picturatus in the NCEAtlantic waters.
Our findings revealed the existence of four morphotypes (M1,
M2, M3, and M4) whose frequencies varied according to a
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FIGURE 3 | Average decomposition of otolith contour using the 4th wavelet for the four phenotypes found in Trachurus picturatus off the north and central eastern

Atlantic Ocean. CAN, Canary Islands; MAD, Madeira; MIP, mainland Portugal.

latitudinal gradient: M1 mostly occupied mainland Portugal and
Madeira, M2 Madeira and the Canary Islands, and M3 and
M4 the Canary Islands. This phenotypic variation is mainly
defined by the antirostrum shape (PC1 axis) and the rostrum
size. Previous studies have demonstrated that the antirostrum
plays a key role in stocks delimitation due to its high variability
(Vasconcelos et al., 2018; Moreira et al., 2019b). Interestingly,
this feature shows a clinal variation at large geographic scales
in other SMPF such as Trachurus trachurus (Stransky et al.,
2008), Engraulis encrasicolus (Bacha et al., 2014; Jemaa et al.,
2015), Clupea harengus (Libungan et al., 2015), and Sardina
pilchardus (Jemaa et al., 2015). Although the presence/absence
of antirostrum is genetically codified (Vignon and Morat, 2010),
many Trachurus spp. show similar variations in the antirostrum
silhouette (Lombarte et al., 2006), and hence, it cannot be an
indicator of a genetic polymorphism. A genetic-environment
interaction where the environment conditions (e.g., temperature,
depth, salinity, habitat type, and food availability) act as the main
source of variation at a major scale seems more plausible. Thus,
our findings should be interpreted as an enhanced adaptability
of individuals to warmer environments deriving in an increase
of the phenotypic variation. Likely, the genetic control may
play an important role at lower scale within populations driving
in local migratory behaviors as occurs between inshore and
offshore T. japonicus adults in Japan (Azeta and Ochiai, 1962)
and different lifestyle in T. picturatus in the Canary Islands

(Tuset et al., 2019). In this context, the hypothesis of a temporal
fast phenotypic adaptation to environment changes proposed
by Moreira et al. (2019b, 2020) to explain regional differences
should be interpreted with care since a low number of samples
avoid the detection of alternative phenotypes. Unfortunately,
otolith studies considering diverse types of morphotypes, and not
average phenotypes, across a spatial scale are scarce (Bacha et al.,
2014; Jemaa et al., 2015).

In the evolutionary history of the genus Trachurus, the
Picturatus-group (T. murphyi, T. symmetricus, and T.
picturatus) represents the most advanced forms within the
genus (Shaboneyev, 1981; Cárdenas et al., 2005). An important
feature in this group is its highly migratory behavior (Cárdenas
et al., 2005) and the ability to inhabit areas far beyond the
continental shelf (Shaboneyev, 1981; Lloris and Moreno,
1995), which together with a recent demographic expansion
led to the presence of panmictic populations (Poulin et al.,
2004; Moreira et al., 2019a; Zorica et al., 2020). Studies in
T. mediterraneus evidenced the individual capability for
swimming linked to phenotypic variation (see Turan, 2004).
Considering this premise, specimens with lesser antirostrum
zone, and consequently the antero dorsal saccular macular
more developed, may have a greater swimming capability
(Vignon and Morat, 2010). For instance, seamount/bank areas
around Madeira constitute feeding zones during the warmer
season (Menezes et al., 2006). In the Canary Islands, the
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FIGURE 4 | Variation of each phenotype of the Trachurus picturatus off the

north and central eastern Atlantic Ocean by region: the Canary Islands (red),

Madeira (green), and mainland Portugal (blue). For the phenotypes M1 and

M3, mainland Portugal is not represented due to lack of enough data (n < 10).

This graph aims to show that each phenotype changes in each region,

probably due to environmental conditions such as temperature.

FIGURE 5 | Seasonal variation of the four otolith phenotypes found in

Trachurus picturatus off the north and central eastern Atlantic Ocean.

Breeding: January–April; Feeding: May–July; Recruitment: August–December

(Jurado-Ruzafa and Santamaría, 2011, 2013). The number of specimens

found by group is given. (A) Mainland Portugal, (B) Madeira, (C)

Canary Islands.

migratory behavior toward deeper waters only occurs in the
recruitment period (warmest season), probably associated to
the weak permanent upwelling (Gómez-Letona et al., 2017).
In this context, the otolith shape of morphotypes (elliptic vs.
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TABLE 2 | Phenotype abundances of Trachurus picturatus sampled off the north

and central eastern Atlantic Ocean.

Phenotype Prediction References Performance measures

MIP MAD CAN Accuracy Kappa % accuracy

All MIP 120 32 6 100.0

MAD 0 203 14 78.1

CAN 0 25 270 93.1

Total 120 260 290 0.885 0.821

M1 MIP 94 4 – 100

MAD 0 146 – 97.3

Total 94 150 – 0.9836 0.9657

M2 MAD – 67 14 91.8

CAN – 6 112 88.9

Total – 73 126 0.8995 0,7885

M4 MAD – 25 1 100.0

CAN – 0 53 98.2

Total – 25 54 0.9873 0.9711

CAN, Canary Islands; MAD, Madeira; MIP, mainland Portugal. Morphotype M3 was

excluded due to the low number of individuals representing the MAD population. In bold,

the assignation percentage of each actual group membership with its right predicted

group.

lanceolate) gives additional information regarding somatic
growth rate (Tuset et al., 2019), as occurs in T. mediterraneus

(Karlou-Riga, 2000), taking into account that individuals at
higher-latitudes grow faster than lower-latitude individuals
(Yamahira et al., 2007). Specimens with lanceolate otoliths
usually show a slow-growing pattern and reach larger sizes
(Tuset et al., 2019) which could favor a migratory behavior
toward deeper-water to feed, whereas individuals with elliptic
otoliths display faster-growing (Tuset et al., 2019) and probably
lesser oceanic mobility capacity. Consequently, the feeding
level and the foraging (migratory behavior) could influence a
phenotypic expression on otolith shape (Hüssy, 2008). This idea
about inshore and offshore contingents with different capacities
to perform migrations, was proposed by Tuset et al. (2019)
for the Canary blue jack mackerel. In the Azores, different
fish size distributions were observed in the islands shelf and
offshore (Menezes et al., 2006) with the largest individuals found
over the seamounts, during the breeding season (Arkhipov
et al., 2002). Also for T. japonicus, migratory and resident
forms with slightly differing morphologies in the otolith shape
were described across the Japanese coast (e.g., Azeta and
Ochiai, 1962; Kanaji et al., 2010). Both forms of T. japonicus
adults occurs in the same fishing grounds with differences
being phenotypic and not genetically determined, despite the
migratory form originating in remote areas. Therefore, the
local population dynamics of Trachurus spp. are complex and
hidden by the presence of not dominant phenotypes, reason
why the knowledge on populations depends partially on a good
sampling representation.

The phenotypic variation can be illustrated as a reaction
norm, a line or curve in a x-y plot with the x-axis representing
the environment and y-axis the trait value (Donohue, 2016).
They are used to understand the evolutionary and adaptive
processes (Lind et al., 2015; Donelson et al., 2018), as well as
for analyzing the effects derived from human activity (Forsman,
2015; Donohue, 2016). However, raising this matter by using
the otolith shape is really novel, although not exempt from
its own problems as, for example, the low variance explained
by the PC1, the multiple representativity of points correlated
between them, and the absence of ecological or morphometric
traits clearly defined. Nevertheless, the comparison of regional
variability using PC1 provided similar conclusions than the
classification system used here. Hence, this component could
be a useful tool for drawing the phenotypic variation on
otoliths. Among the exogenous factors, the SST seems to regulate
the optimal phenotype(s), its variance and the presence of
several modes due to shift of some individuals closer to the
new optimum (i.e., adaptive plasticity) (O’Dea et al., 2019).
The frequency of the phenotypes M3 and M4, rare in the
mainland Portugal and Madeira, increased in the Canaries
with the rising SST. M1 frequency, rare in Canary Islands,
increased in mainland Portugal and Madeira associated to
a decrease in the SST. This regional morphological affinity
supports the hypothesis about the recolonization of Atlantic
regions after Pleistocene glaciations (Moreira et al., 2020),
regardless of the capability of transporting fish, eggs, and
larvae among geographic areas (see Santos et al., 1995). In
contrast, it is highlighted that the overall otolith contour
did not follow a specific pattern. However, one elliptic and
lanceolate shape was always relatively common in the three
origins, suggesting different lifestyles within populations (Tuset
et al., 2019). Considering that greater levels of phenotypic
variation within a population accelerate adaptation to a new
environment (Ramler et al., 2014; O’Dea et al., 2019), the current
ocean warming could lead to a greater frequency of currently
rare phenotypes in the northern latitudes and new ones in
the southern.

Population structure knowledge is a key factor to define
appropriate fishery management regulations. The use of
morphotypes disclosed seasonal variations in their frequencies
in the sampled origins, affecting the local dynamic and the
definition of the most suitable population structure (i.e., isolated,
metapopulation, or patchy). This dynamic seems to follow a
temporal and spatial migratory behavior relying on certain
environmental conditions, especially the SST. For this reason,
an appropriate sampling scheme must be carefully planned to
include a considerable and representative number of individuals
from all seasons, to avoid sampling only part of the existing
morphotypes in the sampling site. Analyses based on punctual
samplings with a low number of individuals per geographic area
(n < 40) and season (not covering the annual cycle) (see Moreira
et al., 2019b) may lead to an incorrect interpretation by not
taking into account the seasonal variability of each morphotype
per region. In fact, the use of the otolith contour to delimit T.
picturatus stocks in Atlantic waters provided low classification
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success rates, lower than 50% (Moreira et al., 2019b) and 74%
(Vasconcelos et al., 2018), including some inconsistencies in the
first study. In both studies, the analysis was performed using
the classical method of elliptic Fourier analysis (EFA) with lineal
discriminant analysis as classifier. The main methodological
difference with the present work, in addition to the high
resolution samples, is the use of wavelet transformed that detects
local singularities favoring the identification of specific zones
(e.g., antirostrum zone) (Sadighzadeh et al., 2012; Tuset et al.,
2019), and non-parametric alternative algorithms (Smoliński
et al., 2020). Our findings noticeably increased until 88.5%
the accuracy of the model using average phenotypes, although
higher classification rates were obtained whenmorphotypes were
considered (>95%). Nevertheless, all studies highlight the highest
percentage of misclassification in the Madeira population, which
may be explained by the overlapping of the now identified
morphotypes M1 with mainland Portugal and M2 with the
Canary Islands. Considering these results, the hypothesis of
the existence of at least three stocks in the Atlantic waters
(as the Azores and the African coast were not here included)
seems plausible, despite weak genetic differentiation (Moreira
et al., 2019a). However, they might be linked by straying of
individuals through dispersal in the larval, juvenile and/or
adult phase, representing a metapopulation as occurs in T.
murphyi (Gerlotto et al., 2012). Our findings plan a serious
problem about themethodological suitability of using the average
phenotypes for discrimination of SMPF stocks and reinforces
the importance of awareness of phenotypic diversity in any
scenario of fisheries management, specially considering the
current global warming. Large spatial scale data are adequate
for delimiting the stocks, but the within-stock variation is
similarly relevant for a better understanding of environmental
factors delimiting the boundaries (Vignon, 2015). Monitoring
temporal changes in phenotypes should be reconsidered for
an adequate fishing management, especially in SMPF species.
Obviously, differences in the fishing methods (purse seine fishing
in the archipelagos and trawling in mainland) used to catch T.
picturatus and the different levels of exploitation, causes unequal
lengths distribution among origins imposing difficulties in the
unification of parameters/analysis among geographic areas. This
problem can only be overcome if a global monitoring program
among the involved laboratories is implemented. The present
study provides a new turning on the phenotypic analysis for
discrimination of stocks, highlighting its relevance in the current
context of global change.
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