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Litter cleanup and disposal management in the marine environment are increasingly

subject to public scrutiny, government regulation and stakeholder initiatives. In practice,

ongoing efforts and new investment decisions, for example in new cleanup technologies,

are constrained by financial and economic resources. Given budgetary restrictions, it

is important to optimize decision-making using a scientific framework that takes into

account the various effects of investments by combining multiple scientific perspectives

and integrating these in a consistent and coherent way. Identifying optimal levels of

marine litter cleanup is a challenge, because of its cross-disciplinary nature, involving

physics, environmental engineering, science, and economics. In this paper, we propose a

bridge-building, spatial cost-benefit optimization framework that allows prioritizing where

to apply limited cleanup efforts within a regional spatial network of marine litter sources,

using input from the maturing field of marine litter transport modeling. The framework

also includes ecosystem functioning in relation to variable litter concentrations, as

well as the potentially non-linear cost-efficiency of cleanup technologies. From these

three components (transport modeling, ecosystem functioning, cleanup-effectiveness),

along with litter source mapping, we outline the optimal cleanup solution at any given

ecological target or economic constraint, as well as determine the cleanup feasibility.

We illustrate our framework in a Baltic and Mediterranean Sea case study, using

real data for litter transport and cleanup technology. Our study shows that including

pollution Green’s functions is essential to assess the feasibility of cleanup and determine

optimal deployment of cleanup investments, where the presented framework combines

physical, economical, technological and biological data consistently to compare and

rank alternatives.

Keywords: marine litter transport, marine litter cleanup, cost-benefit analysis, cleaning technology, marine

ecosystem services, cleaning feasibility, pollution plumes
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1. INTRODUCTION

Floating plastic in the marine environment is considered to be an
increasing problem and litter cleanup and emission management
are demanded by stakeholders, general public, and governing
bodies, despite potentially high costs for modest gains. To
make qualified decisions aimed at prioritizing limited available
financial or economic resources to this end, it becomes important
to optimize the investments using a scientific framework that
combines multi-disciplinary knowledge and understanding in
a consistent and coherent way. Identifying furthermore the
influence of uncertainty in this analysis in a transparent way
is paramount.

A better understanding of how plastic debris is transported
from coastal and marine sources to ecological sensitive and
recreational areas is crucial for such informed mitigation
decisions (Van Sebille et al., 2020). The study of marine plastic
debris transport was spearheaded by several studies at global
scale. They studied the formation and long-term dynamics
of garbage patches in subtropic Ekman convergence zones,
and identified new potential aggregation zones (van Sebille
et al., 2012) and an important scales for aggregation dynamics
(Maximenko et al., 2012), and emphasized the importance of
using properly weighted source distributions to obtain realistic
dynamics and equilibrium distributions (Lebreton et al., 2012).

The potential for using marine litter transport modeling at
global scale to assess the efficiency of different cleanup location
was demonstrated recently by Sherman and van Sebille (2016);
these authors assessed on a global scale that roughly 31% of
the floating plastic could be removed over a 10 year period
by applying 29 plastic collectors at specific coastal locations,
and over 17%, if the same plastic collectors would be applied
in the vicinity of the infamous North Pacific garbage patch,
which is predicted to be the main attractor of global marine
debris (van Sebille et al., 2012). Their numerical simulation leaves
many questions unanswered to bridge the wide divide between
academic simulation exercises and practical solutions on the
ground. More recently, various projects try to apply academic
science and engineering to practically manage and remove
floating plastic, and identify some of the major uncertainties in
our current knowledge base. One of these is (CLAIM Project,
2021), which has as its overarching goal to develop innovative
cleanup technologies and approaches targeting the prevention
and in situ management of visible and invisible marine litter in
the oceans.

In addition to global scale litter transport studies, regional
scale studies are emerging, talking advantage of high quality
operational oceanographic data products. In the North Sea,
Neumann et al. (2014) found a seasonal signal in the number
of tracer particles that reached the coastal areas, but could not
identify accumulation regions in open sea. In the Mediterranean,
Zambianchi et al. (2017) found a general tendency of floating
matter to converge in the southern portion of the basin, and
in particular a long term accumulation in the southern and
southeastern Levantine basin. In the Sea of Japan, Yoon et al.
(2010) examined transport of a particular plastic item, lighters,
and found a residence time of less than 3 years unless beached

in this regional sea, which is relatively open and connected to
the East China Sea, Sea of Okhotsk and the Pacific Ocean at
several points. The focus on a particular, well-defined litter item
removes some parameter uncertainty and makes the comparison
with observational data more stringent, even though it prunes the
available data for comparison. Such regional scale studies may
certainly benefit from an envisioned future integrated marine
debris observing system (IMDOS) (Maximenko et al., 2019) that
facilitates data fusion of multiple sources and may correct for
unresolved physics in current circulation models.

Needless to say that a comprehensive cleanup of ocean plastic
is far beyond reach; therefore the cost-benefit perspective of
plastic pollutionmitigation has received some interest (McIlgorm
et al., 2011; Hardesty and Wilcox, 2017; King, 2018). In this
contribution we propose a spatial cost-benefit optimization
framework that prioritizes how to spatially apply limited cleanup
efforts within a spatial network of marine litter sources. The
aim of this framework is to maximize the environmental benefit
from cleanup efforts, using input from the maturing field of
marine litter transport modeling, in combination with ecosystem
functioning and ecosystem service provisions, in relation to
variable litter concentrations, as wells as the possibly non-
linear cost-efficiency of the clean-up technologies. Following
the finding of Sherman and van Sebille (2016), emphasis is
placed on the application of cleanup measures near source
points. The advantage of our framework is that it improves
our understanding of how the optimal solution emerges from
the trade-off between ecology and economics, as mediated by
physics. Our approach is targeted at the regional marine scale
where it is more realistic to arrive at a science-based decision.
Here the time scale between investment and benefit is expected
to be shorter than at the global scale, because transport pathways
are shorter.

2. MATERIALS AND METHODS

The starting point for our cost-benefit optimization framework is
a litter source map; from this all (�) (or meaningful subset ω) of
the sources is chosen, where cleanup measures are considered.
We define fj (0 ≤ fj ≤ 1) as the degree by which emission
from source j ∈ ω is diminished by cleanup, where 0 means no
cleanup (no change in emission), while 1means a 100% reduction
of plastic emission from that source.

2.1. Physics
The density of floating plastics in the marine environment is still
low enough (in most places) so that transport processes can be
considered linear, and thus, plastic items from different sources
are transported independently of each other. Therefore the
concentration (per area) of plastic can generally be expressed as

P(x, f ) =
∑

j∈�\ω

SjGj(x)+
∑

j∈ω

(1− fj)SjGj(x) (1)

at medium time scales (months to years), where the sum is over
all relevant sources �; the first sum represents the background
pollution level from uncleaned sources. Sj is the plastic influx
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at source j (before cleanup measures), and Gj(x) is a Green’s
function that quantifies how much a source j contributes to
the plastic concentration at x, or plainly speaking the pollution
plume from source j. For simplicity Gj(x) is time-averaged,
because usually time dependence of Sj is unavailable. Here we
advocate to estimate Gj(x) from current, wave and wind-driven
transport processes, because direct monitoring will not resolve
Gj(x) sufficiently; we return to time-variability issues later. It is
essential that the calculation of Gj(x) includes export and sink
processes, so a medium time scale quasi equilibrium distribution
of the plastic is obtained. The origin the Green’s functions are
elaborated in more detail in Christensen et al. (under review).
The Green’s function correspond to a relevant depth strata,
typically surface for macro litter or the photic zone for micro
litter, but if needed, the depth z can be included as well along with
x. Of special interest is the demersal Green’s function GD

j (x, t),

representing the sunken litter; this is not in equilibrium, but
growing over time unless resuspension is considered, so for
management purposes, it is better to consider the sinking flux
Fj(x) = λj(x)Gj(x), which establishes equilibrium at the same
time scale as a horizontal Green’s function Gj, where λj(x) is the
sink rate for litter from source j. If sinking processes are just
characterized by a (possibly seasonal) time scale, λ will be spatial
and source independent, and Fj proportional to Gj. Equation (1)
also elucidates the primary feasibility of cleanup, i.e., the upper
limit of the pollution reduction 1P that is attainable, if a given
subset of sources j ∈ ω would be fully (f = 1) cleaned:

1P(x) =
∑

j∈ω

SjGj(x) (2)

We will especially be interested in the relative degree to which
a given site x can be cleaned, which is 1P(x)/P(x, 0). In the
examples we give below, we use Lagrangian simulations with
current, wave and wind-driven transport to assess Gj(x) at
regional scale for the Baltic and the Mediterranean Sea. In
Christensen et al. (under review), we describe how Gj(x) can
be calculated efficiently for a larger source distribution using a
Lagrangian framework.

2.2. Ecosystem Functioning Quantification
The ecosystem functioning will decline with increased
plastic concentration P. The cleanup leads to reduced
plastic concentration and thus reduced decline of ecosystem
functioning, which is a benefit of the cleanup activity and can
be presented by using a cleaning benefit function U(P), which
decreases with plastic concentration P. The simplest measure is

U =

∫

(1−
P(x, f )

P†(x)
)dx (3)

which contains just a single (essential) parameter P†, which is
like a maximum tolerance of litter concentration (which may
depend on x, as indicated). This is aligned with current marine
strategy objectives or studies of litter impact on ecosystem
functioning. Sherman and van Sebille (2016) considered the
overlap between a primary productivity (as a bio-distribution

proxy) and litter distribution, which in Equation (3) corresponds
to letting P†(x) be inversely proportional to primary productivity.
U can represent any quantifiable aspect of ecosystem functioning,
e.g., habitat quality, abundance of certain species, biodiversity
indices or vital rates, where positive direction is desirable
(otherwise the corresponding negative rate should be used,
e.g., minus mortality); the currency of U does not impart the
emergence of optimal cleanup solution, therefore it is natural
to let U = 1 per area correspond to the pristine ecosystem
(P = 0). It is also possible that U represent a monetized aspect
of ecosystem functioning, we will return to implications of this
in the discussion; in our case studies we will lean toward an
non-monetized aspect of ecosystem functioning.

The advantage of our approach is that the objective
behind the analysis is fully transparent. At a regional scale,
ecosystem functioning is likely less directly tied to only primary
productivity, but other fields P†(x) are plausible, expressing
the local (possibly seasonal) sensitivity of the ecosystem. Our
approach is simply extended to cover this, so we just illustrate
our framework for a spatially piece-wise constant value of P†;
in the discussion, we return to the implication of the cleaning
benefit functions U being non-linear in P, expressing e.g.,
sharp tolerance windows of P. If Equation (3) applies, then the
relation between U and cleanup effort f also becomes linear, by
combining Eqs. 3 and 1:

U(f ) = UBAU +
∑

j∈ω

fjSjǫj (4)

ǫj =

∫

Gj(x)

P†(x)
)dx (5)

where UBAU is the ecosystem benefit before cleanup effort
(business as usual: f = 0). Thus we identify ǫj is the central index
to compute for benefit maximization problems in the simplest
setting. Below, we show that it is not the absolute value of P†(x)
that is needed, but just the contrast between areas, which is much
easier to establish than the absolute value.

2.3. Costs of Cleanup
In the simplest model, the cost rate of cleanup is expressed as the
sum over cleanup sites as

C(f ) =
∑

j∈ω

αjSjfj (6)

αj is the cleanup (operation) cost per removed litter weight at
site j, so we can compare different technologies with different
operating costs at each site. Notice that C is a cost rate because
we continuously have to pay for the cleanup of plastic emissions
from the different sources. αj also includes one-off installation
costs (scaling with fj) divided by the expected lifetime of the
installation (or another relevant discount time scale). αj for
all candidate cleanup sites (and technologies) are the minimal
input needed from environmental cleanup sciences. In the
SupplementaryMaterials, we deal with themore general situation
where α(f ) is not constant.
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2.4. Cost-Benefit Optimization
Two types of problems might emerge in this context:

1. Cost minimization: Achieve a plastic concentration below a
certain threshold at least cost.

2. Benefit maximization: Achieve highest desirable
environmental conditions at a fixed cost.

We refer to this as type 1 and 2 problems. These problems can
rather generally be formulated as Karush–Kuhn–Tucker (KKT)
(Boyd and Vandenberghe, 2010) optimization problems, which
is a generalization of the method of Lagrange multipliers for
constrained optimization, handling bounded problems (because
0 ≤ f ≤ 1 must be enforced). The objective functions Z1 and Z2
corresponding to type 1 and 2 problems are

Z1(f ) = C(f )+
∑

k

µk(P(xk)− P̂(xk))−
∑

j

µjφ(fj) (7)

Z2(f ) = U(f )−
1

κ
C(f )−

∑

j

µjφ(fj) (8)

µ⋆ are so-called KKT multipliers (Boyd and Vandenberghe,
2010), and φ(f ) = f (f − 1) is the convex boundary constraint
function. P̂(xk) are target value plastic densities that must not be
exceeded by actual plastic density P(xk) at a set of monitoring
stations xk, k = 1..K. Z1 must be minimized (cost) whereas
Z2 maximized (benefit). The units of Z1,2 are cost per time
unit or benefit per time unit, respectively. If κ is varied in
Equation (8), one can find the best cleanup solution that matches
a given economic cost C0, which is aligned with the real decision
situation, or the cheapest solution meeting a regional average
objective U0 of cleanup. If the cost function C(f ) is linear, we
show below that the type 1 problem Equation (7) becomes a
standard linear programming (LP) problem, which can not be
solved analytically, but stable and efficient numerical algorithms
exist (Boyd and Vandenberghe, 2010). If both C(f ) and U(f ) are
linear for 0 ≤ f < 1, we show below that the type 2 problem
Equation (8) can be solved analytically by a ranking principle
to facilitate the interpretation of the numerical solutions. It is
important to stress that type 1 and 2 formulations give different
results in general, and therefore the explicitness about objectives
is important.

The optimal cleanup solution for the type 1 problem (target-
driven) is obtained by minimizing Equation (7); If the cost of
cleanup C(f ) is linear for 0 ≤ f ≤ 1, then it follows that Equation
(7) becomes a canonical linear programming (LP) minimization
problem for the optimal solution f ⋆:

f ⋆ = argmin

f : Af ≤ b
0 ≤ f ≤ 1

{vtf } (9)

with

vj = αjSj (10)

Aki = SiGki (11)

bk =
∑

i

Aki − P̂k (12)

with Gki = Gi(xk) and P̂k = P̂(xk) being the pollution
target values corresponding to the station set xk where plastic
concentrations are monitored in relation to their thresholds.
Existence of a solution f ⋆ is assured, if background concentration
of plastic P0(x) =

∑

j∈�\ω SjGj(x) does not exceed the

threshold P̂(x) anywhere (otherwise additional sources need to
be considered for cleanup).

The optimal cleanup solution for the type 2 problem (best
overall solution) is obtained by maximizing Equation (8); by
varying κ in the solution, different economical/ecological targets
can be met. Technically, the conditions 0 ≤ fj ≤ 1 are
handled by adding inequalities to Equation (7), as prescribed by
the KKT-generalization (Boyd and Vandenberghe, 2010) of the
Lagrange-multiplier technique. In the simplest formulation of
the problem (Equations 3 and 6) this is a linear maximization
problem and the solution can be developed analytically: sites are
ranked according to

γj =
αj

ǫj
(13)

and sites should then be selected in increasing order of γj,
until a target budget (C = C0) or overall cleanup objective
(U = U0) is met. γj can be interpreted as a cost-effectiveness
index (Brouwer and De Blois, 2008). The novel feature here
is that we demonstrate how it emerges quantitatively from a
consistent synthesis of data from underlying sciences (physics,
cleanup technology and ecosystem impact), and devise a route
to consistent generalizations when more complex data features
are included in the analysis. Equation (13) shows that only the
contrast in P†(x) is needed, not the absolute value. This problem
has at most a single solution, since the optimal benefit-at-cost
U⋆(C) is an increasing concave function. The exact solution is
met by applying partial cleanup 0 < f < 1 to the last site included
in the solution. If the sequence of increasing γj is denoted q, then
the optimal benefit at cost curve U⋆(C) is mapped by the points

(Ck,Uk) = (

k
∑

i=1

αqi ,

k
∑

i=1

ǫqi ) (14)

each representing a new site being cleaned. If non-linearities are
included in U and C, the solution to the optimization becomes
more complicated and in most cases the optimal solution f ⋆

needs to be constructed numerically.We return to non-linearities
in U and C and the influence in the solution in the discussion.
The emergence of the optimal type 2 solution is sketched in
Figure 1.

2.5. Case Studies
We illustrate the cost-benefit framework above by presenting
case studies in the Baltic and Mediterranean Sea, where we
try to identify which sources should be prioritized for cleanup.
To conduct the simplest version of the cost-benefit analysis
presented above, just three quantities need to be established: (i)
the time-averaged Green’s function Gj(x) for considered sources
j ∈ ω and (ii) an ecosystem service sensitivity P†(x) (or relative
spatial differences in this) and (iii) the cost of clean-up per weight
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FIGURE 1 | Information flow in the litter cleanup optimization framework (LCOF), showing the emergence of the optimal cleanup solution f⋆ for a type 2 analysis, in

this case corresponding to a given budget C0.

αj at source j. It is important to notice that time-averaged Green’s
functions Gj(x) may be different for different litter fractions,
mainly because buoyancy leads to different vertical dynamics,
different wind drag, and fractions experience different sinking
rates. If this is important within the overall accuracy of the
calculation, a weighted average of Green’s functions for different
fractions can be used for Gj(x). The Green’s functions Gj(x) can
be computed by either Lagrangian or Eulerian techniques, ideally
giving the same results if physical processes are represented
correspondingly, and using the same operational circulation
models of water currents. Slightly different simulation periods
apply to the Baltic and Mediterranean case studies, because
different physical models were applied, but this is ignored in
the analysis because we are not concerned with interannual
differences in this presentation and further multiannual averages
are applied both for the Baltic and Mediterranean case studies.

2.5.1. Baltic Sea Physical Model
The physical data used in the Baltic transport simulations are
produced by using a Baltic-North Sea ocean-ice model HBM
(HIROMB-BOOS Model) in the operational setup by the Danish
Meteorological Institute (DMI). The model has been jointly
developed by the HBM consortium and used as an operational
model in Denmark, Estonia, Finland, and Germany. HBM is a
three-dimensional, free-surface, baroclinic ocean circulation and
sea ice model that solves the primitive equations for horizontal
momentum and mass, and budget equations for salinity and heat
on a spherical grid. The vertical transport assumes hydrostatic
balance and incompressibility of sea water. Horizontal advection
is modeled using a flux corrected transport scheme. The
Boussinesq approximation is applied. Higher order contributions
to the dynamics are parameterized following Smagorinsky (1963)
in the horizontal direction and a k-ω turbulence closure scheme,
which has been extended for buoyancy-affected geophysical flows
in the vertical direction (Berg and Poulsen, 2012; Poulsen and
Berg, 2012). The model allows for fully two-way nesting of grids
with different vertical, horizontal and time resolutions, which
is used to resolve narrow straits and channels. The numerical

model implementation uses a staggered Arakawa C-grid and z-
level coordinates and free-slip conditions along the coastlines.
With two-way dynamical nesting, HBM enables high resolution
in regional seas and very high resolution in narrow straits
and channels. With its support for both distributed and shared
memory parallelization, HBM has matured as an efficient and
portable, high quality ocean model code. The HBM setup for
the present hydrographic dataset has a horizontal grid spacing
of 6 nautical miles (nm) in the North Sea and in the Baltic Sea,
and 1 nm in the inner Danish waters. In the vertical the model
has up to 50 levels in the North Sea and the Baltic Sea, and 52
levels in the inner Danish waters with a top layer thickness of
2 m. HBM is forced by DMI-HIRLAM with 10 m wind fields,
sea level pressure, 2 m temperature and humidity and cloud
cover. At open model boundaries between Scotland and Norway
and in the English Channel, tides composed of the 8 major
constituents and pre-calculated surges from a barotropic model
of North Atlantic (Dick et al., 2001) are applied. Other variables
are set to monthly climatological values. Freshwater runoff from
the 79 major rivers in the region is obtained from a mixture
of observations, climatology (North Sea rivers) and hydrological
models (Baltic Sea). At the surface the model is forced with
atmospheric data from the numerical weather prediction model
HIRLAM (Petersen et al., 2012). The HBM setup performance
has been validated on several occasions, (e.g., She et al., 2007a,b;
Maar et al., 2011; Berg and Poulsen, 2012; Wan et al., 2012;
Schmith and Borch, 2013). The HBM model is validated on
annual basis as DMI’s operational storm surge model. It has
been extensively validated as CMEMS Baltic marine Forecasting
model until 2020 (She, 2014) and as operational model for coastal
applications (Murawski et al., 2021).

2.5.2. Baltic Sea Macro Litter Transport Model
The continuous litter distributions necessary to define Green’s
functions in Equation (1) were generated by averaging
Lagrangian ensembles over a 10 km scale (corresponding
to the scale of the hydrodynamic model applied). The quasi
equilibrium litter distribution was generated by the DRRS
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scheme (Christensen et al., under review) from 5 year
simulations, with first year as spin-up time from a uniform
initial litter distribution, and the last 4 years for generating
average distributions, which allows us to resolve the absolute
litter density from the Lagrangian ensembles, given influx source
data. Results are not sensitive to increasing the spin-up time. The
DRRS scheme was setup in the modular Lagrangian framework
IBMlib, which has been used in numerous studies of physical-
biological interactions (Christensen et al., 2018), many of which
have been conducted in the North Sea / Baltic ecoregion. IBMlib
has been coupled offline to the HBM model described above,
stored as hindcast database with 10 km horizontal resolution, 1 h
temporal resolution, and 50 vertical layers z-grid configuration.
All major physical processes recognized to be important for
horizontal and vertical transport of visible plastics are included
in the Baltic: Advection by ocean currents, obtained from
the HBM model described above, and Stokes drift from the
ECMWF ERA5 (Hersbach et al., 2020) coupled atmospheric and
ocean wave model (WAM, Janssen, 2002) reanalysis with 1 h
time resolution. Wind drag on low-density plastic objects are
parameterized following (Yoon et al., 2010); scaling analysis for
wind-driven velocity component uw gives

uw ∼ k0
√

Aa/Awu10 ∼ k0

√

ρw

ρp
− 1 u10 = k u10 (15)

where u10 is the 10 meter air velocity vector, obtained as ECMWF
ERA5 atmospheric reanalysis with 1h time resolution. Aa is
the are area perpendicular to the wind direction of the plastic
object above the sea surface, and Aw the area below the sea
surface; ρw, ρp are the densities of water and plastic, respectively,
and k0 is a heuristic shape factor of order 0.03 (Yoon et al.,
2010), consistent with Maximenko et al. (2018), expressing the
ratio between above/below surface drag coefficients and air/water
density as well as effective wind vertical profile near the sea
surface. In addition to this comes surface layer wind drag,
which in hydrodynamic models is averaged over upper grid cells;
however floating plastics experience only the skin layer, and it is
estimated that this is 4% of u10 above the layer vertical average
(Christensen et al., under review) based on a log-scaling estimate,
which is added to the windage term. For simplicity we assume
the area above (Aa) and below (Aw) the sea surface being equal.
Consequently in the present baseline runs, we apply k = 0.07,
representing pure windage and correction for finite upper layer
thickness in the circulation model, in good agreement with Yoon
et al. (2010) who estimated the relevant windage range to be
0 ≤ k < 0.3, and (Neumann et al., 2014) who found a good
match with data when applying k ∼ 0.05.

The HBM database does not contain dynamic values
of vertical and horizontal sub-grid scale diffusion, so a
representative horizontal diffusivity coefficient Dh of 100 m2/s
is assumed as the baseline value (Gurney et al., 2001).
Sinking processes are removing plastic objects from the water
column. Even though progresses have been made in resolving
spatio-temporal dynamics of the sinking rate λ (Kooi et al.,
2017), uncertainty is too high and baseline simulations are
conducted using constant representative values of λ = 0.003

day−1. Retention and reactivation(resuspension) at coastlines are
opposite processes that eventually reach a dynamical equilibrium,
so that rates are equal and opposite when averaged over
medium to long time scales. Both processes are currently
not well-parameterized and subject to ongoing research. In
order not to introduce additional uncertain submodels without
strong observational support, it is assumed that the dynamical
equilibrium between retention and reactivation also apply at
short time scales for Baltic macro litter simulations; technically
this implies that reflective boundary conditions applies along
coastlines to incoming litter. In Christensen et al. (under review),
we validate the model performance in detail, and the baseline
predicts major trends in beach litter data with r = 0.49, assuming
the same beaching affinity along the coastline.

2.5.3. Mediterranean Physical Model
The hydrodynamic model is based on the Princeton Ocean
Model (Blumberg and Mellor, 1983) that is currently operational
within the POSEIDON forecasting system (Korres et al.,
2007). POM is a three-dimensional, sigma-coordinate, free
surface, primitive equation model. Vertical eddy viscosity
and diffusivity coefficients are calculated using the Mellor-
Yamada 2.5 turbulence closure scheme (Mellor and Yamada,
1982), while horizontal diffusion is parameterized following
Smagorinsky (1963) formulation. A Hybrid ensemble data
assimilation algorithm (Tsiaras et al., 2017) was implemented for
the assimilation of satellite altimetry and sea surface temperature
data, obtained from the European Copernicus data base.
The atmospheric forcing was obtained from the POSEIDON
operational weather forecast (Papadopoulos et al., 2002). The
waves forcing (Stokes drift, wave period and significant height),
used in the Lagrangian drift model was obtained off-line
from Copernicus marine service and is based on WAM Cycle
4.5.4 wave model (Günther and Behrens, 2012) that is also
a component of POSEIDON forecasting system that is also a
component of POSEIDON forecasting system (Ravdas et al.,
2018).

2.5.4. Mediterranean Macro Litter Transport Model
The Lagrangian drift model is based on Pollani et al. (2001)
and evaluates the particles’ displacement taking into account of
the most important processes, such as advection from ocean
currents, Stokes drift from waves, particles buoyancy/sinking,
random movement in the horizontal/vertical and beaching.
The model follows the concept of Super-Individuals (SI—
Scheffer et al., 1995) for computational efficiency, with each SI
representing a group of particles, sharing the same attributes
(position, weight, origin, type of plastic etc.). For macroplastics
(>5 mm), which is the focus of this study, the following
types/sizes were considered: 5 mm–2 cm, 2–20 cm, >20 cm
bottles, >20 cm bags, >20 cm foam. A uniform background
initial concentration was adopted for each type/size class, based
on the basin average from available in situ data (see Tsiaras et al.,
2021). New SIs are created daily from source inputs. In order to
prevent the SIs total number from continuously increasing, when
this exceeds a certain limit ( 2 × 106), SIs of the same size/type
within a predefined distance are merged and their properties

Frontiers in Marine Science | www.frontiersin.org 6 November 2021 | Volume 8 | Article 744208

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Christensen et al. Optimization of Marine Litter Cleanup

averaged. The position of every SI is described by its coordinates
(x, y, z) in a Cartesian system, which are updated every time-
step using the 3-D displacement, produced by currents, wave
and wind, obtained with bi-linear interpolation at the SI location.
The Stokes drift from waves is obtained (off-line) from the wave
model output and is assumed to decrease exponentially with
depth. Random movement in the horizontal depends on the
horizontal diffusion, obtained from the hydrodynamic model.
Random movement in the vertical is assumed to depend on the
vertical turbulent diffusion, obtained from the hydrodynamic
model and mixing induced from waves that decays exponentially
with depth. The wind drag that is practically effective only for
macroplastics >20 cm (bottles, foam) is assumed to depend on
the particle surface above water, following Yoon et al. (2010)
parameterization Equation (15). Bottles are assumed to randomly
lose their buoyancy and sink after on average 2 months floating,
based on their often higher density when filled with water and
in situ observations, showing a relatively small contribution
of bottles in open sea floating plastics. Plastic bags that are
considered as thin films (typical thickness ∼ 25 µm), being
prone to sinking (Chubarenko et al., 2016), along with particles
with size 5 mm–2 cm and 2–20 cm are assumed to gradually lose
their buoyancy from the attachment of micro- and macrofouling
communities (Ye and Andrady, 1991; Fazey and Ryan, 2016)
after 3, 4, and 5 months, respectively. These flotation periods
corresponds to λ ∼ 0.008 1/day, which is slightly higher than
the level applied for the Baltic. Particles that end-up on land are
assumed to remain on the beach for a fixed retention time, after
which they return to the sea. During their time on the beach,
the particles concentration is decreased, assuming some loss rate
(e.g., burial). This is the main loss term in the model (along
with sinking) and has been tuned so that the mean basin scale
concentration remains fairly stable throughout the interannual
simulation, obtaining also a better fit of simulated macroplastics
concentration with in situ data (see Tsiaras et al., this issue).

2.5.5. Litter Sources Targeted for Cleanup and

Cleanup Technologies
Riverine and beach sources of micro and macro plastic have been
mapped for the Baltic and Mediterranean seas in the CLAIM
Project (2021) project. In the Baltic we focus on the major
rivers Oder, Nemunas, Narva, Wisla, Luga, and Daugava for
the purpose of illustrating a cost-benefit assessment scenario,
but other sources could be chosen as well. River sources of
macroplastic to the Baltic Sea are shown in Figure 2. River source
maps were obtained as an empirical function of accumulated
plastics production and monthly river runoff, based on Lebreton
et al. (2017) global dataset. The river input of macroplastics
( 0.7 of total microplastics+macroplastics) in the Mediterranean
is shown in Figure 3. Here we focus on the effect of cleanup
of the rivers Nile, Karasu, Soumman, Po, Buyuk, Seman, and
Axios, which are among the major sources of plastics in the
Mediterranean Sea. Several matured cleanup technologies are
available commercially for macro plastic capture and removal
from river sources. The Seabin device (Seabin, 2021) is a simple
filtration unit that collects litter using tidal motion and a small
pump; Seabin devices are placed at tactical places with easy

operational access; the solution has a local fetch area, i.e., does
not offer complete cleanup, but is a scalable solution. The basic
unit operation cost is 2.65 e per day collecting ∼ 1.5 kg of
debris per day, i.e., α ∼ 1.8 e/kg. A related technology is
the trash wheel, as prototyped by Baltimore’s Mr. Trash Wheel
(Lindquist, 2016). A river current powers a large wheel lifting
debris from the water and depositing it into an attached dumpster
barge. The operation cost is 430 e/day removing on average
472 kg/day, i.e., α ∼ 0.9 e/kg. Alternatively a non-stationary
but littoral, technology like the SeaVax Robotic Vacuum Ship
(SeaVax, 2015) offers more flexible cleanup deployment at 1.2
e/kg. This indicates that the cleanup price baseline is currently
1-2e/kg. Since these technologies are based on local filtering, the
price α(f ) is assumed to be convex and will thus increase when
scaling up toward full cleanup (f = 1); initially, we disregard
this feature, and we apply an indicative marginal cleanup cost of
α = 1 e/kg, reflecting a current apparent break-even level of
α ∼ 1 − 2 e/kg. In relation the present cost-benefit framework,
the actual cleanup technologies considered need not be specified,
just their equivalent cost-efficiency curves α(f ), or just an average
value for initial explorations.

2.5.6. Ecosystem Cleanup Objectives
Our understanding of the ecosystem impacts from micro and
macro litter is currently not well-developed; for type 1 problems
this is needed to set scientfically based management targets and
for type 2 problems to parameterize the ecosystem functioning
U(f ). It is important to stress that the unit (e.g., biodiversity, vital
rates or fishing value) of the cleanup objective U in Equation
(8) does not affect the analysis; further, if the simplest functional
form Equation (3) is applied, only the relative differences
in litter concentration tolerance P†(x) needs to be specified,
and difficult cross sectoral and ethical discussions about the
inclusion of ecosystems in anthropocentric utility functions in
neo-classical welfare economics can be avoided about the explicit
form of U(P) can be avoided. Previous work has used primary
productivity derived from remote sensing data as a proxy for
ecosystem sensitivity (Sherman and van Sebille, 2016) assuming
that the latter scales with trophic flux irrespective of season.
Alternatively direct maps of ichthyoplakton, zooplankton and
higher trophic levels based on data synthesis are becoming
increasingly available, (e.g., Beauchard et al., 2017; Beauchard
and Troupin, 2018b). A consistent demonstration was suggested
by the HELCOM Baltic Sea Impact Index (Halpern et al., 2008;
Korpinen et al., 2010, 2012), which combines such species maps
with a sensitivity matrix, based mainly on expert knowledge.
Another important sensitivity map is that of the vulnerability
of benthic ecosystems to sunken marine litter (Beauchard and
Troupin, 2018a), which should be overlayed with the sinking flux
F(x) = λ(x) P(x) that is an important auxiliary output from
Eulerian/Lagrangian transport calculations. To cut the discussion
short on exact weighting of different ecosystem layers, we will
apply a transparent middleway by applying Natura2000 areas as
sensitive areas, see Figures 4, 5, which displays original MPA
(Marine Protected Area) designations (obtained in ESRI shapefile
format). For type 1, the target applied will be a certain pollution
reduction level, compared to present conditions; alternatives
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FIGURE 2 | River sources of macroplastic inflow to the Baltic west of 13 ◦E; circle diameter is scaled according to yearly influx. The largest river source is Oder in the

lower left corner corresponding to 67.2 tons/year.

FIGURE 3 | River sources of macroplastic inflow to the Mediterranean Sea.

could be a certain absolute pollution level for all sensitive
areas. For type 1 optimization, a pollution assessment grid were
generated by projecting MPA areas in Figures 4, 5 onto the
same grid applied for hydrodynamic data generation in each
basin, (at native 10 and 5 km resolution, respectively) to monitor
the level of cleanup obtained by a given cleanup effort f ; the
Baltic grid contains 280 monitoring points, the Mediterranean
2918 monitoring points. For type 2 optimization, the simplest
representation of the ecosystem benefit function (Equation 3)
is integrated over the full Natura 2000 networks in each sea.
Results will be qualitatively independent of the particular choice
of ecosystem sensitivity P†, as the same value is assumed to apply
to all sites in the network.

3. RESULTS

3.1. Macro Plastic Distribution and Green’s
Functions
Figure 6 show the average macro plastic concentration and the

Green’s functions for two major rivers connecting to the Baltic

Sea, corresponding to a 4 year simulation period 2009–2012, with
2008 as spin-up period. The average macro plastic distribution

shows enhanced abundance in near-coastal regions, especially
at the Eastern side, which is likely explained by wind drag and
prevailing westerly winds in the region. The temporal RMS
of fluctuations around the average level in Figure 6A is large,
typically 2–5 times the average, and the temporal dynamics are
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characterized by a varying abundance of plastics, traveling as
wave patterns around in the Baltic Sea according to variable
wind and current patterns; underlying transport dynamics are
elaborated in more detail in Christensen et al. (under review).
The Green’s functions for the major rivers Oder and Narva in
Figure 6 clearly show that the area of influence for sources may
be very different; the Oder pollutes the most of the Baltic Sea, and
most heavily the southern and Eastern Baltic regions, whereas

FIGURE 4 | Baltic region Natura2000 sites. Provided by HELCOM (2021).

Narva mostly affects the Gulf of Finland and the Bothnian Sea.
Notice that the Greens’s functions are normalized per source
influx so that the plot does not show the absolute concentration
of the pollution plumes.

In Figure 7, the mean (2016-2018) simulated distribution
of macroplastics (total from all sizes) for the Mediterranean
is shown. This is primarily affected by the major sources
distribution (see Figure 3), being higher in coastal areas with
important source inputs (Algerian coasts, Italian and Albanian
coasts in the Adriatic, Turkish coasts in the Eastern Aegean
and Eastern Levantine coast). It is also affected by near surface
circulation, resulting in the off-shore advection of floating
plastics from coastal regions, such as the northward spread
from the meandering Algerian current and the convergence of
plastics in areas characterized by anticyclonic circulation, such
as the Gulf of Syrte. The effect from wind/wave drift with a
predominant southeast direction is mainly identified by the lower
concentrations “shadows” near “protected” coasts and also the
relatively lower concentration in the Aegean due to Etesian winds
and the G. Lion due to the strong off-shore advection of floating
particles from Mistral winds. The impact of circulation and
wind/wave is also illustrated by the Green’s functions calculated
contribution from specific sources (Figure 7). The one for the
River Soumman (Algeria) for example shows a very extended
spread that covers almost the entire Western Mediterranean
and reaches the Eastern Levantine following the pathway of
Atlantic-Ionian stream. Another example is the River Seman
(Albania) that shows an important influence throughout the
Eastern Mediterranean, despite its relatively lower plastics load,
compared with other major sources. It should be noted that
certain Mediterranean Green’s functions are essentially zero in
some parts of theMediterranean Sea so the pollution connectivity
is more sparse in the Mediterranean, compared to the Baltic Sea.
Also the relative differences in the Green’s function range seem
larger in the Mediterranean than in the Baltic Sea.

Table 1 gives ǫi (Equation 5), generated with P† = 1 inside
Natura 2000 sites, and zero outside; the relative ranking of rivers
and hence the optimal cleanup solution is invariant with respect
to the level of P†, since only the ratios matter. We see that ǫi
does not correlate strictly with influx Si, neither in the Baltic

FIGURE 5 | Mediterranean Natura2000 sites indicated by purple. Data provided by MAPAMED (2020).
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FIGURE 6 | (A) Average macro plastic concentration in the Baltic Sea (tons/km2 ), corresponding to inputs from all 402 larger river sources and coast litter sources.

Macro plastic Green’s functions (year/km2 ) for (B) river Oder and (C) river Narva, corresponding to unit influx S. River mouths indicated by red circle. All distributions

are generated as 4 year averages with 1 spin-up year using the DRRS equilibration scheme.

nor in the Mediterranean Sea, so that in some case it pays off
to clean some smaller rivers before larger rivers, because they
affect sensitive areas more per unit influx. Table 1 also reveals
noticeable differences between the Baltic andMediterranean case:
the average level of ǫ appears smaller for the Mediterranean
than the Baltic. This may partially be explained by different
submodels for the sinking rate and beaching of macro plastic
in the two implementations. It should be noted that only the
relative difference influence the cost-benefit analysis, not absolute
levels. However, the relative spread in ǫ also appears larger in
the Mediterranean, which is more likely a feature related to
hydrodynamic differences, as sources that lie in the pathway.
of strong coastal currents (e.g., River Soumman, River Seman)
appear to have a more extended influence (see Figure 7). For

the Baltic rivers Daugava, Oder, Nemunas, Wisla give relatively
similar ecological benefit per investment in plastics clean up, with
a significant gap down to rivers Narva and Luga.

3.2. Cost-Benefit Analyses of Cleanup
Effort Prioritization
Before embarking on the cost-benefit analysis, it is important to
assess the feasibility of cleanup (Equation 2) for type 1 (fixed
target) analyses, given the set of sources ω in Table 1 considered
for cleanup. Here it turns out that the regional cleanup scope
is more limited in the Mediterranean than for the Baltic case,
see Figure 8, which shows the histogram of maximum cleanup
potential 1P/P0 in Natura 2000 sites in both the Baltic and
Mediterranean Seas. The underlying reason for this is that
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FIGURE 7 | (A) Average macro plastic concentration in the Mediterranean Sea. (B–E) 4 examples of river source Green’s functions for the Mediterranean Sea, for rivers

Soumman (river mouth Algier), Seman (river mouth Albania), Nile (river mouth Egypt), Karasu (river mouth Turkey). All distributions are generated as 3 year averages.

Mediterranean Green’s functions (Figure 7) are more localized
on a basin scale, compared to the Baltic Sea, which is seven
times smaller areawise than the Mediterranean Sea. Also many
MPAs are found in the Northwestern Mediterranean, where

river pollution is particularly low, according to the adopted
(Lebreton et al., 2017) dataset; further source mapping suggests
that river pollution accounts for a relatively smaller fraction of
the macrolitter input in the Mediterranean Sea. Actually, it turns
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TABLE 1 | ǫ for major rivers supplying the Baltic and Mediterranean Sea with fresh water and macro plastic pollution; rows for each region sorted according to ǫ,

generated with P† = 1 for comparison.

Baltic Influx S ǫ Mediterranean Influx S ǫ

River (tons/year) River (tons/year)

Daugava 1.45035601 0.167 Seman 92.0 0.0170

Oder 67.2445755 0.162 Soumman 271.0 0.0055

Nemunas 16.56937599 0.153 Axios 79.0 0.0045

Wisla 3.62323999 0.152 Buyuk 129.0 0.0029

Narva 5.07659292 0.075 Po 197.0 0.0019

Luga 1.67630696 0.072 Karasu 700.0 8.3 10−5

Nile 970.0 3.1 10−9

We provide river influxes for comparison, but please notice that river influx and ǫ are per se not correlated - ǫ signifies cleaning benefit per unit influx.

FIGURE 8 | Histogram of primary feasibility of cleanup by Equation (2)

monitored at regularly spaced sampling points within Natura 2000 sites when

(A) cleanup rivers Oder, Nemunas, Narva, Wisla, Luga, and Daugava in the

Baltic Sea (monitored at 280 points), and (B) cleanup rivers Nile, Karasu,

Soumman, Po, Buyuk, Seman, and Axios in the Mediterranean Sea (monitored

at 2,918 points).

out that 23% of the Natura 2000 areas in Figure 5 are only
marginally affected by river pollution from Mediterranean rivers
in Table 1, and therefore environmental conditions for this 23%
of the Natura 2000 areas can consequently not be amended by
cleanup of these sources. Albania, Algeria, Egypt and Turkey have
national MPAs, which are not part of the Mediterranean Natura
2000 network, and these should of course be included in a realistic
and more comprehensive application. For type 1 analyses, we
therefore exclude these MPAs from the cleanup target, where
cleanup to a specific target is infeasible by construction (Equation
2) due to prevailing transport patterns (but MPAs still benefit
from cleanup); here the initial message from the analysis is
that additional sources need to be considered, in order to have
a higher cleanup potential at basin-scale, and this situation is
expected to be occurring in other cases as well (the Baltic case
also displayed a feasibility limit, but this was much higher than
for the Mediterranean case).

Figure 9 illustrates the outcome of cleanup optimization in
the Baltic Sea, when considering the set of pollution sources
in Table 1. Figure 9A show a histogram of macro litter density
within the Natura 2000 Baltic network, which is the cleanup
target used for the purpose of illustration, as described above.
The litter density is very variable and spans four orders
of magnitude, indicating the presence of hot spots/zones.
Accumulation patterns are driven by the interplay between
surface currents, Stokes drift, wind drag, and coastal confinement
on the other side, and is analyzed in more detail in Christensen
et al. (under review). The distribution tail is slightly skewed
toward the high end in the log-histogram, but the distribution
is close to log-normal. Figure 9B illustrate the overall benefit
of cleanup at a given cost in the Baltic Natura 2000 network
by type 1/2 prioritization. The optimizations corresponds to the
simplest setting with constant α(f ) and linear U(P) (Equation
3), optimizing over how to distribute cleanup efforts fj between
the six considered river sources in Table 1. For type 1 analysis
we consider pollution reduction factors up to 25% within each
Natura2000 MPA, minimizing the cost at each reduction factor
0–25%, and then evaluating the corresponding overall ecosystem
benefit at that reduction level; for each pollution reduction factor
this generates a corresponding (cost, benefit) point, and the curve
spans from 0 up tomax 25% removed pollution (right end point).
If the reduction factor is increased further the optimization
problem becomes increasingly infeasible (no solution), because
areas in the Natura 2000 network are also significantly influenced
by other sources not considered for cleanup, which sets the upper
bound for the attainable cleanup level. In this particular case, the
maximum global reduction level is 8%, limited by an MPA site
north of Rügen; most other points on the MPA assessment grid
can attribute 20–60% of their macrolitter pollution from these six
river sources. For the type 1 analysis, MPA sites that can not be
cleaned up to 25% were released from the target (but still benefit
from cleanup). To achieve higher reduction levels, additional
sources must be considered for cleanup. For type 2, the U2(c)
curve is generated by optimizing the overall ecosystem benefit at
a given cost level c, using the same cost range as the type 1 curve
for comparison. Both curves U1 and U2 are strictly piece-wise
linear in the simplest setting with constant α(f ) and linear U(P).
Generally U1(c) ≤ U2(c) since U2 is directly maximized at a
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FIGURE 9 | (A) Histogram of average Baltic macro plastic density on assessment grid within Natura 2000 MPAs in Figure 4. (B) MPA integrated benefit of cleanup

per area U/AMPA as function of cost for fixed-objective (type 1, dashed line) or best-value-per-cost (type 2, full line). End point on dashed curve correspond to at least

25% local pollution reduction at all feasible points on assessment grid. For the plot we applied P† =< P >MPA so BAU reference scenario (f = 0) corresponds to

U/AMPA = 0 and full cleanup (P(x) = 0) of all sources (also beyond 6 river in Table 1 corresponds to U/AMPA = 1 (C) Cost-minimizing solution f for different river

sources in Table 1 corresponding to B) for type 1 optimization (dashed curves) and type 2 optimization (full curves).

given cost level c. The underlying reason is that from an overall
perspective, certain MPAs have to be over-cleaned to reach a
certain pollution reduction everywhere. The type 1 and 2 curves
eventually have the same right end point, corresponding to f = 1,
if Green’s functions are non-vanishing everywhere at monitoring
points xk. Figure 9C shows the optimizing solution for both the
type 1 and 2 problem, at different cost levels. We see that the type
1 and 2 problems actually lead to rather different cleanup solution
f at similar cost, even though the level of overall sub optimality
type 1 is limited (Figure 9B). The type 1 optimizer f obtained by
linear programming (Equation 9) has many more kinks (slope
discontinuities) connected by linear segments compared to the
type 2 optimizer, which also comes from linear programming,
where sources are cleaned fully in successive order according to
the ranking principle (Equation 13).

In Figure 10, the corresponding cost benefit analysis for the
source cleanup benefiting the Mediterranean Natura 2000 MPAs
in Figure 5 is shown, when considering the set of pollution
sources in Table 1. Figure 10A shows a histogram of macro
litter density within the MPAs. As for the Baltic Sea, the litter
density is very variable and spans five orders of magnitude,
again indicating the presence of hot spots/zones; on average
the pollution level is about 20% higher compared to the Baltic,
but the exact number will be sensitive to sink parameterization.
The Mediterranean is a semi-enclosed basin that is considered a

hot-spot of plastic pollution (Suaria and Aliani, 2014), resulting
from its densely populated coastline and the limited outflow
of surface waters. The density distribution is more symmetric
compared to the Baltic in Figure 9A, so it is closer to a
log-normal distribution.

Figure 10B illustrate the overall benefit of cleanup at a given
cost in the Mediterranean Natura 2000 network by type 1/2
prioritization. As before the optimizations corresponds to the
simplest setting with constant α(f ) and linear U(P) (Equation 3),
optimizing over how to distribute the cleanup effort f between
the seven river sources considered in Table 1. Again for type
1 analysis, the curve is generated by increasing the required
pollution reduction factor, minimizing the cost at that reduction
factor, and evaluating the overall ecosystem benefit; for the
Mediterranean Sea we consider an up to 10% pollution reduction
in the MPA areas by cleaning up the 7 rivers, and for each
pollution reduction factor this generates a corresponding (cost,
benefit) point, and the curve spans from 0 up to max 10%
removed pollution (right end point). If the reduction factor is
increased to higher levels, the optimization problem becomes
increasingly infeasible (no solution), with fewer MPA sites being
able to reach the target. For type 2, the U2(c) curve is generated
by optimizing the overall ecosystem benefit at a given cost level
c, at a set of cost levels corresponding to the type 1 curve for
comparison. Both curves U1 and U2 are strictly piece-wise linear
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FIGURE 10 | (A) Histogram of average Mediterranean macro plastic density on assessment grid within Natura 2000 MPAs in Figure 5. (B) MPA integrated benefit of

cleanup per area U/AMPA as function of cost for fixed-objective (type 1, dashed line) or best-value-per-cost (type 2, full line). End point on dashed curve correspond to

at least 10% local pollution reduction at all feasible points on assessment grid. For the plot we applied P† =< P >MPA so BAU reference scenario (f = 0) corresponds

to U/AMPA = 0 and full cleanup (P(x) = 0) of all sources (also beyond 6 river in Table 1 corresponds to U/AMPA = 1 (C) Cost-minimizing solution f for different river

sources in Table 1 corresponding to B) for type 1 optimization (dashed curves) and type 2 optimization (full curves).

in the simplest setting with constant α(f ) and linear U(P), but in
this case U2 appears overall more concave than U2 for the Baltic
Sea, and type 2 (overall) cost-benefit optimization gives more
value for the cleanup investment.

4. DISCUSSION

In this paper, we presented a consistent framework for cost-
benefit analysis of marine litter cleanup. Because it is based
on first principles, it allows for systematic refinements of
assumptions and approximations. The simplest setting was
applied for the Baltic and Mediterranean case studies and below
we outline the major assumptions and approximations, their
influence and potential pathways for amendment. The pollution
sources and study areas chosen in this paper are not special
and we expect our framework to be applicable to other coastal
regions as well if the corresponding input data is supplied. In
relation to a particular target it is important that the considered
set of rivers are relevant and carry a significant fraction of the
input. This is checked by the feasibility analysis (Equation 2)
In Christensen et al. (under review), we give a more detailed
account of major knowledge gaps and uncertainties in relation
to the physics (transport simulations) applied for computing
Green’s functions.

Different macro litter fractions display different dispersal
patterns away from the source; this is mainly due to different

experienced wind drag k, caused by buoyancy differences and
differences in size and shape, but wave interaction may also
play a significant role. It has already been pointed out that
this has the potential to create spatial litter stratification by
windage (Maximenko et al., 2018), which would constitute a
rich validation data set. Additionally the sinking rate λ(x, t)
determines the extend of the Green’s function and will depend
mainly on buoyancy and size of the objects, as well as seasonal
and spatial differences in biofouling rate, which also depend of
material and surface texture.

To confine uncertainty in transport simulations it is necessary
to know the composition of the litter from sources, expressed
as a statistical distribution over (k, λ) (as a first approximation).
This is akin to the new trait-based paradigm in ecology, where
the analysis focuses on key traits rather than individual species
(Kiørboe et al., 2018). The idea of considering low-dimensional
statistical distributions of litter types, rather than arbitrary more
or less representative selections of specific litter pieces has already
been suggested by Kooi and Koelmans (2019), which suggested
size, Corey shape factor and density as pragmatic covariates
for the statistical distributions; our work suggests that the most
relevant covariates aligned with a modeling perspective are
(k, λ), which are more complicated to measure routinely, so that
an important future research issue is linkage functions from
easily measurable litter attributes to (k, λ), and identifying easily
measurable litter attributes in addition to size, shape and density
that determine (k, λ), like surface texture. Such input is important

Frontiers in Marine Science | www.frontiersin.org 14 November 2021 | Volume 8 | Article 744208

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Christensen et al. Optimization of Marine Litter Cleanup

to standardize the samplingmethodology and reporting practices
for detection, quantification, and characterization of plastic
debris in the marine environment, which is currently critically
lacking (Law, 2017).

Then, by linearity of transport, the effective Green’s function
is just the Gk,λ weighted by the statistical distribution over
(k, λ) of litter. If the ecological impact of different macro
litter fractions are comparable, the cost-benefit analysis may
be conducted using the obtained effective Green’s function,
alternatively different representative fractions must be accounted
for in parallel, extending the set of sources ω in the analysis.
Assessing the statistical distribution over (k, λ) of marine
litter today is far beyond survey recording practices, where
observational categories are very coarse, disjoint and aimed at
low-effort postprocessing, e.g., “plastic,” “plastic < 5 cm.” As a
minimum, to allow data-pooling and meta-studies, a common
set of observational categories needs to be established, preferably
a hierarchical system as applied for habitat classification (Davies
andMoss, 2000, 2004). The approach until now has not addressed
that plastic litter possibly break up before eventually sinking.
Breakup products will disperse independently. If fragments keep
(k, λ) corresponding to the parent, the result will be the same,
because Lagrangian/Eulerian simulations have a diffusive term
representing the effect of sub-scale eddies statistically. According
to Kooi et al. (2017) this is likely not the case for λ, and due to
the air flow profile vertical scaling near the sea surface, it is likely
not the case for k either. So studying the temporal dynamics of a
distribution over (k, λ) is of interest, also to address the long-term
fate of marine litter.

In the current formulation cleanup at sources is assumed,
which is expected to be most effective from an entropic point
of view, and also supported by pilot studies (Sherman and van
Sebille, 2016), however, off-shore cleanup is also conceivable
as for example add-on installations at wind farms. It can be
shown that the Green’s function technique advanced in this work
can also be extended to cover off-source cleanup, thus allowing
to cross-compare a wider palette of cleanup alternatives in an
integrated framework.

Case studies were developed using the simple relation
Equation (3) for type 2 analyses of ecosystem impact. Even
though the biological literature is equivocal on the adverse effect
and potential dangers of marine plastic, evidence is qualitative
and categorical (e.g., statistics of species having detectable
interaction with unmanaged plastic), and collected data are
usually habitat and species specific. In light of the complexity
of physiological processes leading to vital rates, the literature
today falls short of mapping ecosystem functioning directly to
the continuous litter density, and in this perspective it becomes
an academic exercise to go far beyond the simplicity of Equation
(3). If the underlying ecosystem functioning really respond non-
linearly to plastic abundance (as opposed to gradually linear as
in Equation (3)), the next observational step would be to seek
a step function, which also just contain one essential parameter
(the sharp threshold) to be estimated. In this case, the type 1 and
2 problems become mathematically isomorphic, and need to be
solved like the type 1 problem in the present formulation with
very little adaptation. For the type 2 formulation in the present

context, only the relative values of P† are important, but with the
step function, the absolute value matters.

In addition to potential non-linearity of ecosystem
functioning, non-linearity of the cost function also needs
to be considered. This non-linearity is more tangible and easier
to assess than that of ecosystem functioning and the impacts on
ecosystem service delivery (e.g., recreation, commercial fisheries
etc.). The underlying reason is that for many cleanup techniques,
e.g., those relying on local filtering, it progressively becomes
more difficult to remove all litter which implies that c(f ) becomes
a convex function in cleanup degree f . In the Supplementary
Materials we demonstrate that a logarithmic scaling is expected
on rather generally c(f ) ∼ −log(1 − f )) as f → 1, if installation
costs are discounted over the lifetime of the technology, so that
the last term in Equation (6) becomes −αjSjlog(1 − fj)). This
renders the objective functions Equations (7), (8) non-linear in
the interior and weakly singular at the right boundary f = 1,
so the optimization problems are of the general KKT type.
Generally speaking, this means the solution will be left-interior
f < 1 and not be constituted by linear segments as in Figures 9C,
10C, and the convenient ranking principle for linear type 2
problems (Equation 13) will not apply strictly.

In our case studies we applied the indicative marginal
cleanup cost of α = 1 e/kg as baseline in our example
case studies. With the current increasing level of research and
development in sustainable cleanup and recycling (see e.g.,
OceanCleanupProject, 2013) this baseline is expected to drop
with industrial scaleup and optimization in the future; a reduced
cleanup cost level α will not, however, change the approach and
results outlined in this paper, but merely change the cost scale
axis in figures like Figures 1, 9, 10, and allow for cleaner oceans
for a given level of societal investment in cleaning.

The plastic source map applied in this work represents current
best knowledge, however this data set has certain shortcomings,
most importantly that the Russian sources are not available. We
expect inclusion of this will lead to higher plastic concentrations
in the Gulf of Finland and the Bothnian Sea. The Greens
functions computed for riverine sources are insensitive to error
and biases in the source map, but average plastic distribution is
sensitive to errors. It is important to stress that our integrated
framework will also work for an amended source map and results
will be qualitatively similar, even though quantitative results may
change a little reflecting updated input.

In the regional case studies we have applied a constant
litter influx, corresponding to the limited available data, without
seasonal patterns or short term interannual trends. However,
it is not unlikely that a significant time variation is present in
the influx for each source, reflecting for example precipitation
dynamics, changing seasonal consumption patterns and overall
economic activity level. If such submodels were available, they
could be applied as modulations on the constant litter influx
levels applied in the current setups. Technically this means
that time varying Green’s functions must be applied, but our
frame work can relatively easily be extended to cover this.
However, it only makes sense to consider this advancement,
if also a non-linear ecosystem functioning is applied, because
averaged ecosystem functioning is not the same as ecosystem
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functioning under averaged conditions. Another aspect calling
for an extension to time varying Green’s functions is vulnerable
periods in the ecosystem, for instance spawning seasons. As
a first step in this direction, a temporal clip may be applied
when time-averaging the Green’s functions. Alternatively a lower
tolerance limit could be applied to the entire season, when setting
targets or defining the U functions.

Related to this discussion is also the effect of short-term
fluctuations in litter distribution. A first generalization of the
current framework in this direction is to simulate local temporal
fluctuations σP(x) in litter density with an equation similar to
Equation (1), developed the time dependent Green’s function.
This allow for an amended representations of the ecosystem
functioning U = U(P, σP).

In our presentation, we have leaned toward U representing
non-monetized aspects of ecosystem functioning and ecosystem
service provision. Depending on the starting point, U may also
partially or fully represent an economic aspect of ecosystem
functioning, e.g., fishing yield value or recreational sector
revenue. From a mathematical point of view, it makes no
difference in the optimization procedure whether U represents
an ecological conservation aspect or a monetized utility aspect.
The dilemma is partly ethical and partly methodological based on
academic and policymaker confidence in available environmental
valuationmethods. Our framework can handle both perspectives,
and the choice is visible up front in the definition of Z2. A detailed
discussion of the case where U is a monetized representation
ecosystem services and functioning is beyond the scope of this
manuscript. But in this case U and C have the same unit, and the
natural value in Equation (8) is κ = 1 so income and costs are at
same footing and the problem is a standard profit maximization
problem, with f as control variables. In this case these is a risk that
Z2 looses convexity and/or the mathematical solution becomes
trivial (f = 0) implying no cleanup at all.

Although beyond the scope of the present work, for type 1
(cost minimization) problems, it is relatively straight forward
to include other social, political and geopolitical issues when
applying a regional cleanup solution, by ad hoc adjustments of
targets. It is also possible to add penalty terms (or additional
inequality terms) to Equation (8). The present framework then
allows to assess the degree of suboptimality—or quantify the
additional cost incurred—by such constraints.

5. CONCLUSIONS

We presented a quantitative framework to optimize choices
across technologies and sites for cleaning up marine litter
at regional scale, and identified which cross-disciplinary
input is needed to support scientifically sound marine litter
cleanup strategy planning. Our formulation is a consistent
first principles approach combining data from physics, biology,
cleanup engineering, and economics which allows for systematic
extensions. We identify two cost-benefit problem categories: cost
minimization and benefit maximization, which have different
objective functions and different solutions. In the simplest
case with linear cleanup-cost and ecosystem functioning, the
target-driven analysis leads to a robust linear programming

problem. The best-value can be solved analytically by a
ranking principle, in the simplest case. When more complex
cleanup-cost and ecosystem functioning representations are
included, the framework leads to a general KKT optimization
problem. Furthermore, the integrated framework allows to
test the feasibility of a given cleanup target by considering
the source litter dispersal Green’s functions, which was an
important step, as illustrated in our two regional case studies.
Best-value cleanup formulations have no feasibility constraints.
The parameterization requirements in the framework is relatively
benign, since in many cases only ratios or relative values of
properties are needed. We present case studies of cleanup in
the Baltic andMediterranean Seas demonstrating the framework,
and several interesting results emerge. Green’s functions in the
Mediterranean Sea appear more localized which lowers the
feasibility of a given target, if a given set of river sources
are considered for cleanup, and successful cleanup is more
dependent on including enough sources. For both the Baltic and
the Mediterranean Sea upper limits of cleanup feasibility are set
by sites under influence of local pollution sources not included
in the cleanup plan. In both cases it is also not most favorable
to clean up the largest sources first, considering the overall
ecosystem benefits. Our work has demonstrated that it is pivotal
to include litter transport simulation in the planning of regional
scale cleanup strategies, if ecosystem benefit are to be maximized
for the resources to be invested in marine litter cleanup.
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