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Current research on anthropogenic impacts on marine ecosystems often relies on
the concept of a “baseline,” which aims to describe ecosystems prior to human
contact. Recent research is increasingly showing that humans have been involved
in marine ecosystems for much longer than previously understood. We propose a
theoretical framework oriented around a system of “thresholds” referring to system-
wide changes in human culture, ecosystem dynamics, and molecular evolution. The
concept of the threshold allows conceptual space to account for the fluid nature of
ecosystems throughout time while providing a critical framework for understanding
drivers of ecosystem change. We highlight practical research approaches for exploring
thresholds in the past and provide key insights for future adaptation to a changing world.
To ensure ecological and societal goals for the future are met, it is critical that research
efforts are contextualized into a framework that incorporates human society as integral
to ecology and evolution.
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FROM BASELINES TO THRESHOLDS

Humans have long been part of marine ecosystems worldwide, although the nature of this
relationship has changed over time and space. Today many marine ecosystems are deeply
threatened, including commercial fish stocks, coral reefs, and polar environments (Bindoff et al.,
2019; Worm and Lotze, 2021). The ongoing crisis in the world’s oceans threatens vulnerable species
and ecosystems as well as economic stability and food security (FAO, 2018). Further, the world is
shifting toward relying even more heavily on the ocean (Costello et al., 2020). From these trends,
it is clear that research must address the maintenance of ocean ecosystems. To balance the various
needs of all ecosystem actors, both human and non-human, it is crucial that we have language and
theory that reflects the dynamic nature of marine ecosystems and our place in them.

Addressing the problem of ocean ecosystem degradation requires enormous interdisciplinary
effort. This effort, however, is often stymied by the way in which knowledge creation occurs in
marine science. In 1995, Daniel Pauly published a paper on the now-famous phenomenon known
as “shifting baselines syndrome (SBS),” in which collective environmental knowledge and memory
move forward in time with successive generations, resulting in gradual loss of knowledge regarding
the previous state of an ecosystem (Pauly, 1995). Continuous environmental degradation can result
in a misinterpretation of changes over time, frequently leading to under-valuation of environmental
carrying capacities or species population sizes (Lotze and Worm, 2009; Rodrigues et al., 2019)
making researchers ill-equipped to fully understand changing ecosystems. Yet, the environments
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being studied have been transformed by human actions, often for
a much longer time period than is commonly assumed (Lotze and
Worm, 2009; Rodrigues et al., 2019).

Although the prevalence of SBS has been clearly
demonstrated, the concept itself relies on a problematic
ecological assumption: that there is a “baseline” for any one
species or ecosystem dynamic. This implies a singular, natural
state for any particular ecosystem, which, in practice, becomes
fraught with arbitrary decisions regarding how a “baseline”
is determined (Lotze and Worm, 2009; Rodrigues et al.,
2019). To illustrate this point, Collins et al. (2020) estimated
historical population sizes of hunted North American mammals
throughout history using two different historical time points as
cut-offs for baseline calculation. They found that by pushing the
timeline back 100 years, population size estimates increased by
over 10%, suggesting the original estimates were likely misleading
due to the arbitrary designation of a temporal baseline. Such
studies are crucial in illustrating the arbitrary nature of baseline
determination while acknowledging the equally important role
baseline assumptions play in knowledge creation.

It is clear that humans have had a significant and deleterious
effect on our surrounding ecosystems in our more recent history.
Yet, it is also important to emphasize that humans have played
a role in our environments for the entirety of our evolutionary
history, including coastal and marine ecosystems (Rick and
Erlandson(eds), 2008; Stringer et al., 2008). This role was neither
inherently positive nor inherently negative our long relationship
with the marine environment and the increasingly appreciated
dynamic nature of ecosystem stability illustrates the fact that the
“baseline” concept itself is what should be shifting. Rather than
focusing on a baseline, the concept of SBS should be incorporated
into a wider theoretical framework of thresholds in marine
environments which explicitly incorporates human culture as an
integral component of marine ecosystems. As will be discussed
below, the concept of the threshold allows conceptual space for
the fluid nature of ecosystems throughout time. It also provides
markers for establishing baselines and a critical framework for
understanding drivers of ecosystem change.

By incorporating SBS into a larger discussion of thresholds, the
debate can be shifted back to understanding long-term ecosystem
dynamics rather than elucidating concrete baselines. Further,
the concept of thresholds expands the timescale further than
that of SBS, allowing complete incorporation of ecological and
evolutionary dynamics into the discussion of sustainable resource
management. Finally, as we will show, SBS can be conceptualized
as a key component within the wider threshold structure as a
cultural characteristic that facilitates the crossing of a certain type
of threshold—the tipping point.

We recognize that some of these concepts have been
previously addressed in other studies and reviews (Groffman
et al., 2006; Samhouri et al., 2010; Rodrigues et al., 2019).
Here, we propose a framework that seeks not to disprove
other attempts but to expand and enhance inquiry into past
ecosystems. We propose a generalized research approach. We
emphasize the way in which recent advances in molecular
research can illuminate long-term ecosystem change when they
are firmly grounded in theory that explicitly incorporates human

society in our understanding of what constitutes an “ecosystem.”
We situate this framework within previous theoretical work,
including SBS. We then highlight knowledge gaps in ecological
and evolutionary thresholds that can be addressed through
biomolecular methods that have become increasingly efficient
and accessible in recent years, such as genomics and palaeo-
/archaeo-genomics and stable isotopes analysis. Finally, we
provide suggestions for future research and the impact such
studies could have on providing crucial information for future
environmental resource management.

DEFINING THRESHOLDS IN MARINE
ECOSYSTEMS

The technical definition of a “threshold” in the Oxford English
Dictionary is, “[t]he magnitude or intensity that must be exceeded
for a certain reaction or phenomenon to occur” (OED, 2021). We
use this definition of “threshold” to define various subtypes of
threshold that are relevant for understanding marine ecosystems:
the magnitude or intensity of some driver increases or decreases
to the point that a threshold is crossed. Here we highlight
three major threshold categories that pertain to change in
marine ecosystems: cultural, ecological, and evolutionary (see
Table 1) and discuss various research techniques to identify
when a threshold has been crossed, e.g., a certain reaction
or phenomenon has occurred. For each category, threshold
identification is always dependent on the research question: it
relies on the reaction or phenomenon of interest in the study.

When discussing marine resource exploitation, there are
several major ways in which a threshold can be identified.
The first is to pinpoint times in the past at which human
societies experienced a major transition that coincided with
changes in relationships to marine ecosystems: thresholds in
culture. These thresholds are based on phenomena such as
changes in perception of marine environments, technological
loss/innovation, economic development, and changes in resource
use fall into this category. Thresholds in culture signify a shift in
human society that impacts societal-level relationships with the
surrounding environment. There are several cultural thresholds
that have been identified in human history and are widely known,
including the Neolithic and Industrial “revolutions” and the rise
of the Information Age. It should be noted, however, that shorter
or seemingly less dramatic periods of flux can also be considered
cultural thresholds though this is dependent on the scale of
the study and the research question. Some examples of cultural
thresholds include religious change, technological advance, and
political regime changes (including societal collapse). These
changes often affect the relationship between humans and their
environments, even if indirectly, through changing subsistence
patterns, access to novel food sources through trade, and
changing economic and political regulations. Cultural thresholds
that impact human exploitation in the marine environment
are varied and often relate to technological advance (e.g.,
seafaring technology or improved fishing techniques) (Unger,
1980; Couper, 2009; O’Connor et al., 2011; Montenegro et al.,
2016), but can also be linked to cultural mores surrounding
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seafood consumption, as seen with the arrival of Christianity in
northern Europe and the associated increase in fish consumption
on religious holidays in lieu of meat (Hoffmann, 2001, 2005;
Müldner and Richards, 2005). Although these cultural changes
can (and often do) have ecological implications, impacting the
ecology is not a requirement for a cultural threshold.

The second category of thresholds characterizes ecosystem
boundaries according to species biology or ecological traits.
These are thresholds in ecology. Thresholds in ecology encompass
relationships between species in an ecosystem (e.g., mutualism,
predation, symbiotic relationships, trophic balance, etc.) and
can refer to radical shifts in ecosystem dynamics as a whole.
Again, the threshold is scalable depending on the research aims.
Thresholds in ecology can be linked to anthropogenic impacts
but may also occur naturally, such as in the process of ecosystem
turnover. Thresholds in ecology can also be driven by abiotic
factors, both extrinsic, such as the introduction of pollutants
or chemicals, and intrinsic, such as biogeological processes like
shifting currents and changes in upwelling. Such ecological
thresholds are commonly used in exploitation policies today.
For example, fisheries policies are often based on measures
of spawning-stock biomass—the number of fish in a species
that can reproduce in any given year—requiring that human
extraction levels do not cause the population to dip below a
certain threshold based on the minimum remaining stock size
calculated for sustaining the population (De Lara et al., 2007).
We here avoid the terms “ecosystem services” and “ecosystem
function” as these have been used in the past to create hierarchies
between human societies and their surrounding ecosystems and
frame management goals purely in terms of how these ecosystems
can benefit humans (de Groot, 1987; de Groot et al., 2002;
Costanza et al., 2017). We recognize that the definition of the
term “ecosystem function” has been under debate in ecological
research for some time (Paterson et al., 2012). As it can be
used as an underpinning for determining ecosystem services
and occasionally synonymously with “ecosystem services” (e.g.,
Peterson et al., 2010; Oliver et al., 2015; Hillman et al., 2018), we
choose to avoid this term altogether.

Finally, there are thresholds in evolution. Evolutionary
thresholds are crossed when there is a heritable change in
genotype or phenotype in a species. For simplicity’s sake, we here
discuss molecular evolution as the main example for crossing and
evolutionary threshold. This includes demographic shifts such
as bottlenecks and population expansions, selective processes
and inbreeding, and other phylogenomic phenomena. Potential
drivers of threshold crossing include: species migration, climate
change, and abiotic factors such as ocean acidification and
temperature changes. In recent history, many of these thresholds
are likely reached due to human activity, but may have been non-
anthropogenic in the past. In this paper, we focus on human
exploitation as a critical example of how anthropogenic change
can induce an evolutionary threshold. For example, the concept
of fisheries-induced evolution postulates that intensive fishing
pressures cause an evolutionary change in fish species, mostly
by changing life-history traits for faster maturation (Heino et al.,
2015; Pinsky et al., 2021). Fisheries-induced evolution occurs
when fishing has reached a scale in which evolution is impacted,

which may be temporally decoupled from the ecological or
cultural thresholds.

Recent discourse in ecosystem management, on
anthropogenic impacts on the environment, and on climate
change has revolved around the notion of maintaining human
activity and ecosystem dynamics within a set of sustainable
boundaries often referred to as “thresholds” or “tipping
points” (Lenton and Schellnhuber, 2007; Rockström et al.,
2009; Russill and Nyssa, 2009). As these terms are not often
concretely distinguished, we suggest a differentiation between
them. A threshold is distinct from a “tipping point” in that
it does not inherently imply a system that has lost crucial
regulatory elements. A tipping point can be a form of a
threshold, but thresholds exist which are not “tipping points.”
For example, quantification of sprat population size dynamics
has revealed distinct thresholds at which the Baltic Sea ecosystem
transitions to an alternate stable state (Casini et al., 2009)
but the overall ecosystem dynamics remain unchanged. In
contrast, extractivist policies based on research generated under
SBS is a cultural characteristic that is causing our oceans to
hurtle toward global fisheries collapse and near-total ecosystem
degradation (Pauly, 1995; Jackson et al., 2001; Roberts, 2007;
Bindoff et al., 2019), therefore is key to crossing the tipping
point. Crossing this threshold would be nothing short of
catastrophic, which only serves to highlight the importance
of deepening our understanding of the other three thresholds.
Establishing how thresholds in culture, ecology, and evolution
are crossed is therefore of crucial importance to better inform
ecosystem management efforts and foster novel approaches to
avoid tipping points.

Although seemingly straightforward in definition, these
thresholds are in practice entwined in complex, interdependent
relationships. For example, advances in fishing technology
constitute not only a cultural threshold, but also ecological and
evolutionary thresholds as selective fishing and its ecological
impact will act as new elements in the marine environment,
e.g., with the advent of deep-sea trawling. Given the complexity
of human behavior, ecosystem dynamics, and species evolution,
it is critical to explore these thresholds thoroughly both in
conjunction and as separate phenomena. It can be difficult to
determine at what point a threshold has been crossed or what
should be considered a “threshold.” The threshold concept is not
one-size-fits-all, rather it is a flexible approach that can be scaled
across time and space.

DETERMINING THRESHOLDS: A
GENERALIZED APPROACH

Here, we lay out the ideal workflow for addressing the issue of
identifying thresholds in marine ecosystems in the context of
marine resource exploitation. First, context must be grounded
in historical, paleontological, archeological, and anthropological
research. This includes consultation of historical records,
archeological site reports, and, where applicable, ethnographies.
Critically, what this means for ecologists is directly searching
for answers to ecological/evolutionary questions outside the field
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of ecology. A strong background in the relevant historical and
archeological contexts of the time period and/or biological system
in question shifts ecological inquiry away from assumptions
that long-term change must be caused by abiotic factors, such
as climate, whereas only recent changes can be due to human
activity in the ecosystem. Concurrently, a relevant background
in the natural history of the biological system in question is
crucial for framing the historical and archeological context.
Biomolecular analysis can then be carried out. This work must
be situated in archeology, history, indigenous knowledge, and
ecology in order to interpret results in a nuanced approach based
in systems-level thinking.

Archeology, anthropology, and historical research are key
methodological approaches with which to explore cultural
thresholds. The application of these methods, however, are not
stand-alone modes of inquiry into the problem of identifying
sustainable practices. Research must be framed in the context
of archeology, history and, wherever applicable, indigenous
knowledge. Incorporating all types of knowledge is the only way
we will be able to balance issues such as food security with
the pressing problems of declining biodiversity, climate change,
and social justice.

Many studies of marine resource extraction set their baseline
as the mid- or early twentieth century, citing a drastic change in
technology that allowed for increased fishing capacity in hitherto
inaccessible regions of the globe (Pinnegar and Engelhard, 2008).
This is, of course, an important cultural threshold in marine
resource extraction and one that merits attention. It is likely,
however, that industrial-scale exploitation was occurring, for at
least some populations, much earlier than the twentieth century.
In the Atlantic, archeological and historical research has revealed
fisheries on an enormous scale occurring up to 1,000 years
ago (Barrett, 2019). Indeed, Barrett et al. (2004) propose that a
cultural threshold was crossed at this time in the form of the “Fish
Event Horizon,” in which the English proto-industrial fishing
operations reached a high enough level that the surrounding
North Sea ecosystems were forever changed. These conclusions
were reached based on zooarchaeological analysis in combination
with analysis of historical documents, suggesting that the mid-
or early twentieth century baselines established for many marine
populations are again subject to SBS. This illustrates the capacity
of archeological and historical research to exhibit thresholds in
human culture that indicate likely parallel ecological thresholds.
While providing significant insights, these sources remain limited
for generating a comprehensive understanding of the marine
ecosystem. Archeological and historical research efforts are adept
at determining thresholds in human behavior such as major
societal changes or shifts in scale of exploitation, yet both are
less well-equipped for informing us about species or ecosystem
dynamics (Barrett, 2019; Oosting et al., 2019).

Molecular analysis of archeological assemblages, undertaken
in collaboration with archeologists and historians, can provide
novel insight into broader ecological questions. These approaches
include stable isotope analysis, proteomics, and genomics,
often in conjunction with archeology and paleontology to
form the discipline of biomolecular archaeo/paleontology.
The research aims that can be addressed include: species

identification (Biard et al., 2017); establishing trade, migration,
and population continuity (Star et al., 2017); reconstructing
demographic history and evolutionary change (De Bruyn et al.,
2009; Foote et al., 2013); and analyzing past ecological and
climatic conditions (Gokhman et al., 2017). Recent advances in
ancient biomolecular techniques have created a novel arena for
investigating thresholds, one that is already beginning to take
shape in bioarchaeology and marine ecology (Martínez-García
et al., 2021; Ólafsdóttir et al., 2021). By reconstructing past
ecosystems using ancient DNA and stable isotope analysis, it may
be possible to observe periods of stability and flux, providing
a better understanding of what constitutes a balanced and
sustainable ecosystem in support of future-oriented conservation
efforts. Indeed, ecological principles identified through molecular
approaches could provide policymakers and scientists with the
knowledge necessary to not only recover damaged ecosystems
but to help foster novel ecosystems in the coming years (Alagona
et al., 2012; Máñez et al., 2014).

We recognize that such an approach to inquiry requires
generalized knowledge and a strong collaborative research
network that draws on expertise in each of these fields. In recent
years, such networks have been established in marine ecology
(e.g. Oceans Past Initiative, 2021; Sea Change Project, 2021;
SeaChanges Itn, 2021). We anticipate that as the field turns
toward incorporating social science and humanities, we will see
an influx of networks of this type increasing.

Determining Thresholds: Molecular
Methods
Molecular methods in thresholds analysis often take the form
of biomolecular archeology. This typically involves collecting
remains from archeological sites, such as bones or other
preserved tissue, to extract informative molecules from these
samples. Although traditional morphological studies are typically
used to understand faunal assemblages from archeological sites,
molecular approaches can provide novel insight into broader
ecological questions. To illustrate the potential of biomolecular
archeology for research on marine thresholds, we highlight the
fields of palaeogenomics and stable isotope analysis as well as
the emerging field of palaeoproteomics to illustrate the power
of biomolecular archeology to provide crucial information for
research into marine thresholds.

Palaeogenomics
The field of palaeogenomics has come into its own in the last
decade with the accessibility of ancient DNA laboratories and
genomic sequencing techniques (Dabney et al., 2013). This has
allowed the field to conduct molecular analysis to a scope that
was previously not possible with the prior limited capacity for
ancient genome sequencing, opening up new applications for
ancient DNA (Rawlence et al., 2021 and references therein). Since
then, ancient DNA has been extensively used to explore the
relationship between humans and animal species, both wild and
domesticated, mainly focused on large terrestrial land mammals
and hominids (Meyer, 1992; Dabney et al., 2013; Druzhkova et al.,
2013; Woods et al., 2018). However, remains from fish, marine
mammals, and other aquatic species are often recovered from
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archeological sites and included in zooarchaeological analyses.
This large corpus of predominantly unanalyzed material from
marine animals should not be overlooked.

Molecular approaches can bypass many of the limitations of
traditional zooarchaeological analysis and provide key insight
on issues such as species identification (Biard et al., 2017;
Rodrigues et al., 2018), establishing origin (Star et al., 2017), and
demographic history (Nye et al., 2020). Similar methodologies
have been extensively employed to research domesticates, large
prehistoric mammals, and humans (Green et al., 2010; Lorenzen
et al., 2011; Meyer et al., 2012; Librado et al., 2017; MacHugh
et al., 2017). However, palaeogenomic analysis is far less
frequently applied to marine populations, particularly those
heavily exploited by humans, both past and present (Oosting
et al., 2019). In the last few years, the use of ancient marine
samples has begun to increase as laboratory techniques for such
samples have improved (Boessenkool et al., 2017; Der Sarkissian
et al., 2020; Ferrari et al., 2021b; Martínez-García et al., 2021).

The use of aDNA and reconstructive genomics can
provide a deeper time scale than historical catch records.
With new bioinformatic techniques, ancient genetic data
integrate seamlessly with modern data (Ferrari et al., 2021a;
Speidel et al., 2021), for instance allowing temporal assessments
of overall population size or population of origin, something
that is challenging to achieve using traditional archeological
and historical methods (Star et al., 2017; Smith B.T. et al.,
2021; van der Valk et al., 2021). By reconstructing past
ecosystems using ancient DNA, it may be possible to see
changing relationships between human society and the marine
ecosystem, thereby providing a better understanding of what
constitutes a sustainable ecosystem and key tools for future-
oriented conservation efforts. For example, Welch et al. (2012)
successfully applied ancient DNA analysis to identify local
extirpations in the endemic Hawaiian petrel, illustrating range
contraction of the species over time and providing guidance
for future conservation efforts. Similar approaches have been
used to identify possible source populations for reintroducing
Eurasian beavers to the United Kingdom (Marr et al., 2018).
By establishing a time series of population dynamics that is
hundreds to thousands of years old, it is, for the first time,
possible to clarify long-term evolutionary trends for exploited
populations and their likely drivers, whether those drivers be
anthropogenic or otherwise.

Ancient DNA can also be used to identify cultural patterns,
which could help elucidate past cultural thresholds. For example,
studies of dental calculus—calcified plaque on tooth remains—is
a treasure trove of information on the ancient oral microbiome
(Warinner et al., 2015). Analysis of dental calculus in human
remains has revealed information on past diets, medicinal use,
and ancient dental practices and associated cultural shifts (Blatt
et al., 2011; Adler et al., 2013; Warinner et al., 2014; Sawafuji
et al., 2020). As of yet no studies specifically link dental calculus
to marine exploitation, but that does not preclude its potential
applicability to understanding changing marine resources.
Ancient genomes can also be used to trace patterns of human
migrations and associated changes in land use and subsistence
(Racimo et al., 2020). Past patterns of human migration are often

linked to cultural and/or biological replacement of pre-existing
populations (Li et al., 2014), indicating large cultural thresholds
could be crossed during periods of mass migration. Modern
genomic sequences are often used to study past migrations to
great effect (Leslie et al., 2015). Yet, the addition of ancient
DNA can provide time-calibrations and an extended window
into the past for some of these migrations that greatly alters our
understanding of past cultures (Margaryan et al., 2020). These
examples, which document Viking expansion into the islands that
include the present-day United Kingdom and Ireland, can be
used to assess past cultural relationships with the sea, as Viking
culture is well-known to have been dependent in large part on
marine subsistence, in contrast to some of the populations they
conquered (Naumann et al., 2014).

It is often assumed that humans entering a new environment
irrevocably change the ecosystem and, thus, efforts for
“rewilding” or restoration rely on the premise that whatever
existed prior to human interaction is the “natural” state of the
ecosystem. Emerging evidence from palaeogenomic studies
shows that, while humans have of course changed marine
environments, the narrative that drives the human-ecosystem
binary is over-simplifying the true state of ecosystem dynamics.
For example, the Grand Banks Atlantic cod population famously
collapsed in the 1990s, to the devastation of local communities
(Myers et al., 1997). The cod population has still not rebounded,
resulting in a trophic cascade around the Newfoundland coast
(Frank et al., 2005; Neuenhoff et al., 2019). Yet, recent analysis
has shown that, despite the severe population bottleneck the
Atlantic cod population has suffered in the last few decades,
their genetic diversity remains stable and, thus, old phenotypes
and ecosystem dynamics may still be recovered (Pinsky et al.,
2021). Studies such as this challenge the long-held assumption
that intense exploitation of fisheries must inherently result
in evolutionary threshold-crossing on the species-level and
emphasize that there are pathways forward for maintaining
human-marine relationships that allow both sustainable
interaction and exploitation of marine resources and balancing
ecosystem dynamics. Similar studies have shown that genetic
diversity is robust to periods of intense human exploitation
in various species (Welch et al., 2012; Paijmans et al., 2020;
Martínez-García et al., 2021).

These studies highlight the importance of not conflating
different thresholds. Ecological thresholds were crossed in the
Grand Banks as the ecosystem shifted to an alternate stable
state, yet genomic results show that molecular evolutionary
thresholds have not yet been crossed. Further, they illustrate
that while cultural thresholds in exploitation may be informative
for identifying ecological and evolutionary thresholds, one
must be sure not to project cultural thresholds onto the
environment as points of no return. The example of the
Grand Banks cod industry also highlights the importance
of scale in determining thresholds. At the regional level,
the Grand Banks cod population seems to be on the cusp
of recovery, as illustrated above. Yet, in some locations an
ecological tipping point threshold has, indeed, been passed
even if a molecular extinction threshold has not been shown,
with local populations in some areas heading quickly toward
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TABLE 1 | The three thresholds.

Threshold Definition Examples of drivers Examples of thresholds

Cultural Major societal transitions that coincide with changes in
relationships to marine ecosystems, often resulting in
changed societal perception and use of nature and/or
marine environments

The invention of trawling; the Industrial
Revolution; Animal domestication
events; Onset of the North American
Fur Trade; The invention of motorized
vessels

Dietary change; Economical shift; Urbanization of
coastal areas

Ecological A boundary in ecosystem dynamics that results in a
balance shift within and/or between ecosystems. This
can occur at the inter- and intra-species level or be
related to abiotic factors

Glacial Periods; Climate Change;
Extirpation events; Population density
of particular species; Onset of pollution

Species richness; trophic interactions; populations
connectivity; distribution of species; historical
population size

Evolutionary A heritable change in a species’ genotype or phenotype
that impacts a population larger than a single lineage

Growth/reductions in population size;
Isolation; Changes in sexual selection;
adaptation to environmental changes

The evolution of lactase persistence in humans;
Creation of domesticated animal species/breeds;
adaptive potential; accumulation of deleterious
mutations; diversity gain or loss

extirpation (Swain et al., 2015, 2019). This illustrates the
necessity of identifying thresholds across different geographic
and ecological scales and the interplay between thresholds at
various levels. There could, for instance, be an evolutionary
or ecological threshold that is crossed at the species or
regional level when enough local thresholds have been crossed.
This is in line with the traditional emphasis in conservation
genomics to preserve local populations for species-wide diversity
and adaptive potential through techniques like genetic rescue
(Supple and Shapiro, 2018).

Stable Isotopes
Stable isotopes analysis has, much like DNA, been an increasingly
accessible tool for archeologists and ecologists alike over the last
several decades. Stable isotopes of animal tissue are typically used
for analysis of trophic level, dietary reconstruction and foraging
ecology, migration, and habitat use. In archeology, stable isotope
analysis has been primarily applied to human bone samples.
The majority of these studies rely on carbon and nitrogen stable
isotope analysis to reconstruct diet, often focused on identifying
agricultural transitions (Lee-Thorp, 2008; Sponheimer et al.,
2013; Hu, 2018). Other stable isotopic systems including sulfur
and oxygen have also been applied to studies of human remains
to examine diet (Nehlich et al., 2012; Rand and Nehlich, 2018)
and migration (Prowse et al., 2007; Leach et al., 2009; Guo
et al., 2018). Applications to past human cultures, particularly
those that highlight changing diets and migration, can provide
important insights into past cultural thresholds, such as changing
religious practices, political regimes, or technological advance
that resulted in altered subsistence patterns (Kosiba et al., 2007;
Ventresca Miller et al., 2014; Alexander et al., 2019; Cheung
et al., 2019). Dietary reconstruction of human populations can
identify the incorporation (or lack thereof) of marine resources
in the diet (typically requiring a consistent level of consumption
over a sustained period) (Goude et al., 2017; McConnan
Borstad et al., 2018; Tung and Knudson, 2018). Stable isotopic
analysis is increasingly being applied to zooarchaeological
remains providing a unique window into the past which can
be used to compare to modern ecological studies (Pilaar Birch,
2013). These studies often focus on animal domestication
(Hu et al., 2014), seasonality of birth (Frémondeau et al., 2015;

Tornero et al., 2016), and husbandry practices (Cucchi et al.,
2016; Manin et al., 2018; Bishop et al., 2020).

In marine systems, stable isotopes have provided proxies
for changes in water temperature, salinity, nutrient sources,
and food-web complexity (Geffen et al., 2011; Barrett, 2019).
Carbon and nitrogen stable isotope analysis have been used to
understand foraging ecology (McClellan et al., 2010; Newsome
et al., 2010; Szpak et al., 2018, 2019). Due to differences in
isotopic discrimination, there are benthic-pelagic differences in
δ13C values, which results in inshore foragers exhibiting higher
δ13C values than offshore species (Hobson et al., 1997; Cherel and
Hobson, 2007; Andersen et al., 2021). For example, Ólafsdóttir
et al. (2021) used zooarchaeological remains associated with
Icelandic demersal fisheries to explore the impact of increasing
fishing pressure on the trophic levels of Atlantic cod, haddock,
and wolffish. By explicitly linking this research to historical
and archeological research into the development of the proto-
industrial cod fishery in the Medieval era, they were able to
compare isotopic signatures over the last 700 years to modern
signatures, revealing a strong sign that fishing pressures have
both lowered the trophic level for species like cod and resulted
in convergence on a single trophic niche for demersal fishes in
this environment. Other isotopic systems have also been used,
including sulfur as a proxy for foraging ecology (Szpak and
Buckley, 2020) and zinc for trophic level in archeological arctic
marine mammal bone (Jaouen et al., 2016; McCormack et al.,
2021). Oxygen isotopes in marine systems have been used to
identify habitat use (Clementz and Koch, 2001; Drago et al.,
2020). Guy et al. (2018) used oxygen isotopes to identify fish from
a hypersaline lagoon environment in northern Egypt and are able
to identify a period of intense exploitation, and trade based on the
isotopic signature.

Stable isotope analysis often relies on proxies for data
collection. For example, using an innovative approach based on
extracting isotopes from ocean quahog, Estrella-Martínez et al.
(2019) were able to reconstruct recruitment estimates for the
North Sea herring population. Using a marine historical ecology
approach, they then cross-checked these estimates with historical
resources regarding fishing pressure and catch-per-unit-effort
over time. This sort of approach highlights the current ability
of molecular research to transform our understanding of the

Frontiers in Marine Science | www.frontiersin.org 6 November 2021 | Volume 8 | Article 742188

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-742188 November 15, 2021 Time: 13:51 # 7

Atmore et al. Shifting Baselines to Thresholds

interplay between humans and the marine environment. Further,
it emphasizes the ability to conduct systems-level analysis (they
primarily wanted to investigate primary productivity) from a
single isotopic signature when this signature is fully grounded in
historical and archeological context.

Palaeoproteomics
Ancient DNA is an incredibly powerful tool for illuminating
past evolutionary dynamics. However, it is dependent on well-
preserved specimens, often restricting research both temporally
and geographically (Hofreiter et al., 2014). In contrast to
fragile DNA sequences, which begin to degrade immediately
post-mortem, proteins are more stable molecules that are less
susceptible to degradation over time (Collins et al., 2010).
Palaeoproteomics, the extraction of ancient protein molecules
from paleontological and archeological remains, is an alternative,
minimally destructive method that can also be used on older
and less-well-preserved specimens (Welker, 2018). Emerging
techniques based on well-established proteomics methods, such
as Zooarchaeology by Mass-Spectrometry (ZooMS) can provide
taxonomic identification of poorly preserved specimens at
relatively low costs without destructive sampling (Buckley et al.,
2009; Collins et al., 2010; van Doorn et al., 2011) and provide
information for phylogenetic analysis (Welker et al., 2016;
Welker, 2018).

Compared to the previously mentioned methods,
palaeoproteomic methods are under-developed. Yet, they
are still able to shed light on past societal trends of marine
resource use, and biological and ecological trends, e.g., shifts in
species distributions and changes in resource use (Le Meillour
et al., 2020). For example, cetaceans are morphologically hard
to identify from traditional zooarchaeological analysis. ZooMS
has become an alternative method for more accurate taxonomic
identification of these specimens, which might otherwise not be
identified (Kitchener et al., 2004; Speller et al., 2016; Rodrigues
et al., 2018; van den Hurk et al., 2020, 2021; Wagner et al.,
2020). Based on palaeoproteomic data, scientists were able to
suggest an expanded distribution range for gray whales in the
Mediterranean (Rodrigues et al., 2018), providing information
that could be used to define ecological and evolutionary
thresholds. When placed in an archeological and historical
context, key aspects regarding cultural thresholds have been also
explored, such as the dietary use of cetaceans for humans in
the Roman and Medieval periods (van den Hurk et al., 2021),
and by the American hunter-gatherer–fisher communities of
Tierra del Fuego (Evans et al., 2016). Palaeoproteomics can be
a stand-alone useful tool for marine areas where preservation
of zooarchaeological remains are scarce—e.g., for remains in
tropical and subtropical zones (Hofreiter et al., 2014; Speller
et al., 2016)—as well as a supportive tool when integrated with
other techniques (Evans et al., 2016; Rodrigues et al., 2018).

Determining Thresholds: Practical
Limitations
The ancient biomolecular techniques discussed above are all
established avenues of research for better understanding the
human and beyond-human past. Yet, each of these techniques

is also subject to particular limitations that stem from working
with damaged, degraded, and/or partial material. Access to
paleontological and archeological materials from which these
molecules can be extracted is also a constraint on ancient
biomolecular research. As each of these techniques necessitates
some form of destructive analysis, research must be carried
out painstakingly to minimize the risk of wasteful destruction
of unique paleontological and/or archeological materials. Each
approach is further limited in scope by the availability of
archeological and paleontological remains, which are often
biased toward particular regions (terrestrial ecosystems and
Europe in particular). There are ongoing efforts to expand these
fields into less “traditional” regions of the world (for example,
the ERC-funded 4-Oceans project), but this will continue
to be limited by both differential preservation in different
climates and by problems of access, including funding and
training opportunities. Each of these biomolecular techniques
additionally has an upper limit on the time depth to which they
can be used. Thus far, the oldest ancient DNA ever retrieved was
1 million years old (van der Valk et al., 2021), but the majority
of ancient DNA is significantly younger. Both stable isotopes and
proteomics can go much further back in time, but are still limited
by access to suitable remains for analysis. We here highlight
additional limitations that must be considered for each of the
proposed biomolecular approaches.

Ancient DNA
Ancient DNA, while providing a wealth of information, can
be costly. Ancient DNA laboratory work requires access to
specialized equipment and high-level clean lab protocols to
minimize the risk of contamination by modern biomolecules.
Ancient DNA has a high risk of contamination, therefore all
laboratory work must be conducted by experts in specialized
clean facilities for working with old, fragmented DNA. In
the past, the sheer cost of conducting ancient DNA lab
work (not to mention the associated costs and computational
requirements for analysis) has been prohibitive for many labs.
However, as high-throughput genomic sequencing has become
more prevalent in molecular ecology, population genetics, and
medicine, the associated cost of ancient DNA sequencing and
analysis has been driven down in conjunction (Der Sarkissian
et al., 2015). As a result, the number of ancient genomic
sequences being produced has increased exponentially in recent
years (Marciniak and Perry, 2017; Skoglund and Mathieson,
2018; Brunson and Reich, 2019). Recent advances in laboratory
protocols and bioinformatic techniques have also reduced the
impact of bias from post-mortem damage (Jónsson et al., 2013;
Schubert et al., 2014; Prüfer, 2018) and expanded the capacity to
conduct research on extremely poor-quality data (Ferrari et al.,
2021a). The uncertainty associated with analyzing damaged DNA
sequences can impact evolutionary analysis, but recent work
on methodological development has done much to address this
(Prüfer et al., 2010; Martiniano et al., 2020; Orlando et al., 2021).
By using ancient DNA in conjunction with modern genomes,
some of the limitations of ancient DNA can be addressed
and ancient DNA can provide additional insight into deeper
evolutionary history than modern genomes alone (for more
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detailed discussion of ancient DNA applications and limitations,
see Slatkin and Racimo, 2016; Pont et al., 2019; Spyrou et al., 2019;
Dehasque et al., 2020; Smith A. D. et al., 2021).

Stable Isotopes
Stable isotope analysis of archeological material faces similar
problems to the other biomolecular techniques. Sufficiently
preserved material must be obtained and destructive analysis is
required for collagen extraction (Hoke et al., 2018). The quality
of stable isotope results can also be impacted by contamination
(Vaiglova et al., 2014) and diagenetic processes that result in
isotopic degradation, both of which have been addressed in
recently published guidelines for quality-control stable isotope
analysis (Guiry and Szpak, 2021). It can also be difficult to
determine the comparability of environments across time. For
example, whether differences in isotopic signatures across time
are merely a reflection of chronology or actually indicate a
significant change in environment or diet. This is an issue
for δ15N analysis, which is often used in marine ecology and
historical ecology to conduct trophic web analysis (Jennings and
van der Molen, 2015; Guiry, 2019). In order to account for
chronological change, it is often necessary to find δ15N values for
a species that would have been close to the baseline of the trophic
web both in the past and in the present to provide accurate
trophic level estimation for the target species (Post, 2002). It
is not always possible to access baseline trophic web species
from past ecosystems, thereby limiting the power of trophic web
analysis in the past. However, past dietary analysis using carbon
and nitrogen signatures is an established and successful field
in historical ecology and biomolecular archeology (Miller et al.,
2020; Bird et al., 2021), as well as various other applications,
including elucidating cultural thresholds in resource use (Lewis
and Sealy, 2018; Nord and Billström, 2018; Miller et al., 2020)
and geographic region of origin (Hobson, 1999; Lightfoot and
O’Connell, 2016).

Palaeoproteomics
The advantages of palaeoproteomics include being putatively
less destructive than stable isotopes and palaeogenomics, and
that proteins can be extracted from very old material. However,
proteomics and palaeoproteomics cannot provide as fine-scale
information as ancient DNA, as it is not yet possible to
conduct more than rudimentary evolutionary analysis such as
phylogenetic assignment and taxonomic identification (Welker,
2018; Horn et al., 2019). Even if less dependent on material
preservation, palaeoproteomics still relies on material quality
and protein evolution. Poor recovery of peptides in ancient
samples, as well as protein similarities between close-related taxa,
can restrict palaeoproteomic studies to identification on higher
taxonomic levels (Speller et al., 2016; Buckley, 2018). Existing
palaeoproteomics databases also show a strong geographic bias,
as research efforts have been concentrated at a small number
of institutions in Europe (Welker, 2018). Despite this, recent
advances in proteomics show promise for greatly expanding the
evolutionary applicability of palaeoproteomics (e.g., Runge et al.,
2021) and it will likely be an important field in the near future as
more applications are explored.

THRESHOLDS AND RESOURCE
MANAGEMENT

All of the above analytic capacities of ancient biomolecular
research are crucial for understanding our past relationship
with the marine environment. To establish future sustainable
measures for marine resource exploitation, it is necessary to
contextualize today’s sustainability and conservation efforts with
knowledge of the long-term relationships between humans and
these ecosystems. The data currently available on human impact
are typically collected on decades-long bases, and almost never
predates the beginning of the twentieth century. As discussed
above, there is strong evidence for industrial-scale marine
resource extraction that occurred up to 1,000 years ago, at
least in the North Atlantic context and likely elsewhere. This
understanding is based on historical records and the analysis
of archeological sites and remains. These initial research efforts
provide a platform for understanding the human relationship
with the sea going far back in time. They also provide context
for emerging biomolecular techniques and novel applications.
The above methodologies should, therefore, always be conducted
with as much ecosystem-wide information as is possible,
acknowledging the limitations of working with damaged and/or
partial datasets. By exploring the past population dynamics of
one species, it is possible to gain long-term information on
balanced ecosystem dynamics. This will provide us with tools
for avoiding the catastrophic threshold in our near future:
the tipping point.

It is too often that thresholds identified for sustainable
human exploitation fall under the category of the tipping point,
pushing population dynamics to the point of collapse. For
example, the commonly used notion of “maximum sustainable
yield” in many modern fisheries sets catch limits on exploited
species based on the amount of spawning stock biomass that
can be sustainably removed from the population (Tsikliras
and Froese, 2019). In practice, maximum sustainable yield
does not take into account ecosystem dynamics and fluidity,
rather it is based mainly on the population size of the focal
species, allowing extraction up to the point of population
collapse (McEvoy, 1986). In the same way, whaling regulative
measures, such as the potential biological removal level defined
by the U.S. Marine Mammal Protection act, and the Strike
Limit Algorithm by the International Whaling Commission,
are also based on the minimum population estimates of
the stocks and their carrying capacity (Wade, 1998; Givens,
2000). Application of these and similar approaches have led
to marine population collapses around the world due to
the combined effects of overexploitation and climate change
(Guénette and Gascuel, 2012).

The marine historical ecology approach provides ecosystem-
based measures for the determination of “sustainable yield”
by broadening the definition of the threshold, establishing a
conceptual space for ecosystem change that occurs outside of,
and prior to, the tipping point. Broadening thresholds allows
quantification of population dynamics in focal species that
lead to ecosystem perturbation, providing threshold indicators
that signal impending population or ecosystem collapse rather
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than driving the system to the breaking point (Duarte et al.,
2020). It has been demonstrated that ecosystem complexity
and controlled exploitation measures have overwhelmingly
positive impacts on human and societal health, the marine
environment, and the health of global fisheries (Hutchinson,
2008; Howarth et al., 2014).

By utilizing thresholds that act as boundaries for ecosystem
dynamics rather than bringing the population to the tipping
point each year, sustainable management measures are more
likely to ensure the ecosystem remains stable. Further, FAO
nations have pledged since 2003 to put in place ecosystem-based
fisheries management (EBFM) practices in fisheries instead of
devising policies that only apply to individual species, as was
previously the case (FAO, 2003). In practice, EBFM has been
difficult to implement due to the lack of consensus regarding
issues of practical application and scale (Trochta et al., 2018), yet
is demonstrably crucial to adapting to climate change (Holsman
et al., 2020). The threshold concept provides a clear framework
for identifying ecosystem, evolutionary, and cultural dynamics
that can assist with developing EBFM practices. To effectively
enact regulations such as ecosystem-based fisheries management,
it is necessary to understand long-term ecosystem dynamics.
To do so we must provide space for input from research that
emphasizes long timescales and incorporates human society into
our understanding of an “ecosystem,” a perspective that has long
been held by many indigenous communities (Salomon et al., 2014
and references therein).

Case Study—Sea Otters in British
Columbia
We here highlight the example of sea otter conservation
management in British Columbia as a case study in how this
research approach can be practically applied to policy. Sea
otters (Enhydra lustris) are native to the Pacific coasts of North
America and northern Asia (Kenyon, 1969). During the North
American fur trade of the eighteenth and nineteenth centuries,
sea otters were a prized trade item due to their dense, soft fur
(Ravalli, 2009; Berg, 2019). By 1929, sea otters were extirpated
in British Columbia (BC) (DFO, 2019), and there was near
complete extinction of the species (Ravalli, 2009). Sea otters
are a critical species for maintaining the kelp forest habitat
that used to spread from BC to Baja California (Estes and
Palmisano, 1974), a high-productivity environment that likely
assisted human migration to the continent ∼20,000 years ago
(Erlandson et al., 2007). Sea otters consume invertebrates such
as mussels and, most notably, sea urchins; grazing herbivores that
can devastate kelp forests when left unchecked (Estes et al., 2016).
In the absence of sea otters keeping the invertebrate population
low, there have been two main effects. First, the kelp forest
habitat along the North American coast has been threatened
as a result of the trophic cascade initiated by extirpation of
the sea otter (Szpak et al., 2013). Second, a large shellfish
industry sprang up in British Columbia, Alaska, and the Pacific
coast of the United States to take advantage of the increasing
numbers of desirable food species, such as abalones and clams
(Gamble, 2021).

In BC, there has been a campaign to reintroduce sea otters
to the region in an effort to save kelp forests from devastation
by sea urchins. Beginning in the 1960s and 1970s, this campaign
has successfully reintroduced sea otters to various places along
the coast of BC (DFO, 2019). A 2009 Department of Fisheries
and Oceans (DFO) Canada report showed a population increase
rate of 19% per year from 1977 to 1995, before slowing to
a rate of 8.4% per year from 1995 to 2008, with associated
patterns in range expansion (Nichol et al., 2009). With increasing
population density and ongoing range expansion, BC sea otters
have begun to impact shellfisheries in the region, as shellfish are
a shared prey among humans and otters. While otters are not the
only factor resulting in diminishing returns from shellfisheries
(other factors such as pollution and climate change are crucial
components as well), they have become a point of contention
among fishers and indigenous communities (Gregr et al., 2020;
Gamble, 2021).

Szpak et al. (2012) examined the isotopic signatures of otter
remains on Haida Gwaii, an island near Vancouver Island with
a long history of occupation (Salomon et al., 2014, 2018).
They found that over the course of the last 12,000 years,
the δ15N and δ13C signatures of sea otters around the island
indicated the otters consumed a diet of primarily benthic
invertebrates rather than benthic fish. Contextualizing these
results with historical and ethnographic work, Szpak et al.
(2012) concluded that these isotopic signatures reflect the long-
term management strategies indigenous communities practiced
to keep the sea otter population low. This conclusion was
supported by further research efforts in ethnography, archeology,
ecology, and history (Salomon et al., 2014 and references
therein; Stevenson et al., 2015) not to mention indigenous
activism and participation in sea otter conservation efforts
(Salomon et al., 2018).

Slade et al. (2021) further analyzed this pattern by showing
that mussel size over the course of occupation on Haida Gwaii
was consistent with low levels of predation by sea otters. They
go on to argue that current conservation DFO efforts, which
are based on estimations of environmental carrying capacity
in an abstract world in which humans are not present, are
actually increasing otter population density beyond what the
environment would have experienced over the last 12,000 years,
thereby causing reductions in invertebrate populations that are
threatening shellfisheries (Gamble, 2021; Slade et al., 2021).
Recent historical ecology work has shown that the coastal
ecosystems of BC were intensively managed by indigenous
communities (Salomon et al., 2014), including selective culling
of sea otter populations. This ultimately led to a localized system
of mosaic micro-environments in which areas near human
settlements were comparable to today’s sea urchin barrens and
areas further away from humans were thick with kelp forests and
sea otters, a pattern which is mirrored in research on sea otters
and ecosystem stability today (Smith J. G. et al., 2021). While
there were likely fluctuations in local environmental stability,
the regional environment remained stable over the course of
the late Holocene.

Sea otters are an animal of great importance to the indigenous
communities of BC (Salomon et al., 2018). Under current DFO
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regulations, indigenous communities are only allowed to take
500 sea otters from the total population (Salomon et al., 2018;
Gamble, 2021). First Nations activists have argued recently that
in order to provide balance between sea otters and people,
and by extension invertebrates and kelp forests, they should
be able to practice the traditional management techniques of
the past, including increasing the amount of sea otters that
can be removed from the ocean each year (Salomon et al.,
2018). This is just one critical aspect of first nations’ perspectives
on resource management in the BC coastal region (Lee et al.,
2019). The recent biomolecular archeology work cited above has
strengthened the argument that sea otter management cannot be
based purely on false assumptions of “pristine” environments that
existed prior to humans.

We highlight this case study not to argue for or against a
particular mode of sea otter conservation management, but to
illustrate the utility of our research approach. Through the use
of ancient biomolecules, archeology, history, and ethnography,
research on sea otter management in BC has revealed key
thresholds for sea otter management that can be directly
applied through policy: thresholds in sea otter population
density (ecological) and thresholds in sea otter hunting (cultural).
This research has provided new evidence showing localized,
mosaic management techniques that persisted over thousands
of years, resulting in long-term ecological and cultural stability
in the region that endured through the late Holocene. Further
research in this area could incorporate more direct applications
toward threshold identification, including using ancient DNA
to model sea otter population sizes in the past, that could
be directly applied to management strategies and inform sea
otter conservation.

The authors would like to note that sea otter conservation is a
controversial issue. This case study is merely meant to illustrate
the applicability of the thresholds research approach. For more
information on the issue of sea otter conservation in BC, please
see articles published in Hakai magazine (such as Salomon et al.,
2014, 2018; Gamble, 2021, and references therein, Gregr et al.,
2020; Slade et al., 2021).

CONCLUSION

To effectively conduct research on changing marine ecosystems,
common frameworks and terminology are required. For
compelling communication between researchers, this framework
must be flexible enough to encompass a myriad of different
fields and scales, and requires a shift to incorporate humans and
human society into our understanding of the environment. We
have introduced a new theoretical language and a generalized
approach that incorporates commonly used ecological ideas
to address these issues. The thresholds theory is a way to
conceptualize ecosystems and ecosystem change that is both
flexible and scalable to the research questions being addressed,
and lends itself well to practical applications.

We will never return to the oceans of old. It is not the aim
of this research to provide pathways for doing so. Rather, it will
likely be required to foster new ecosystems as we move forward

into the future (Alagona et al., 2012; Duarte et al., 2020), therefore
it is crucial to understand what constitutes a balanced ecosystem,
the issue of ecosystem complexity, and the role humans might
play in these ecosystems. In addition to establishing regulation
and oversight to provide future sustainable marine management,
consideration must be given to long-term evolution that has
occurred between people and marine environments around the
globe, such as the interplay between indigenous communities and
sea otters in BC during the late Holocene. Funding efforts for
marine historical ecology should be directed toward archeology
and population genomics analysis for the marine ecosystems on
which people most directly depend, including a targeted effort to
fund research occurring outside the traditional spheres of Europe
and North America. To provide food security in a changing
world, the species people depend on need to be understood
from an evolutionary standpoint; how have they adapted to past
climate change, anthropogenic exploitation, and different actors
in their ecosystems? Are balanced ecosystem dynamics in a north
Atlantic context the same as in a Pacific island context? What
are the local boundaries management programs must navigate to
ensure ecosystem balance? Through the thresholds framework,
marine historical ecology is poised to answer these questions and
provide crucial information for establishing sustainable marine
ecosystems for future generations of humans and the species
living with them.
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